ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
Revision: 1277
Committed: Mon Jul 14 12:35:58 2008 UTC (16 years, 9 months ago) by gezelter
File size: 52437 byte(s)
Log Message:
Changes for implementing Amber force field:  Added Inversions and
worked on BaseAtomTypes so that they'd function with the fortran side.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 2
49 gezelter 246 #include <algorithm>
50     #include <set>
51 tim 749 #include <map>
52 gezelter 2
53 tim 3 #include "brains/SimInfo.hpp"
54 gezelter 246 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 1024 #include "primitives/StuntDouble.hpp"
57 gezelter 586 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 606 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 716 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 726 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 246 #include "UseTheForce/doForces_interface.h"
62 chuckv 1095 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 610 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 726 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 246 #include "utils/MemoryUtils.hpp"
66 tim 3 #include "utils/simError.h"
67 tim 316 #include "selection/SelectionManager.hpp"
68 chuckv 834 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 2
71 chuckv 1095
72 gezelter 246 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 2
77 gezelter 246 namespace oopse {
78 tim 749 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 2
85 tim 749 return result;
86     }
87    
88 tim 770 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 945 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 507 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 gezelter 1277 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
94     nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95     nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96     calcBoxDipole_(false), useAtomicVirial_(true) {
97 gezelter 2
98 gezelter 1277
99 gezelter 507 MoleculeStamp* molStamp;
100     int nMolWithSameStamp;
101     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 chrisfen 645 int nGroups = 0; //total cutoff groups defined in meta-data file
103 gezelter 507 CutoffGroupStamp* cgStamp;
104     RigidBodyStamp* rbStamp;
105     int nRigidAtoms = 0;
106 gezelter 1277
107 tim 770 std::vector<Component*> components = simParams->getComponents();
108    
109     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110     molStamp = (*i)->getMoleculeStamp();
111     nMolWithSameStamp = (*i)->getNMol();
112 gezelter 246
113     addMoleculeStamp(molStamp, nMolWithSameStamp);
114 gezelter 2
115 gezelter 246 //calculate atoms in molecules
116     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
117 gezelter 2
118 gezelter 246 //calculate atoms in cutoff groups
119     int nAtomsInGroups = 0;
120     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121    
122     for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 tim 770 cgStamp = molStamp->getCutoffGroupStamp(j);
124 gezelter 507 nAtomsInGroups += cgStamp->getNMembers();
125 gezelter 246 }
126 gezelter 2
127 gezelter 246 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 chrisfen 645
129 gezelter 246 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
130 gezelter 2
131 gezelter 246 //calculate atoms in rigid bodies
132     int nAtomsInRigidBodies = 0;
133 tim 274 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 gezelter 246
135     for (int j=0; j < nRigidBodiesInStamp; j++) {
136 tim 770 rbStamp = molStamp->getRigidBodyStamp(j);
137 gezelter 507 nAtomsInRigidBodies += rbStamp->getNMembers();
138 gezelter 246 }
139 gezelter 2
140 gezelter 246 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
142    
143 gezelter 507 }
144 chrisfen 143
145 chrisfen 645 //every free atom (atom does not belong to cutoff groups) is a cutoff
146     //group therefore the total number of cutoff groups in the system is
147     //equal to the total number of atoms minus number of atoms belong to
148     //cutoff group defined in meta-data file plus the number of cutoff
149     //groups defined in meta-data file
150 gezelter 507 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151 gezelter 2
152 chrisfen 645 //every free atom (atom does not belong to rigid bodies) is an
153     //integrable object therefore the total number of integrable objects
154     //in the system is equal to the total number of atoms minus number of
155     //atoms belong to rigid body defined in meta-data file plus the number
156     //of rigid bodies defined in meta-data file
157     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158     + nGlobalRigidBodies_;
159    
160 gezelter 507 nGlobalMols_ = molStampIds_.size();
161     molToProcMap_.resize(nGlobalMols_);
162     }
163 gezelter 2
164 gezelter 507 SimInfo::~SimInfo() {
165 tim 398 std::map<int, Molecule*>::iterator i;
166     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 gezelter 507 delete i->second;
168 tim 398 }
169     molecules_.clear();
170 tim 490
171 gezelter 246 delete sman_;
172     delete simParams_;
173     delete forceField_;
174 gezelter 507 }
175 gezelter 2
176 gezelter 507 int SimInfo::getNGlobalConstraints() {
177 gezelter 246 int nGlobalConstraints;
178     #ifdef IS_MPI
179     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180     MPI_COMM_WORLD);
181     #else
182     nGlobalConstraints = nConstraints_;
183     #endif
184     return nGlobalConstraints;
185 gezelter 507 }
186 gezelter 2
187 gezelter 507 bool SimInfo::addMolecule(Molecule* mol) {
188 gezelter 246 MoleculeIterator i;
189 gezelter 2
190 gezelter 246 i = molecules_.find(mol->getGlobalIndex());
191     if (i == molecules_.end() ) {
192 gezelter 2
193 gezelter 507 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 gezelter 246
195 gezelter 507 nAtoms_ += mol->getNAtoms();
196     nBonds_ += mol->getNBonds();
197     nBends_ += mol->getNBends();
198     nTorsions_ += mol->getNTorsions();
199 gezelter 1277 nInversions_ += mol->getNInversions();
200 gezelter 507 nRigidBodies_ += mol->getNRigidBodies();
201     nIntegrableObjects_ += mol->getNIntegrableObjects();
202     nCutoffGroups_ += mol->getNCutoffGroups();
203     nConstraints_ += mol->getNConstraintPairs();
204 gezelter 2
205 gezelter 507 addExcludePairs(mol);
206 gezelter 246
207 gezelter 507 return true;
208 gezelter 246 } else {
209 gezelter 507 return false;
210 gezelter 246 }
211 gezelter 507 }
212 gezelter 2
213 gezelter 507 bool SimInfo::removeMolecule(Molecule* mol) {
214 gezelter 246 MoleculeIterator i;
215     i = molecules_.find(mol->getGlobalIndex());
216 gezelter 2
217 gezelter 246 if (i != molecules_.end() ) {
218 gezelter 2
219 gezelter 507 assert(mol == i->second);
220 gezelter 246
221 gezelter 507 nAtoms_ -= mol->getNAtoms();
222     nBonds_ -= mol->getNBonds();
223     nBends_ -= mol->getNBends();
224     nTorsions_ -= mol->getNTorsions();
225 gezelter 1277 nInversions_ -= mol->getNInversions();
226 gezelter 507 nRigidBodies_ -= mol->getNRigidBodies();
227     nIntegrableObjects_ -= mol->getNIntegrableObjects();
228     nCutoffGroups_ -= mol->getNCutoffGroups();
229     nConstraints_ -= mol->getNConstraintPairs();
230 gezelter 2
231 gezelter 507 removeExcludePairs(mol);
232     molecules_.erase(mol->getGlobalIndex());
233 gezelter 2
234 gezelter 507 delete mol;
235 gezelter 246
236 gezelter 507 return true;
237 gezelter 246 } else {
238 gezelter 507 return false;
239 gezelter 246 }
240    
241    
242 gezelter 507 }
243 gezelter 246
244    
245 gezelter 507 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 gezelter 246 i = molecules_.begin();
247     return i == molecules_.end() ? NULL : i->second;
248 gezelter 507 }
249 gezelter 246
250 gezelter 507 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 gezelter 246 ++i;
252     return i == molecules_.end() ? NULL : i->second;
253 gezelter 507 }
254 gezelter 2
255    
256 gezelter 507 void SimInfo::calcNdf() {
257 gezelter 246 int ndf_local;
258     MoleculeIterator i;
259     std::vector<StuntDouble*>::iterator j;
260     Molecule* mol;
261     StuntDouble* integrableObject;
262 gezelter 2
263 gezelter 246 ndf_local = 0;
264    
265     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267     integrableObject = mol->nextIntegrableObject(j)) {
268 gezelter 2
269 gezelter 507 ndf_local += 3;
270 gezelter 2
271 gezelter 507 if (integrableObject->isDirectional()) {
272     if (integrableObject->isLinear()) {
273     ndf_local += 2;
274     } else {
275     ndf_local += 3;
276     }
277     }
278 gezelter 246
279 tim 770 }
280     }
281 gezelter 246
282     // n_constraints is local, so subtract them on each processor
283     ndf_local -= nConstraints_;
284    
285     #ifdef IS_MPI
286     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287     #else
288     ndf_ = ndf_local;
289     #endif
290    
291     // nZconstraints_ is global, as are the 3 COM translations for the
292     // entire system:
293     ndf_ = ndf_ - 3 - nZconstraint_;
294    
295 gezelter 507 }
296 gezelter 2
297 gezelter 945 int SimInfo::getFdf() {
298     #ifdef IS_MPI
299     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300     #else
301     fdf_ = fdf_local;
302     #endif
303     return fdf_;
304     }
305    
306 gezelter 507 void SimInfo::calcNdfRaw() {
307 gezelter 246 int ndfRaw_local;
308 gezelter 2
309 gezelter 246 MoleculeIterator i;
310     std::vector<StuntDouble*>::iterator j;
311     Molecule* mol;
312     StuntDouble* integrableObject;
313    
314     // Raw degrees of freedom that we have to set
315     ndfRaw_local = 0;
316    
317     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319     integrableObject = mol->nextIntegrableObject(j)) {
320 gezelter 246
321 gezelter 507 ndfRaw_local += 3;
322 gezelter 246
323 gezelter 507 if (integrableObject->isDirectional()) {
324     if (integrableObject->isLinear()) {
325     ndfRaw_local += 2;
326     } else {
327     ndfRaw_local += 3;
328     }
329     }
330 gezelter 246
331 gezelter 507 }
332 gezelter 246 }
333    
334     #ifdef IS_MPI
335     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfRaw_ = ndfRaw_local;
338     #endif
339 gezelter 507 }
340 gezelter 2
341 gezelter 507 void SimInfo::calcNdfTrans() {
342 gezelter 246 int ndfTrans_local;
343 gezelter 2
344 gezelter 246 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345 gezelter 2
346    
347 gezelter 246 #ifdef IS_MPI
348     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349     #else
350     ndfTrans_ = ndfTrans_local;
351     #endif
352 gezelter 2
353 gezelter 246 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354    
355 gezelter 507 }
356 gezelter 2
357 gezelter 507 void SimInfo::addExcludePairs(Molecule* mol) {
358 gezelter 246 std::vector<Bond*>::iterator bondIter;
359     std::vector<Bend*>::iterator bendIter;
360     std::vector<Torsion*>::iterator torsionIter;
361 gezelter 1277 std::vector<Inversion*>::iterator inversionIter;
362 gezelter 246 Bond* bond;
363     Bend* bend;
364     Torsion* torsion;
365 gezelter 1277 Inversion* inversion;
366 gezelter 246 int a;
367     int b;
368     int c;
369     int d;
370 tim 749
371     std::map<int, std::set<int> > atomGroups;
372    
373     Molecule::RigidBodyIterator rbIter;
374     RigidBody* rb;
375     Molecule::IntegrableObjectIterator ii;
376     StuntDouble* integrableObject;
377 gezelter 246
378 tim 749 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
379     integrableObject = mol->nextIntegrableObject(ii)) {
380    
381     if (integrableObject->isRigidBody()) {
382     rb = static_cast<RigidBody*>(integrableObject);
383     std::vector<Atom*> atoms = rb->getAtoms();
384     std::set<int> rigidAtoms;
385     for (int i = 0; i < atoms.size(); ++i) {
386     rigidAtoms.insert(atoms[i]->getGlobalIndex());
387     }
388     for (int i = 0; i < atoms.size(); ++i) {
389     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
390     }
391     } else {
392     std::set<int> oneAtomSet;
393     oneAtomSet.insert(integrableObject->getGlobalIndex());
394     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
395     }
396     }
397    
398    
399    
400 gezelter 246 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
401 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
402     b = bond->getAtomB()->getGlobalIndex();
403     exclude_.addPair(a, b);
404 gezelter 246 }
405 gezelter 2
406 gezelter 246 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
407 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
408     b = bend->getAtomB()->getGlobalIndex();
409     c = bend->getAtomC()->getGlobalIndex();
410 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413 gezelter 2
414 tim 749 exclude_.addPairs(rigidSetA, rigidSetB);
415     exclude_.addPairs(rigidSetA, rigidSetC);
416     exclude_.addPairs(rigidSetB, rigidSetC);
417    
418     //exclude_.addPair(a, b);
419     //exclude_.addPair(a, c);
420     //exclude_.addPair(b, c);
421 gezelter 246 }
422 gezelter 2
423 gezelter 246 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
424 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
425     b = torsion->getAtomB()->getGlobalIndex();
426     c = torsion->getAtomC()->getGlobalIndex();
427     d = torsion->getAtomD()->getGlobalIndex();
428 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
432 gezelter 2
433 tim 749 exclude_.addPairs(rigidSetA, rigidSetB);
434     exclude_.addPairs(rigidSetA, rigidSetC);
435     exclude_.addPairs(rigidSetA, rigidSetD);
436     exclude_.addPairs(rigidSetB, rigidSetC);
437     exclude_.addPairs(rigidSetB, rigidSetD);
438     exclude_.addPairs(rigidSetC, rigidSetD);
439    
440     /*
441     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
442     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
443     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
444     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
445     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
446     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
447    
448    
449 gezelter 507 exclude_.addPair(a, b);
450     exclude_.addPair(a, c);
451     exclude_.addPair(a, d);
452     exclude_.addPair(b, c);
453     exclude_.addPair(b, d);
454     exclude_.addPair(c, d);
455 tim 749 */
456 gezelter 2 }
457    
458 gezelter 1277 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
459     inversion = mol->nextInversion(inversionIter)) {
460     a = inversion->getAtomA()->getGlobalIndex();
461     b = inversion->getAtomB()->getGlobalIndex();
462     c = inversion->getAtomC()->getGlobalIndex();
463     d = inversion->getAtomD()->getGlobalIndex();
464     std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
468    
469     exclude_.addPairs(rigidSetA, rigidSetB);
470     exclude_.addPairs(rigidSetA, rigidSetC);
471     exclude_.addPairs(rigidSetA, rigidSetD);
472     exclude_.addPairs(rigidSetB, rigidSetC);
473     exclude_.addPairs(rigidSetB, rigidSetD);
474     exclude_.addPairs(rigidSetC, rigidSetD);
475    
476     /*
477     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
478     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
479     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
480     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
481     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
482     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
483    
484    
485     exclude_.addPair(a, b);
486     exclude_.addPair(a, c);
487     exclude_.addPair(a, d);
488     exclude_.addPair(b, c);
489     exclude_.addPair(b, d);
490     exclude_.addPair(c, d);
491     */
492     }
493    
494 tim 430 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
495 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
496     for (int i = 0; i < atoms.size() -1 ; ++i) {
497     for (int j = i + 1; j < atoms.size(); ++j) {
498     a = atoms[i]->getGlobalIndex();
499     b = atoms[j]->getGlobalIndex();
500     exclude_.addPair(a, b);
501     }
502     }
503 tim 430 }
504    
505 gezelter 507 }
506 gezelter 246
507 gezelter 507 void SimInfo::removeExcludePairs(Molecule* mol) {
508 gezelter 246 std::vector<Bond*>::iterator bondIter;
509     std::vector<Bend*>::iterator bendIter;
510     std::vector<Torsion*>::iterator torsionIter;
511 gezelter 1277 std::vector<Inversion*>::iterator inversionIter;
512 gezelter 246 Bond* bond;
513     Bend* bend;
514     Torsion* torsion;
515 gezelter 1277 Inversion* inversion;
516 gezelter 246 int a;
517     int b;
518     int c;
519     int d;
520 tim 749
521     std::map<int, std::set<int> > atomGroups;
522    
523     Molecule::RigidBodyIterator rbIter;
524     RigidBody* rb;
525     Molecule::IntegrableObjectIterator ii;
526     StuntDouble* integrableObject;
527 gezelter 246
528 tim 749 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
529     integrableObject = mol->nextIntegrableObject(ii)) {
530    
531     if (integrableObject->isRigidBody()) {
532     rb = static_cast<RigidBody*>(integrableObject);
533     std::vector<Atom*> atoms = rb->getAtoms();
534     std::set<int> rigidAtoms;
535     for (int i = 0; i < atoms.size(); ++i) {
536     rigidAtoms.insert(atoms[i]->getGlobalIndex());
537     }
538     for (int i = 0; i < atoms.size(); ++i) {
539     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
540     }
541     } else {
542     std::set<int> oneAtomSet;
543     oneAtomSet.insert(integrableObject->getGlobalIndex());
544     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
545     }
546     }
547    
548    
549 gezelter 246 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
550 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
551     b = bond->getAtomB()->getGlobalIndex();
552     exclude_.removePair(a, b);
553 gezelter 2 }
554 gezelter 246
555     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
556 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
557     b = bend->getAtomB()->getGlobalIndex();
558     c = bend->getAtomC()->getGlobalIndex();
559 gezelter 246
560 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563    
564     exclude_.removePairs(rigidSetA, rigidSetB);
565     exclude_.removePairs(rigidSetA, rigidSetC);
566     exclude_.removePairs(rigidSetB, rigidSetC);
567    
568     //exclude_.removePair(a, b);
569     //exclude_.removePair(a, c);
570     //exclude_.removePair(b, c);
571 gezelter 2 }
572 gezelter 246
573     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
575     b = torsion->getAtomB()->getGlobalIndex();
576     c = torsion->getAtomC()->getGlobalIndex();
577     d = torsion->getAtomD()->getGlobalIndex();
578 gezelter 246
579 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
580     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
581     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
582     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
583    
584     exclude_.removePairs(rigidSetA, rigidSetB);
585     exclude_.removePairs(rigidSetA, rigidSetC);
586     exclude_.removePairs(rigidSetA, rigidSetD);
587     exclude_.removePairs(rigidSetB, rigidSetC);
588     exclude_.removePairs(rigidSetB, rigidSetD);
589     exclude_.removePairs(rigidSetC, rigidSetD);
590    
591     /*
592     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598    
599    
600 gezelter 507 exclude_.removePair(a, b);
601     exclude_.removePair(a, c);
602     exclude_.removePair(a, d);
603     exclude_.removePair(b, c);
604     exclude_.removePair(b, d);
605     exclude_.removePair(c, d);
606 tim 749 */
607 gezelter 246 }
608    
609 gezelter 1277 for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
610     a = inversion->getAtomA()->getGlobalIndex();
611     b = inversion->getAtomB()->getGlobalIndex();
612     c = inversion->getAtomC()->getGlobalIndex();
613     d = inversion->getAtomD()->getGlobalIndex();
614    
615     std::set<int> rigidSetA = getRigidSet(a, atomGroups);
616     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
617     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
618     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
619    
620     exclude_.removePairs(rigidSetA, rigidSetB);
621     exclude_.removePairs(rigidSetA, rigidSetC);
622     exclude_.removePairs(rigidSetA, rigidSetD);
623     exclude_.removePairs(rigidSetB, rigidSetC);
624     exclude_.removePairs(rigidSetB, rigidSetD);
625     exclude_.removePairs(rigidSetC, rigidSetD);
626    
627     /*
628     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634    
635    
636     exclude_.removePair(a, b);
637     exclude_.removePair(a, c);
638     exclude_.removePair(a, d);
639     exclude_.removePair(b, c);
640     exclude_.removePair(b, d);
641     exclude_.removePair(c, d);
642     */
643     }
644    
645 tim 430 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
646 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
647     for (int i = 0; i < atoms.size() -1 ; ++i) {
648     for (int j = i + 1; j < atoms.size(); ++j) {
649     a = atoms[i]->getGlobalIndex();
650     b = atoms[j]->getGlobalIndex();
651     exclude_.removePair(a, b);
652     }
653     }
654 tim 430 }
655    
656 gezelter 507 }
657 gezelter 2
658    
659 gezelter 507 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
660 gezelter 246 int curStampId;
661 gezelter 2
662 gezelter 246 //index from 0
663     curStampId = moleculeStamps_.size();
664 gezelter 2
665 gezelter 246 moleculeStamps_.push_back(molStamp);
666     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
667 gezelter 507 }
668 gezelter 2
669 gezelter 507 void SimInfo::update() {
670 gezelter 2
671 gezelter 246 setupSimType();
672 gezelter 2
673 gezelter 246 #ifdef IS_MPI
674     setupFortranParallel();
675     #endif
676 gezelter 2
677 gezelter 246 setupFortranSim();
678 gezelter 2
679 gezelter 246 //setup fortran force field
680     /** @deprecate */
681     int isError = 0;
682 chrisfen 598
683 chrisfen 1045 setupCutoff();
684    
685 chrisfen 603 setupElectrostaticSummationMethod( isError );
686 chrisfen 726 setupSwitchingFunction();
687 chrisfen 998 setupAccumulateBoxDipole();
688 chrisfen 598
689 gezelter 246 if(isError){
690 gezelter 507 sprintf( painCave.errMsg,
691     "ForceField error: There was an error initializing the forceField in fortran.\n" );
692     painCave.isFatal = 1;
693     simError();
694 gezelter 246 }
695 gezelter 2
696 gezelter 246 calcNdf();
697     calcNdfRaw();
698     calcNdfTrans();
699    
700     fortranInitialized_ = true;
701 gezelter 507 }
702 gezelter 2
703 gezelter 507 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
704 gezelter 246 SimInfo::MoleculeIterator mi;
705     Molecule* mol;
706     Molecule::AtomIterator ai;
707     Atom* atom;
708     std::set<AtomType*> atomTypes;
709 gezelter 2
710 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
711 gezelter 2
712 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
713     atomTypes.insert(atom->getAtomType());
714     }
715 gezelter 246
716     }
717 gezelter 2
718 gezelter 246 return atomTypes;
719 gezelter 507 }
720 gezelter 2
721 gezelter 507 void SimInfo::setupSimType() {
722 gezelter 246 std::set<AtomType*>::iterator i;
723     std::set<AtomType*> atomTypes;
724     atomTypes = getUniqueAtomTypes();
725 gezelter 2
726 gezelter 246 int useLennardJones = 0;
727     int useElectrostatic = 0;
728     int useEAM = 0;
729 chuckv 734 int useSC = 0;
730 gezelter 246 int useCharge = 0;
731     int useDirectional = 0;
732     int useDipole = 0;
733     int useGayBerne = 0;
734     int useSticky = 0;
735 chrisfen 523 int useStickyPower = 0;
736 gezelter 246 int useShape = 0;
737     int useFLARB = 0; //it is not in AtomType yet
738     int useDirectionalAtom = 0;
739     int useElectrostatics = 0;
740     //usePBC and useRF are from simParams
741 tim 665 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
742 chrisfen 611 int useRF;
743 chrisfen 720 int useSF;
744 chrisfen 998 int useSP;
745     int useBoxDipole;
746 gezelter 1126
747 tim 665 std::string myMethod;
748 gezelter 2
749 chrisfen 611 // set the useRF logical
750 tim 665 useRF = 0;
751 chrisfen 720 useSF = 0;
752 gezelter 1078 useSP = 0;
753 chrisfen 691
754    
755 tim 665 if (simParams_->haveElectrostaticSummationMethod()) {
756 chrisfen 691 std::string myMethod = simParams_->getElectrostaticSummationMethod();
757     toUpper(myMethod);
758 chrisfen 998 if (myMethod == "REACTION_FIELD"){
759 gezelter 1078 useRF = 1;
760 chrisfen 998 } else if (myMethod == "SHIFTED_FORCE"){
761     useSF = 1;
762     } else if (myMethod == "SHIFTED_POTENTIAL"){
763     useSP = 1;
764 chrisfen 691 }
765 tim 665 }
766 chrisfen 998
767     if (simParams_->haveAccumulateBoxDipole())
768     if (simParams_->getAccumulateBoxDipole())
769     useBoxDipole = 1;
770 chrisfen 611
771 gezelter 1126 useAtomicVirial_ = simParams_->getUseAtomicVirial();
772    
773 gezelter 246 //loop over all of the atom types
774     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
775 gezelter 507 useLennardJones |= (*i)->isLennardJones();
776     useElectrostatic |= (*i)->isElectrostatic();
777     useEAM |= (*i)->isEAM();
778 chuckv 734 useSC |= (*i)->isSC();
779 gezelter 507 useCharge |= (*i)->isCharge();
780     useDirectional |= (*i)->isDirectional();
781     useDipole |= (*i)->isDipole();
782     useGayBerne |= (*i)->isGayBerne();
783     useSticky |= (*i)->isSticky();
784 chrisfen 523 useStickyPower |= (*i)->isStickyPower();
785 gezelter 507 useShape |= (*i)->isShape();
786 gezelter 246 }
787 gezelter 2
788 chrisfen 523 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
789 gezelter 507 useDirectionalAtom = 1;
790 gezelter 246 }
791 gezelter 2
792 gezelter 246 if (useCharge || useDipole) {
793 gezelter 507 useElectrostatics = 1;
794 gezelter 246 }
795 gezelter 2
796 gezelter 246 #ifdef IS_MPI
797     int temp;
798 gezelter 2
799 gezelter 246 temp = usePBC;
800     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
801 gezelter 2
802 gezelter 246 temp = useDirectionalAtom;
803     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
804 gezelter 2
805 gezelter 246 temp = useLennardJones;
806     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
807 gezelter 2
808 gezelter 246 temp = useElectrostatics;
809     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
810 gezelter 2
811 gezelter 246 temp = useCharge;
812     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
813 gezelter 2
814 gezelter 246 temp = useDipole;
815     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816 gezelter 2
817 gezelter 246 temp = useSticky;
818     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 gezelter 2
820 chrisfen 523 temp = useStickyPower;
821     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
822    
823 gezelter 246 temp = useGayBerne;
824     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
825 gezelter 2
826 gezelter 246 temp = useEAM;
827     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
828 gezelter 2
829 chuckv 734 temp = useSC;
830     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
831    
832 gezelter 246 temp = useShape;
833     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
834    
835     temp = useFLARB;
836     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
837    
838 chrisfen 611 temp = useRF;
839     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
840    
841 chrisfen 720 temp = useSF;
842 chrisfen 998 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
843 chrisfen 705
844 chrisfen 998 temp = useSP;
845     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
846    
847     temp = useBoxDipole;
848     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
849    
850 gezelter 1126 temp = useAtomicVirial_;
851     MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
852    
853 gezelter 2 #endif
854    
855 gezelter 246 fInfo_.SIM_uses_PBC = usePBC;
856     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
857     fInfo_.SIM_uses_LennardJones = useLennardJones;
858     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
859     fInfo_.SIM_uses_Charges = useCharge;
860     fInfo_.SIM_uses_Dipoles = useDipole;
861     fInfo_.SIM_uses_Sticky = useSticky;
862 chrisfen 523 fInfo_.SIM_uses_StickyPower = useStickyPower;
863 gezelter 246 fInfo_.SIM_uses_GayBerne = useGayBerne;
864     fInfo_.SIM_uses_EAM = useEAM;
865 chuckv 734 fInfo_.SIM_uses_SC = useSC;
866 gezelter 246 fInfo_.SIM_uses_Shapes = useShape;
867     fInfo_.SIM_uses_FLARB = useFLARB;
868 chrisfen 611 fInfo_.SIM_uses_RF = useRF;
869 chrisfen 720 fInfo_.SIM_uses_SF = useSF;
870 chrisfen 998 fInfo_.SIM_uses_SP = useSP;
871     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 gezelter 1126 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
873 gezelter 507 }
874 gezelter 2
875 gezelter 507 void SimInfo::setupFortranSim() {
876 gezelter 246 int isError;
877     int nExclude;
878     std::vector<int> fortranGlobalGroupMembership;
879    
880     nExclude = exclude_.getSize();
881     isError = 0;
882 gezelter 2
883 gezelter 246 //globalGroupMembership_ is filled by SimCreator
884     for (int i = 0; i < nGlobalAtoms_; i++) {
885 gezelter 507 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
886 gezelter 246 }
887 gezelter 2
888 gezelter 246 //calculate mass ratio of cutoff group
889 tim 963 std::vector<RealType> mfact;
890 gezelter 246 SimInfo::MoleculeIterator mi;
891     Molecule* mol;
892     Molecule::CutoffGroupIterator ci;
893     CutoffGroup* cg;
894     Molecule::AtomIterator ai;
895     Atom* atom;
896 tim 963 RealType totalMass;
897 gezelter 246
898     //to avoid memory reallocation, reserve enough space for mfact
899     mfact.reserve(getNCutoffGroups());
900 gezelter 2
901 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
902 gezelter 507 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903 gezelter 2
904 gezelter 507 totalMass = cg->getMass();
905     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 chrisfen 645 // Check for massless groups - set mfact to 1 if true
907     if (totalMass != 0)
908     mfact.push_back(atom->getMass()/totalMass);
909     else
910     mfact.push_back( 1.0 );
911 gezelter 507 }
912 gezelter 2
913 gezelter 507 }
914 gezelter 246 }
915 gezelter 2
916 gezelter 246 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
917     std::vector<int> identArray;
918 gezelter 2
919 gezelter 246 //to avoid memory reallocation, reserve enough space identArray
920     identArray.reserve(getNAtoms());
921    
922     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
923 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924     identArray.push_back(atom->getIdent());
925     }
926 gezelter 246 }
927 gezelter 2
928 gezelter 246 //fill molMembershipArray
929     //molMembershipArray is filled by SimCreator
930     std::vector<int> molMembershipArray(nGlobalAtoms_);
931     for (int i = 0; i < nGlobalAtoms_; i++) {
932 gezelter 507 molMembershipArray[i] = globalMolMembership_[i] + 1;
933 gezelter 246 }
934    
935     //setup fortran simulation
936     int nGlobalExcludes = 0;
937     int* globalExcludes = NULL;
938     int* excludeList = exclude_.getExcludeList();
939 gezelter 1241 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
940     &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
941     &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
942     &fortranGlobalGroupMembership[0], &isError);
943    
944 gezelter 246 if( isError ){
945 gezelter 1241
946 gezelter 507 sprintf( painCave.errMsg,
947     "There was an error setting the simulation information in fortran.\n" );
948     painCave.isFatal = 1;
949     painCave.severity = OOPSE_ERROR;
950     simError();
951 gezelter 246 }
952 gezelter 1241
953    
954 gezelter 246 sprintf( checkPointMsg,
955 gezelter 507 "succesfully sent the simulation information to fortran.\n");
956 gezelter 1241
957     errorCheckPoint();
958    
959 chuckv 1095 // Setup number of neighbors in neighbor list if present
960     if (simParams_->haveNeighborListNeighbors()) {
961 chuckv 1121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
962     setNeighbors(&nlistNeighbors);
963 chuckv 1095 }
964    
965    
966 gezelter 507 }
967 gezelter 2
968    
969 gezelter 507 void SimInfo::setupFortranParallel() {
970 gezelter 1241 #ifdef IS_MPI
971 gezelter 246 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
972     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
973     std::vector<int> localToGlobalCutoffGroupIndex;
974     SimInfo::MoleculeIterator mi;
975     Molecule::AtomIterator ai;
976     Molecule::CutoffGroupIterator ci;
977     Molecule* mol;
978     Atom* atom;
979     CutoffGroup* cg;
980     mpiSimData parallelData;
981     int isError;
982 gezelter 2
983 gezelter 246 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
984 gezelter 2
985 gezelter 507 //local index(index in DataStorge) of atom is important
986     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988     }
989 gezelter 2
990 gezelter 507 //local index of cutoff group is trivial, it only depends on the order of travesing
991     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993     }
994 gezelter 246
995     }
996 gezelter 2
997 gezelter 246 //fill up mpiSimData struct
998     parallelData.nMolGlobal = getNGlobalMolecules();
999     parallelData.nMolLocal = getNMolecules();
1000     parallelData.nAtomsGlobal = getNGlobalAtoms();
1001     parallelData.nAtomsLocal = getNAtoms();
1002     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1003     parallelData.nGroupsLocal = getNCutoffGroups();
1004     parallelData.myNode = worldRank;
1005     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1006 gezelter 2
1007 gezelter 246 //pass mpiSimData struct and index arrays to fortran
1008     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1009     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
1010     &localToGlobalCutoffGroupIndex[0], &isError);
1011 gezelter 2
1012 gezelter 246 if (isError) {
1013 gezelter 507 sprintf(painCave.errMsg,
1014     "mpiRefresh errror: fortran didn't like something we gave it.\n");
1015     painCave.isFatal = 1;
1016     simError();
1017 gezelter 246 }
1018 gezelter 2
1019 gezelter 246 sprintf(checkPointMsg, " mpiRefresh successful.\n");
1020 gezelter 1241 errorCheckPoint();
1021 gezelter 2
1022 gezelter 1241 #endif
1023 gezelter 507 }
1024 chrisfen 143
1025 gezelter 764 void SimInfo::setupCutoff() {
1026 gezelter 2
1027 chuckv 834 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1028    
1029 gezelter 764 // Check the cutoff policy
1030 chuckv 834 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031    
1032 chrisfen 1129 // Set LJ shifting bools to false
1033     ljsp_ = false;
1034     ljsf_ = false;
1035    
1036 chuckv 834 std::string myPolicy;
1037     if (forceFieldOptions_.haveCutoffPolicy()){
1038     myPolicy = forceFieldOptions_.getCutoffPolicy();
1039     }else if (simParams_->haveCutoffPolicy()) {
1040     myPolicy = simParams_->getCutoffPolicy();
1041     }
1042    
1043     if (!myPolicy.empty()){
1044 tim 665 toUpper(myPolicy);
1045 gezelter 586 if (myPolicy == "MIX") {
1046     cp = MIX_CUTOFF_POLICY;
1047     } else {
1048     if (myPolicy == "MAX") {
1049     cp = MAX_CUTOFF_POLICY;
1050     } else {
1051     if (myPolicy == "TRADITIONAL") {
1052     cp = TRADITIONAL_CUTOFF_POLICY;
1053     } else {
1054     // throw error
1055     sprintf( painCave.errMsg,
1056     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057     painCave.isFatal = 1;
1058     simError();
1059     }
1060     }
1061     }
1062 gezelter 764 }
1063     notifyFortranCutoffPolicy(&cp);
1064 chuckv 629
1065 gezelter 764 // Check the Skin Thickness for neighborlists
1066 tim 963 RealType skin;
1067 gezelter 764 if (simParams_->haveSkinThickness()) {
1068     skin = simParams_->getSkinThickness();
1069     notifyFortranSkinThickness(&skin);
1070     }
1071    
1072     // Check if the cutoff was set explicitly:
1073     if (simParams_->haveCutoffRadius()) {
1074     rcut_ = simParams_->getCutoffRadius();
1075     if (simParams_->haveSwitchingRadius()) {
1076     rsw_ = simParams_->getSwitchingRadius();
1077     } else {
1078 chrisfen 878 if (fInfo_.SIM_uses_Charges |
1079     fInfo_.SIM_uses_Dipoles |
1080     fInfo_.SIM_uses_RF) {
1081    
1082     rsw_ = 0.85 * rcut_;
1083     sprintf(painCave.errMsg,
1084     "SimCreator Warning: No value was set for the switchingRadius.\n"
1085 chrisfen 879 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086 chrisfen 878 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087     painCave.isFatal = 0;
1088     simError();
1089     } else {
1090     rsw_ = rcut_;
1091     sprintf(painCave.errMsg,
1092     "SimCreator Warning: No value was set for the switchingRadius.\n"
1093     "\tOOPSE will use the same value as the cutoffRadius.\n"
1094     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095     painCave.isFatal = 0;
1096     simError();
1097     }
1098 chrisfen 879 }
1099 chrisfen 1129
1100     if (simParams_->haveElectrostaticSummationMethod()) {
1101     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102     toUpper(myMethod);
1103    
1104     if (myMethod == "SHIFTED_POTENTIAL") {
1105     ljsp_ = true;
1106     } else if (myMethod == "SHIFTED_FORCE") {
1107     ljsf_ = true;
1108     }
1109     }
1110     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111 chrisfen 879
1112 gezelter 764 } else {
1113    
1114     // For electrostatic atoms, we'll assume a large safe value:
1115     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116     sprintf(painCave.errMsg,
1117     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118     "\tOOPSE will use a default value of 15.0 angstroms"
1119     "\tfor the cutoffRadius.\n");
1120     painCave.isFatal = 0;
1121     simError();
1122     rcut_ = 15.0;
1123    
1124     if (simParams_->haveElectrostaticSummationMethod()) {
1125     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126     toUpper(myMethod);
1127 chrisfen 1129
1128     // For the time being, we're tethering the LJ shifted behavior to the
1129     // electrostaticSummationMethod keyword options
1130     if (myMethod == "SHIFTED_POTENTIAL") {
1131     ljsp_ = true;
1132     } else if (myMethod == "SHIFTED_FORCE") {
1133     ljsf_ = true;
1134     }
1135     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136 gezelter 764 if (simParams_->haveSwitchingRadius()){
1137     sprintf(painCave.errMsg,
1138     "SimInfo Warning: A value was set for the switchingRadius\n"
1139     "\teven though the electrostaticSummationMethod was\n"
1140     "\tset to %s\n", myMethod.c_str());
1141     painCave.isFatal = 1;
1142     simError();
1143     }
1144     }
1145     }
1146    
1147     if (simParams_->haveSwitchingRadius()){
1148     rsw_ = simParams_->getSwitchingRadius();
1149     } else {
1150     sprintf(painCave.errMsg,
1151     "SimCreator Warning: No value was set for switchingRadius.\n"
1152     "\tOOPSE will use a default value of\n"
1153     "\t0.85 * cutoffRadius for the switchingRadius\n");
1154     painCave.isFatal = 0;
1155     simError();
1156     rsw_ = 0.85 * rcut_;
1157     }
1158 chrisfen 1129
1159     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160    
1161 gezelter 764 } else {
1162     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163     // We'll punt and let fortran figure out the cutoffs later.
1164    
1165     notifyFortranYouAreOnYourOwn();
1166 chuckv 629
1167 gezelter 764 }
1168 chuckv 629 }
1169 gezelter 507 }
1170 gezelter 2
1171 chrisfen 603 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1172 chrisfen 598
1173     int errorOut;
1174 chrisfen 603 int esm = NONE;
1175 chrisfen 709 int sm = UNDAMPED;
1176 tim 963 RealType alphaVal;
1177     RealType dielectric;
1178 chrisfen 1045
1179 chrisfen 598 errorOut = isError;
1180    
1181 chrisfen 603 if (simParams_->haveElectrostaticSummationMethod()) {
1182 chrisfen 604 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183 tim 665 toUpper(myMethod);
1184 chrisfen 603 if (myMethod == "NONE") {
1185     esm = NONE;
1186 chrisfen 598 } else {
1187 chrisfen 709 if (myMethod == "SWITCHING_FUNCTION") {
1188     esm = SWITCHING_FUNCTION;
1189 chrisfen 598 } else {
1190 chrisfen 709 if (myMethod == "SHIFTED_POTENTIAL") {
1191     esm = SHIFTED_POTENTIAL;
1192     } else {
1193     if (myMethod == "SHIFTED_FORCE") {
1194     esm = SHIFTED_FORCE;
1195 chrisfen 598 } else {
1196 chrisfen 1050 if (myMethod == "REACTION_FIELD") {
1197 chrisfen 709 esm = REACTION_FIELD;
1198 chrisfen 1050 dielectric = simParams_->getDielectric();
1199     if (!simParams_->haveDielectric()) {
1200     // throw warning
1201     sprintf( painCave.errMsg,
1202     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204     painCave.isFatal = 0;
1205     simError();
1206     }
1207 chrisfen 709 } else {
1208     // throw error
1209     sprintf( painCave.errMsg,
1210 gezelter 764 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211     "\t(Input file specified %s .)\n"
1212     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213     "\t\"shifted_potential\", \"shifted_force\", or \n"
1214     "\t\"reaction_field\".\n", myMethod.c_str() );
1215 chrisfen 709 painCave.isFatal = 1;
1216     simError();
1217     }
1218     }
1219     }
1220 chrisfen 598 }
1221     }
1222     }
1223 chrisfen 709
1224 chrisfen 716 if (simParams_->haveElectrostaticScreeningMethod()) {
1225     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226 chrisfen 709 toUpper(myScreen);
1227     if (myScreen == "UNDAMPED") {
1228     sm = UNDAMPED;
1229     } else {
1230     if (myScreen == "DAMPED") {
1231     sm = DAMPED;
1232     if (!simParams_->haveDampingAlpha()) {
1233 chrisfen 1045 // first set a cutoff dependent alpha value
1234     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235     alphaVal = 0.5125 - rcut_* 0.025;
1236     // for values rcut > 20.5, alpha is zero
1237     if (alphaVal < 0) alphaVal = 0;
1238    
1239     // throw warning
1240 chrisfen 709 sprintf( painCave.errMsg,
1241 gezelter 764 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242 chrisfen 1045 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243 chrisfen 709 painCave.isFatal = 0;
1244     simError();
1245 chrisfen 1089 } else {
1246     alphaVal = simParams_->getDampingAlpha();
1247 chrisfen 709 }
1248 chrisfen 1089
1249 chrisfen 716 } else {
1250     // throw error
1251     sprintf( painCave.errMsg,
1252 gezelter 764 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253     "\t(Input file specified %s .)\n"
1254     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255     "or \"damped\".\n", myScreen.c_str() );
1256 chrisfen 716 painCave.isFatal = 1;
1257     simError();
1258 chrisfen 709 }
1259     }
1260     }
1261 chrisfen 716
1262 chrisfen 610 // let's pass some summation method variables to fortran
1263 chrisfen 853 setElectrostaticSummationMethod( &esm );
1264 gezelter 809 setFortranElectrostaticMethod( &esm );
1265 chrisfen 709 setScreeningMethod( &sm );
1266     setDampingAlpha( &alphaVal );
1267 chrisfen 610 setReactionFieldDielectric( &dielectric );
1268 gezelter 764 initFortranFF( &errorOut );
1269 chrisfen 598 }
1270    
1271 chrisfen 726 void SimInfo::setupSwitchingFunction() {
1272     int ft = CUBIC;
1273    
1274     if (simParams_->haveSwitchingFunctionType()) {
1275     std::string funcType = simParams_->getSwitchingFunctionType();
1276     toUpper(funcType);
1277     if (funcType == "CUBIC") {
1278     ft = CUBIC;
1279     } else {
1280     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281     ft = FIFTH_ORDER_POLY;
1282     } else {
1283     // throw error
1284     sprintf( painCave.errMsg,
1285     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286     painCave.isFatal = 1;
1287     simError();
1288     }
1289     }
1290     }
1291    
1292     // send switching function notification to switcheroo
1293     setFunctionType(&ft);
1294    
1295     }
1296    
1297 chrisfen 998 void SimInfo::setupAccumulateBoxDipole() {
1298    
1299     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1300     if ( simParams_->haveAccumulateBoxDipole() )
1301     if ( simParams_->getAccumulateBoxDipole() ) {
1302     setAccumulateBoxDipole();
1303     calcBoxDipole_ = true;
1304     }
1305    
1306     }
1307    
1308 gezelter 507 void SimInfo::addProperty(GenericData* genData) {
1309 gezelter 246 properties_.addProperty(genData);
1310 gezelter 507 }
1311 gezelter 2
1312 gezelter 507 void SimInfo::removeProperty(const std::string& propName) {
1313 gezelter 246 properties_.removeProperty(propName);
1314 gezelter 507 }
1315 gezelter 2
1316 gezelter 507 void SimInfo::clearProperties() {
1317 gezelter 246 properties_.clearProperties();
1318 gezelter 507 }
1319 gezelter 2
1320 gezelter 507 std::vector<std::string> SimInfo::getPropertyNames() {
1321 gezelter 246 return properties_.getPropertyNames();
1322 gezelter 507 }
1323 gezelter 246
1324 gezelter 507 std::vector<GenericData*> SimInfo::getProperties() {
1325 gezelter 246 return properties_.getProperties();
1326 gezelter 507 }
1327 gezelter 2
1328 gezelter 507 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1329 gezelter 246 return properties_.getPropertyByName(propName);
1330 gezelter 507 }
1331 gezelter 2
1332 gezelter 507 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1333 tim 432 if (sman_ == sman) {
1334 gezelter 507 return;
1335 tim 432 }
1336     delete sman_;
1337 gezelter 246 sman_ = sman;
1338 gezelter 2
1339 gezelter 246 Molecule* mol;
1340     RigidBody* rb;
1341     Atom* atom;
1342     SimInfo::MoleculeIterator mi;
1343     Molecule::RigidBodyIterator rbIter;
1344     Molecule::AtomIterator atomIter;;
1345    
1346     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1347    
1348 gezelter 507 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1349     atom->setSnapshotManager(sman_);
1350     }
1351 gezelter 246
1352 gezelter 507 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1353     rb->setSnapshotManager(sman_);
1354     }
1355 gezelter 246 }
1356 gezelter 2
1357 gezelter 507 }
1358 gezelter 2
1359 gezelter 507 Vector3d SimInfo::getComVel(){
1360 gezelter 246 SimInfo::MoleculeIterator i;
1361     Molecule* mol;
1362 gezelter 2
1363 gezelter 246 Vector3d comVel(0.0);
1364 tim 963 RealType totalMass = 0.0;
1365 gezelter 2
1366 gezelter 246
1367     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1368 tim 963 RealType mass = mol->getMass();
1369 gezelter 507 totalMass += mass;
1370     comVel += mass * mol->getComVel();
1371 gezelter 246 }
1372 gezelter 2
1373 gezelter 246 #ifdef IS_MPI
1374 tim 963 RealType tmpMass = totalMass;
1375 gezelter 246 Vector3d tmpComVel(comVel);
1376 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1377     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1378 gezelter 246 #endif
1379    
1380     comVel /= totalMass;
1381    
1382     return comVel;
1383 gezelter 507 }
1384 gezelter 2
1385 gezelter 507 Vector3d SimInfo::getCom(){
1386 gezelter 246 SimInfo::MoleculeIterator i;
1387     Molecule* mol;
1388 gezelter 2
1389 gezelter 246 Vector3d com(0.0);
1390 tim 963 RealType totalMass = 0.0;
1391 gezelter 246
1392     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1393 tim 963 RealType mass = mol->getMass();
1394 gezelter 507 totalMass += mass;
1395     com += mass * mol->getCom();
1396 gezelter 246 }
1397 gezelter 2
1398     #ifdef IS_MPI
1399 tim 963 RealType tmpMass = totalMass;
1400 gezelter 246 Vector3d tmpCom(com);
1401 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1403 gezelter 2 #endif
1404    
1405 gezelter 246 com /= totalMass;
1406 gezelter 2
1407 gezelter 246 return com;
1408 gezelter 2
1409 gezelter 507 }
1410 gezelter 246
1411 gezelter 507 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1412 gezelter 246
1413     return o;
1414 gezelter 507 }
1415 chuckv 555
1416    
1417     /*
1418     Returns center of mass and center of mass velocity in one function call.
1419     */
1420    
1421     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1422     SimInfo::MoleculeIterator i;
1423     Molecule* mol;
1424    
1425    
1426 tim 963 RealType totalMass = 0.0;
1427 chuckv 555
1428 gezelter 246
1429 chuckv 555 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1430 tim 963 RealType mass = mol->getMass();
1431 chuckv 555 totalMass += mass;
1432     com += mass * mol->getCom();
1433     comVel += mass * mol->getComVel();
1434     }
1435    
1436     #ifdef IS_MPI
1437 tim 963 RealType tmpMass = totalMass;
1438 chuckv 555 Vector3d tmpCom(com);
1439     Vector3d tmpComVel(comVel);
1440 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1441     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1442     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 chuckv 555 #endif
1444    
1445     com /= totalMass;
1446     comVel /= totalMass;
1447     }
1448    
1449     /*
1450     Return intertia tensor for entire system and angular momentum Vector.
1451 chuckv 557
1452    
1453     [ Ixx -Ixy -Ixz ]
1454     J =| -Iyx Iyy -Iyz |
1455     [ -Izx -Iyz Izz ]
1456 chuckv 555 */
1457    
1458     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1459    
1460    
1461 tim 963 RealType xx = 0.0;
1462     RealType yy = 0.0;
1463     RealType zz = 0.0;
1464     RealType xy = 0.0;
1465     RealType xz = 0.0;
1466     RealType yz = 0.0;
1467 chuckv 555 Vector3d com(0.0);
1468     Vector3d comVel(0.0);
1469    
1470     getComAll(com, comVel);
1471    
1472     SimInfo::MoleculeIterator i;
1473     Molecule* mol;
1474    
1475     Vector3d thisq(0.0);
1476     Vector3d thisv(0.0);
1477    
1478 tim 963 RealType thisMass = 0.0;
1479 chuckv 555
1480    
1481    
1482    
1483     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1484    
1485     thisq = mol->getCom()-com;
1486     thisv = mol->getComVel()-comVel;
1487     thisMass = mol->getMass();
1488     // Compute moment of intertia coefficients.
1489     xx += thisq[0]*thisq[0]*thisMass;
1490     yy += thisq[1]*thisq[1]*thisMass;
1491     zz += thisq[2]*thisq[2]*thisMass;
1492    
1493     // compute products of intertia
1494     xy += thisq[0]*thisq[1]*thisMass;
1495     xz += thisq[0]*thisq[2]*thisMass;
1496     yz += thisq[1]*thisq[2]*thisMass;
1497    
1498     angularMomentum += cross( thisq, thisv ) * thisMass;
1499    
1500     }
1501    
1502    
1503     inertiaTensor(0,0) = yy + zz;
1504     inertiaTensor(0,1) = -xy;
1505     inertiaTensor(0,2) = -xz;
1506     inertiaTensor(1,0) = -xy;
1507 chuckv 557 inertiaTensor(1,1) = xx + zz;
1508 chuckv 555 inertiaTensor(1,2) = -yz;
1509     inertiaTensor(2,0) = -xz;
1510     inertiaTensor(2,1) = -yz;
1511     inertiaTensor(2,2) = xx + yy;
1512    
1513     #ifdef IS_MPI
1514     Mat3x3d tmpI(inertiaTensor);
1515     Vector3d tmpAngMom;
1516 tim 963 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1517     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1518 chuckv 555 #endif
1519    
1520     return;
1521     }
1522    
1523     //Returns the angular momentum of the system
1524     Vector3d SimInfo::getAngularMomentum(){
1525    
1526     Vector3d com(0.0);
1527     Vector3d comVel(0.0);
1528     Vector3d angularMomentum(0.0);
1529    
1530     getComAll(com,comVel);
1531    
1532     SimInfo::MoleculeIterator i;
1533     Molecule* mol;
1534    
1535 chuckv 557 Vector3d thisr(0.0);
1536     Vector3d thisp(0.0);
1537 chuckv 555
1538 tim 963 RealType thisMass;
1539 chuckv 555
1540     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1541 chuckv 557 thisMass = mol->getMass();
1542     thisr = mol->getCom()-com;
1543     thisp = (mol->getComVel()-comVel)*thisMass;
1544 chuckv 555
1545 chuckv 557 angularMomentum += cross( thisr, thisp );
1546    
1547 chuckv 555 }
1548    
1549     #ifdef IS_MPI
1550     Vector3d tmpAngMom;
1551 tim 963 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1552 chuckv 555 #endif
1553    
1554     return angularMomentum;
1555     }
1556    
1557 tim 1024 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1558     return IOIndexToIntegrableObject.at(index);
1559     }
1560    
1561     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1562     IOIndexToIntegrableObject= v;
1563     }
1564    
1565 chuckv 1103 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1566     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1567     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1568     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1569     */
1570     void SimInfo::getGyrationalVolume(RealType &volume){
1571     Mat3x3d intTensor;
1572     RealType det;
1573     Vector3d dummyAngMom;
1574     RealType sysconstants;
1575     RealType geomCnst;
1576    
1577     geomCnst = 3.0/2.0;
1578     /* Get the inertial tensor and angular momentum for free*/
1579     getInertiaTensor(intTensor,dummyAngMom);
1580    
1581     det = intTensor.determinant();
1582     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1583     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1584     return;
1585     }
1586    
1587     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1588     Mat3x3d intTensor;
1589     Vector3d dummyAngMom;
1590     RealType sysconstants;
1591     RealType geomCnst;
1592    
1593     geomCnst = 3.0/2.0;
1594     /* Get the inertial tensor and angular momentum for free*/
1595     getInertiaTensor(intTensor,dummyAngMom);
1596    
1597     detI = intTensor.determinant();
1598     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1599     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1600     return;
1601     }
1602 tim 1024 /*
1603     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1604     assert( v.size() == nAtoms_ + nRigidBodies_);
1605     sdByGlobalIndex_ = v;
1606     }
1607    
1608     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1609     //assert(index < nAtoms_ + nRigidBodies_);
1610     return sdByGlobalIndex_.at(index);
1611     }
1612     */
1613 gezelter 246 }//end namespace oopse
1614