ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimInfo.cpp
Revision: 1129
Committed: Fri Apr 20 18:15:48 2007 UTC (18 years ago) by chrisfen
File size: 48718 byte(s)
Log Message:
SF Lennard-Jones was added for everyones' enjoyment.  The behavior is tethered to the electrostaticSummationMethod keyword.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 2
49 gezelter 246 #include <algorithm>
50     #include <set>
51 tim 749 #include <map>
52 gezelter 2
53 tim 3 #include "brains/SimInfo.hpp"
54 gezelter 246 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 1024 #include "primitives/StuntDouble.hpp"
57 gezelter 586 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 606 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 716 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 726 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 246 #include "UseTheForce/doForces_interface.h"
62 chuckv 1095 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 610 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 726 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 246 #include "utils/MemoryUtils.hpp"
66 tim 3 #include "utils/simError.h"
67 tim 316 #include "selection/SelectionManager.hpp"
68 chuckv 834 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 2
71 chuckv 1095
72 gezelter 246 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 2
77 gezelter 246 namespace oopse {
78 tim 749 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 2
85 tim 749 return result;
86     }
87    
88 tim 770 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 945 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 507 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 gezelter 1126 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96     useAtomicVirial_(true) {
97 gezelter 2
98 gezelter 507 MoleculeStamp* molStamp;
99     int nMolWithSameStamp;
100     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 chrisfen 645 int nGroups = 0; //total cutoff groups defined in meta-data file
102 gezelter 507 CutoffGroupStamp* cgStamp;
103     RigidBodyStamp* rbStamp;
104     int nRigidAtoms = 0;
105 tim 770 std::vector<Component*> components = simParams->getComponents();
106    
107     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108     molStamp = (*i)->getMoleculeStamp();
109     nMolWithSameStamp = (*i)->getNMol();
110 gezelter 246
111     addMoleculeStamp(molStamp, nMolWithSameStamp);
112 gezelter 2
113 gezelter 246 //calculate atoms in molecules
114     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
115 gezelter 2
116 gezelter 246 //calculate atoms in cutoff groups
117     int nAtomsInGroups = 0;
118     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119    
120     for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 tim 770 cgStamp = molStamp->getCutoffGroupStamp(j);
122 gezelter 507 nAtomsInGroups += cgStamp->getNMembers();
123 gezelter 246 }
124 gezelter 2
125 gezelter 246 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 chrisfen 645
127 gezelter 246 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
128 gezelter 2
129 gezelter 246 //calculate atoms in rigid bodies
130     int nAtomsInRigidBodies = 0;
131 tim 274 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 gezelter 246
133     for (int j=0; j < nRigidBodiesInStamp; j++) {
134 tim 770 rbStamp = molStamp->getRigidBodyStamp(j);
135 gezelter 507 nAtomsInRigidBodies += rbStamp->getNMembers();
136 gezelter 246 }
137 gezelter 2
138 gezelter 246 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
140    
141 gezelter 507 }
142 chrisfen 143
143 chrisfen 645 //every free atom (atom does not belong to cutoff groups) is a cutoff
144     //group therefore the total number of cutoff groups in the system is
145     //equal to the total number of atoms minus number of atoms belong to
146     //cutoff group defined in meta-data file plus the number of cutoff
147     //groups defined in meta-data file
148 gezelter 507 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 gezelter 2
150 chrisfen 645 //every free atom (atom does not belong to rigid bodies) is an
151     //integrable object therefore the total number of integrable objects
152     //in the system is equal to the total number of atoms minus number of
153     //atoms belong to rigid body defined in meta-data file plus the number
154     //of rigid bodies defined in meta-data file
155     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156     + nGlobalRigidBodies_;
157    
158 gezelter 507 nGlobalMols_ = molStampIds_.size();
159 gezelter 2
160 gezelter 246 #ifdef IS_MPI
161 gezelter 507 molToProcMap_.resize(nGlobalMols_);
162 gezelter 246 #endif
163 tim 292
164 gezelter 507 }
165 gezelter 2
166 gezelter 507 SimInfo::~SimInfo() {
167 tim 398 std::map<int, Molecule*>::iterator i;
168     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 gezelter 507 delete i->second;
170 tim 398 }
171     molecules_.clear();
172 tim 490
173 gezelter 246 delete sman_;
174     delete simParams_;
175     delete forceField_;
176 gezelter 507 }
177 gezelter 2
178 gezelter 507 int SimInfo::getNGlobalConstraints() {
179 gezelter 246 int nGlobalConstraints;
180     #ifdef IS_MPI
181     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182     MPI_COMM_WORLD);
183     #else
184     nGlobalConstraints = nConstraints_;
185     #endif
186     return nGlobalConstraints;
187 gezelter 507 }
188 gezelter 2
189 gezelter 507 bool SimInfo::addMolecule(Molecule* mol) {
190 gezelter 246 MoleculeIterator i;
191 gezelter 2
192 gezelter 246 i = molecules_.find(mol->getGlobalIndex());
193     if (i == molecules_.end() ) {
194 gezelter 2
195 gezelter 507 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196 gezelter 246
197 gezelter 507 nAtoms_ += mol->getNAtoms();
198     nBonds_ += mol->getNBonds();
199     nBends_ += mol->getNBends();
200     nTorsions_ += mol->getNTorsions();
201     nRigidBodies_ += mol->getNRigidBodies();
202     nIntegrableObjects_ += mol->getNIntegrableObjects();
203     nCutoffGroups_ += mol->getNCutoffGroups();
204     nConstraints_ += mol->getNConstraintPairs();
205 gezelter 2
206 gezelter 507 addExcludePairs(mol);
207 gezelter 246
208 gezelter 507 return true;
209 gezelter 246 } else {
210 gezelter 507 return false;
211 gezelter 246 }
212 gezelter 507 }
213 gezelter 2
214 gezelter 507 bool SimInfo::removeMolecule(Molecule* mol) {
215 gezelter 246 MoleculeIterator i;
216     i = molecules_.find(mol->getGlobalIndex());
217 gezelter 2
218 gezelter 246 if (i != molecules_.end() ) {
219 gezelter 2
220 gezelter 507 assert(mol == i->second);
221 gezelter 246
222 gezelter 507 nAtoms_ -= mol->getNAtoms();
223     nBonds_ -= mol->getNBonds();
224     nBends_ -= mol->getNBends();
225     nTorsions_ -= mol->getNTorsions();
226     nRigidBodies_ -= mol->getNRigidBodies();
227     nIntegrableObjects_ -= mol->getNIntegrableObjects();
228     nCutoffGroups_ -= mol->getNCutoffGroups();
229     nConstraints_ -= mol->getNConstraintPairs();
230 gezelter 2
231 gezelter 507 removeExcludePairs(mol);
232     molecules_.erase(mol->getGlobalIndex());
233 gezelter 2
234 gezelter 507 delete mol;
235 gezelter 246
236 gezelter 507 return true;
237 gezelter 246 } else {
238 gezelter 507 return false;
239 gezelter 246 }
240    
241    
242 gezelter 507 }
243 gezelter 246
244    
245 gezelter 507 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 gezelter 246 i = molecules_.begin();
247     return i == molecules_.end() ? NULL : i->second;
248 gezelter 507 }
249 gezelter 246
250 gezelter 507 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 gezelter 246 ++i;
252     return i == molecules_.end() ? NULL : i->second;
253 gezelter 507 }
254 gezelter 2
255    
256 gezelter 507 void SimInfo::calcNdf() {
257 gezelter 246 int ndf_local;
258     MoleculeIterator i;
259     std::vector<StuntDouble*>::iterator j;
260     Molecule* mol;
261     StuntDouble* integrableObject;
262 gezelter 2
263 gezelter 246 ndf_local = 0;
264    
265     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267     integrableObject = mol->nextIntegrableObject(j)) {
268 gezelter 2
269 gezelter 507 ndf_local += 3;
270 gezelter 2
271 gezelter 507 if (integrableObject->isDirectional()) {
272     if (integrableObject->isLinear()) {
273     ndf_local += 2;
274     } else {
275     ndf_local += 3;
276     }
277     }
278 gezelter 246
279 tim 770 }
280     }
281 gezelter 246
282     // n_constraints is local, so subtract them on each processor
283     ndf_local -= nConstraints_;
284    
285     #ifdef IS_MPI
286     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287     #else
288     ndf_ = ndf_local;
289     #endif
290    
291     // nZconstraints_ is global, as are the 3 COM translations for the
292     // entire system:
293     ndf_ = ndf_ - 3 - nZconstraint_;
294    
295 gezelter 507 }
296 gezelter 2
297 gezelter 945 int SimInfo::getFdf() {
298     #ifdef IS_MPI
299     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300     #else
301     fdf_ = fdf_local;
302     #endif
303     return fdf_;
304     }
305    
306 gezelter 507 void SimInfo::calcNdfRaw() {
307 gezelter 246 int ndfRaw_local;
308 gezelter 2
309 gezelter 246 MoleculeIterator i;
310     std::vector<StuntDouble*>::iterator j;
311     Molecule* mol;
312     StuntDouble* integrableObject;
313    
314     // Raw degrees of freedom that we have to set
315     ndfRaw_local = 0;
316    
317     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319     integrableObject = mol->nextIntegrableObject(j)) {
320 gezelter 246
321 gezelter 507 ndfRaw_local += 3;
322 gezelter 246
323 gezelter 507 if (integrableObject->isDirectional()) {
324     if (integrableObject->isLinear()) {
325     ndfRaw_local += 2;
326     } else {
327     ndfRaw_local += 3;
328     }
329     }
330 gezelter 246
331 gezelter 507 }
332 gezelter 246 }
333    
334     #ifdef IS_MPI
335     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfRaw_ = ndfRaw_local;
338     #endif
339 gezelter 507 }
340 gezelter 2
341 gezelter 507 void SimInfo::calcNdfTrans() {
342 gezelter 246 int ndfTrans_local;
343 gezelter 2
344 gezelter 246 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345 gezelter 2
346    
347 gezelter 246 #ifdef IS_MPI
348     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349     #else
350     ndfTrans_ = ndfTrans_local;
351     #endif
352 gezelter 2
353 gezelter 246 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354    
355 gezelter 507 }
356 gezelter 2
357 gezelter 507 void SimInfo::addExcludePairs(Molecule* mol) {
358 gezelter 246 std::vector<Bond*>::iterator bondIter;
359     std::vector<Bend*>::iterator bendIter;
360     std::vector<Torsion*>::iterator torsionIter;
361     Bond* bond;
362     Bend* bend;
363     Torsion* torsion;
364     int a;
365     int b;
366     int c;
367     int d;
368 tim 749
369     std::map<int, std::set<int> > atomGroups;
370    
371     Molecule::RigidBodyIterator rbIter;
372     RigidBody* rb;
373     Molecule::IntegrableObjectIterator ii;
374     StuntDouble* integrableObject;
375 gezelter 246
376 tim 749 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377     integrableObject = mol->nextIntegrableObject(ii)) {
378    
379     if (integrableObject->isRigidBody()) {
380     rb = static_cast<RigidBody*>(integrableObject);
381     std::vector<Atom*> atoms = rb->getAtoms();
382     std::set<int> rigidAtoms;
383     for (int i = 0; i < atoms.size(); ++i) {
384     rigidAtoms.insert(atoms[i]->getGlobalIndex());
385     }
386     for (int i = 0; i < atoms.size(); ++i) {
387     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388     }
389     } else {
390     std::set<int> oneAtomSet;
391     oneAtomSet.insert(integrableObject->getGlobalIndex());
392     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
393     }
394     }
395    
396    
397    
398 gezelter 246 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
400     b = bond->getAtomB()->getGlobalIndex();
401     exclude_.addPair(a, b);
402 gezelter 246 }
403 gezelter 2
404 gezelter 246 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
406     b = bend->getAtomB()->getGlobalIndex();
407     c = bend->getAtomC()->getGlobalIndex();
408 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411 gezelter 2
412 tim 749 exclude_.addPairs(rigidSetA, rigidSetB);
413     exclude_.addPairs(rigidSetA, rigidSetC);
414     exclude_.addPairs(rigidSetB, rigidSetC);
415    
416     //exclude_.addPair(a, b);
417     //exclude_.addPair(a, c);
418     //exclude_.addPair(b, c);
419 gezelter 246 }
420 gezelter 2
421 gezelter 246 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
423     b = torsion->getAtomB()->getGlobalIndex();
424     c = torsion->getAtomC()->getGlobalIndex();
425     d = torsion->getAtomD()->getGlobalIndex();
426 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430 gezelter 2
431 tim 749 exclude_.addPairs(rigidSetA, rigidSetB);
432     exclude_.addPairs(rigidSetA, rigidSetC);
433     exclude_.addPairs(rigidSetA, rigidSetD);
434     exclude_.addPairs(rigidSetB, rigidSetC);
435     exclude_.addPairs(rigidSetB, rigidSetD);
436     exclude_.addPairs(rigidSetC, rigidSetD);
437    
438     /*
439     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445    
446    
447 gezelter 507 exclude_.addPair(a, b);
448     exclude_.addPair(a, c);
449     exclude_.addPair(a, d);
450     exclude_.addPair(b, c);
451     exclude_.addPair(b, d);
452     exclude_.addPair(c, d);
453 tim 749 */
454 gezelter 2 }
455    
456 tim 430 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
458     for (int i = 0; i < atoms.size() -1 ; ++i) {
459     for (int j = i + 1; j < atoms.size(); ++j) {
460     a = atoms[i]->getGlobalIndex();
461     b = atoms[j]->getGlobalIndex();
462     exclude_.addPair(a, b);
463     }
464     }
465 tim 430 }
466    
467 gezelter 507 }
468 gezelter 246
469 gezelter 507 void SimInfo::removeExcludePairs(Molecule* mol) {
470 gezelter 246 std::vector<Bond*>::iterator bondIter;
471     std::vector<Bend*>::iterator bendIter;
472     std::vector<Torsion*>::iterator torsionIter;
473     Bond* bond;
474     Bend* bend;
475     Torsion* torsion;
476     int a;
477     int b;
478     int c;
479     int d;
480 tim 749
481     std::map<int, std::set<int> > atomGroups;
482    
483     Molecule::RigidBodyIterator rbIter;
484     RigidBody* rb;
485     Molecule::IntegrableObjectIterator ii;
486     StuntDouble* integrableObject;
487 gezelter 246
488 tim 749 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489     integrableObject = mol->nextIntegrableObject(ii)) {
490    
491     if (integrableObject->isRigidBody()) {
492     rb = static_cast<RigidBody*>(integrableObject);
493     std::vector<Atom*> atoms = rb->getAtoms();
494     std::set<int> rigidAtoms;
495     for (int i = 0; i < atoms.size(); ++i) {
496     rigidAtoms.insert(atoms[i]->getGlobalIndex());
497     }
498     for (int i = 0; i < atoms.size(); ++i) {
499     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500     }
501     } else {
502     std::set<int> oneAtomSet;
503     oneAtomSet.insert(integrableObject->getGlobalIndex());
504     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
505     }
506     }
507    
508    
509 gezelter 246 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
511     b = bond->getAtomB()->getGlobalIndex();
512     exclude_.removePair(a, b);
513 gezelter 2 }
514 gezelter 246
515     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
517     b = bend->getAtomB()->getGlobalIndex();
518     c = bend->getAtomC()->getGlobalIndex();
519 gezelter 246
520 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523    
524     exclude_.removePairs(rigidSetA, rigidSetB);
525     exclude_.removePairs(rigidSetA, rigidSetC);
526     exclude_.removePairs(rigidSetB, rigidSetC);
527    
528     //exclude_.removePair(a, b);
529     //exclude_.removePair(a, c);
530     //exclude_.removePair(b, c);
531 gezelter 2 }
532 gezelter 246
533     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
535     b = torsion->getAtomB()->getGlobalIndex();
536     c = torsion->getAtomC()->getGlobalIndex();
537     d = torsion->getAtomD()->getGlobalIndex();
538 gezelter 246
539 tim 749 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543    
544     exclude_.removePairs(rigidSetA, rigidSetB);
545     exclude_.removePairs(rigidSetA, rigidSetC);
546     exclude_.removePairs(rigidSetA, rigidSetD);
547     exclude_.removePairs(rigidSetB, rigidSetC);
548     exclude_.removePairs(rigidSetB, rigidSetD);
549     exclude_.removePairs(rigidSetC, rigidSetD);
550    
551     /*
552     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558    
559    
560 gezelter 507 exclude_.removePair(a, b);
561     exclude_.removePair(a, c);
562     exclude_.removePair(a, d);
563     exclude_.removePair(b, c);
564     exclude_.removePair(b, d);
565     exclude_.removePair(c, d);
566 tim 749 */
567 gezelter 246 }
568    
569 tim 430 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
571     for (int i = 0; i < atoms.size() -1 ; ++i) {
572     for (int j = i + 1; j < atoms.size(); ++j) {
573     a = atoms[i]->getGlobalIndex();
574     b = atoms[j]->getGlobalIndex();
575     exclude_.removePair(a, b);
576     }
577     }
578 tim 430 }
579    
580 gezelter 507 }
581 gezelter 2
582    
583 gezelter 507 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584 gezelter 246 int curStampId;
585 gezelter 2
586 gezelter 246 //index from 0
587     curStampId = moleculeStamps_.size();
588 gezelter 2
589 gezelter 246 moleculeStamps_.push_back(molStamp);
590     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 gezelter 507 }
592 gezelter 2
593 gezelter 507 void SimInfo::update() {
594 gezelter 2
595 gezelter 246 setupSimType();
596 gezelter 2
597 gezelter 246 #ifdef IS_MPI
598     setupFortranParallel();
599     #endif
600 gezelter 2
601 gezelter 246 setupFortranSim();
602 gezelter 2
603 gezelter 246 //setup fortran force field
604     /** @deprecate */
605     int isError = 0;
606 chrisfen 598
607 chrisfen 1045 setupCutoff();
608    
609 chrisfen 603 setupElectrostaticSummationMethod( isError );
610 chrisfen 726 setupSwitchingFunction();
611 chrisfen 998 setupAccumulateBoxDipole();
612 chrisfen 598
613 gezelter 246 if(isError){
614 gezelter 507 sprintf( painCave.errMsg,
615     "ForceField error: There was an error initializing the forceField in fortran.\n" );
616     painCave.isFatal = 1;
617     simError();
618 gezelter 246 }
619 gezelter 2
620 gezelter 246 calcNdf();
621     calcNdfRaw();
622     calcNdfTrans();
623    
624     fortranInitialized_ = true;
625 gezelter 507 }
626 gezelter 2
627 gezelter 507 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628 gezelter 246 SimInfo::MoleculeIterator mi;
629     Molecule* mol;
630     Molecule::AtomIterator ai;
631     Atom* atom;
632     std::set<AtomType*> atomTypes;
633 gezelter 2
634 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635 gezelter 2
636 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637     atomTypes.insert(atom->getAtomType());
638     }
639 gezelter 246
640     }
641 gezelter 2
642 gezelter 246 return atomTypes;
643 gezelter 507 }
644 gezelter 2
645 gezelter 507 void SimInfo::setupSimType() {
646 gezelter 246 std::set<AtomType*>::iterator i;
647     std::set<AtomType*> atomTypes;
648     atomTypes = getUniqueAtomTypes();
649 gezelter 2
650 gezelter 246 int useLennardJones = 0;
651     int useElectrostatic = 0;
652     int useEAM = 0;
653 chuckv 734 int useSC = 0;
654 gezelter 246 int useCharge = 0;
655     int useDirectional = 0;
656     int useDipole = 0;
657     int useGayBerne = 0;
658     int useSticky = 0;
659 chrisfen 523 int useStickyPower = 0;
660 gezelter 246 int useShape = 0;
661     int useFLARB = 0; //it is not in AtomType yet
662     int useDirectionalAtom = 0;
663     int useElectrostatics = 0;
664     //usePBC and useRF are from simParams
665 tim 665 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 chrisfen 611 int useRF;
667 chrisfen 720 int useSF;
668 chrisfen 998 int useSP;
669     int useBoxDipole;
670 gezelter 1126
671 tim 665 std::string myMethod;
672 gezelter 2
673 chrisfen 611 // set the useRF logical
674 tim 665 useRF = 0;
675 chrisfen 720 useSF = 0;
676 gezelter 1078 useSP = 0;
677 chrisfen 691
678    
679 tim 665 if (simParams_->haveElectrostaticSummationMethod()) {
680 chrisfen 691 std::string myMethod = simParams_->getElectrostaticSummationMethod();
681     toUpper(myMethod);
682 chrisfen 998 if (myMethod == "REACTION_FIELD"){
683 gezelter 1078 useRF = 1;
684 chrisfen 998 } else if (myMethod == "SHIFTED_FORCE"){
685     useSF = 1;
686     } else if (myMethod == "SHIFTED_POTENTIAL"){
687     useSP = 1;
688 chrisfen 691 }
689 tim 665 }
690 chrisfen 998
691     if (simParams_->haveAccumulateBoxDipole())
692     if (simParams_->getAccumulateBoxDipole())
693     useBoxDipole = 1;
694 chrisfen 611
695 gezelter 1126 useAtomicVirial_ = simParams_->getUseAtomicVirial();
696    
697 gezelter 246 //loop over all of the atom types
698     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 gezelter 507 useLennardJones |= (*i)->isLennardJones();
700     useElectrostatic |= (*i)->isElectrostatic();
701     useEAM |= (*i)->isEAM();
702 chuckv 734 useSC |= (*i)->isSC();
703 gezelter 507 useCharge |= (*i)->isCharge();
704     useDirectional |= (*i)->isDirectional();
705     useDipole |= (*i)->isDipole();
706     useGayBerne |= (*i)->isGayBerne();
707     useSticky |= (*i)->isSticky();
708 chrisfen 523 useStickyPower |= (*i)->isStickyPower();
709 gezelter 507 useShape |= (*i)->isShape();
710 gezelter 246 }
711 gezelter 2
712 chrisfen 523 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 gezelter 507 useDirectionalAtom = 1;
714 gezelter 246 }
715 gezelter 2
716 gezelter 246 if (useCharge || useDipole) {
717 gezelter 507 useElectrostatics = 1;
718 gezelter 246 }
719 gezelter 2
720 gezelter 246 #ifdef IS_MPI
721     int temp;
722 gezelter 2
723 gezelter 246 temp = usePBC;
724     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725 gezelter 2
726 gezelter 246 temp = useDirectionalAtom;
727     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728 gezelter 2
729 gezelter 246 temp = useLennardJones;
730     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731 gezelter 2
732 gezelter 246 temp = useElectrostatics;
733     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 gezelter 2
735 gezelter 246 temp = useCharge;
736     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737 gezelter 2
738 gezelter 246 temp = useDipole;
739     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740 gezelter 2
741 gezelter 246 temp = useSticky;
742     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743 gezelter 2
744 chrisfen 523 temp = useStickyPower;
745     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746    
747 gezelter 246 temp = useGayBerne;
748     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749 gezelter 2
750 gezelter 246 temp = useEAM;
751     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752 gezelter 2
753 chuckv 734 temp = useSC;
754     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755    
756 gezelter 246 temp = useShape;
757     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758    
759     temp = useFLARB;
760     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761    
762 chrisfen 611 temp = useRF;
763     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764    
765 chrisfen 720 temp = useSF;
766 chrisfen 998 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767 chrisfen 705
768 chrisfen 998 temp = useSP;
769     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770    
771     temp = useBoxDipole;
772     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773    
774 gezelter 1126 temp = useAtomicVirial_;
775     MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776    
777 gezelter 2 #endif
778    
779 gezelter 246 fInfo_.SIM_uses_PBC = usePBC;
780     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
781     fInfo_.SIM_uses_LennardJones = useLennardJones;
782     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
783     fInfo_.SIM_uses_Charges = useCharge;
784     fInfo_.SIM_uses_Dipoles = useDipole;
785     fInfo_.SIM_uses_Sticky = useSticky;
786 chrisfen 523 fInfo_.SIM_uses_StickyPower = useStickyPower;
787 gezelter 246 fInfo_.SIM_uses_GayBerne = useGayBerne;
788     fInfo_.SIM_uses_EAM = useEAM;
789 chuckv 734 fInfo_.SIM_uses_SC = useSC;
790 gezelter 246 fInfo_.SIM_uses_Shapes = useShape;
791     fInfo_.SIM_uses_FLARB = useFLARB;
792 chrisfen 611 fInfo_.SIM_uses_RF = useRF;
793 chrisfen 720 fInfo_.SIM_uses_SF = useSF;
794 chrisfen 998 fInfo_.SIM_uses_SP = useSP;
795     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 gezelter 1126 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797 gezelter 507 }
798 gezelter 2
799 gezelter 507 void SimInfo::setupFortranSim() {
800 gezelter 246 int isError;
801     int nExclude;
802     std::vector<int> fortranGlobalGroupMembership;
803    
804     nExclude = exclude_.getSize();
805     isError = 0;
806 gezelter 2
807 gezelter 246 //globalGroupMembership_ is filled by SimCreator
808     for (int i = 0; i < nGlobalAtoms_; i++) {
809 gezelter 507 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810 gezelter 246 }
811 gezelter 2
812 gezelter 246 //calculate mass ratio of cutoff group
813 tim 963 std::vector<RealType> mfact;
814 gezelter 246 SimInfo::MoleculeIterator mi;
815     Molecule* mol;
816     Molecule::CutoffGroupIterator ci;
817     CutoffGroup* cg;
818     Molecule::AtomIterator ai;
819     Atom* atom;
820 tim 963 RealType totalMass;
821 gezelter 246
822     //to avoid memory reallocation, reserve enough space for mfact
823     mfact.reserve(getNCutoffGroups());
824 gezelter 2
825 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
826 gezelter 507 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827 gezelter 2
828 gezelter 507 totalMass = cg->getMass();
829     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 chrisfen 645 // Check for massless groups - set mfact to 1 if true
831     if (totalMass != 0)
832     mfact.push_back(atom->getMass()/totalMass);
833     else
834     mfact.push_back( 1.0 );
835 gezelter 507 }
836 gezelter 2
837 gezelter 507 }
838 gezelter 246 }
839 gezelter 2
840 gezelter 246 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841     std::vector<int> identArray;
842 gezelter 2
843 gezelter 246 //to avoid memory reallocation, reserve enough space identArray
844     identArray.reserve(getNAtoms());
845    
846     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
847 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848     identArray.push_back(atom->getIdent());
849     }
850 gezelter 246 }
851 gezelter 2
852 gezelter 246 //fill molMembershipArray
853     //molMembershipArray is filled by SimCreator
854     std::vector<int> molMembershipArray(nGlobalAtoms_);
855     for (int i = 0; i < nGlobalAtoms_; i++) {
856 gezelter 507 molMembershipArray[i] = globalMolMembership_[i] + 1;
857 gezelter 246 }
858    
859     //setup fortran simulation
860     int nGlobalExcludes = 0;
861     int* globalExcludes = NULL;
862     int* excludeList = exclude_.getExcludeList();
863     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 gezelter 507 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866 gezelter 2
867 gezelter 246 if( isError ){
868 gezelter 2
869 gezelter 507 sprintf( painCave.errMsg,
870     "There was an error setting the simulation information in fortran.\n" );
871     painCave.isFatal = 1;
872     painCave.severity = OOPSE_ERROR;
873     simError();
874 gezelter 246 }
875    
876     #ifdef IS_MPI
877     sprintf( checkPointMsg,
878 gezelter 507 "succesfully sent the simulation information to fortran.\n");
879 gezelter 246 MPIcheckPoint();
880     #endif // is_mpi
881 chuckv 1095
882     // Setup number of neighbors in neighbor list if present
883     if (simParams_->haveNeighborListNeighbors()) {
884 chuckv 1121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
885     setNeighbors(&nlistNeighbors);
886 chuckv 1095 }
887    
888    
889 gezelter 507 }
890 gezelter 2
891    
892 gezelter 246 #ifdef IS_MPI
893 gezelter 507 void SimInfo::setupFortranParallel() {
894 gezelter 246
895     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897     std::vector<int> localToGlobalCutoffGroupIndex;
898     SimInfo::MoleculeIterator mi;
899     Molecule::AtomIterator ai;
900     Molecule::CutoffGroupIterator ci;
901     Molecule* mol;
902     Atom* atom;
903     CutoffGroup* cg;
904     mpiSimData parallelData;
905     int isError;
906 gezelter 2
907 gezelter 246 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
908 gezelter 2
909 gezelter 507 //local index(index in DataStorge) of atom is important
910     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912     }
913 gezelter 2
914 gezelter 507 //local index of cutoff group is trivial, it only depends on the order of travesing
915     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917     }
918 gezelter 246
919     }
920 gezelter 2
921 gezelter 246 //fill up mpiSimData struct
922     parallelData.nMolGlobal = getNGlobalMolecules();
923     parallelData.nMolLocal = getNMolecules();
924     parallelData.nAtomsGlobal = getNGlobalAtoms();
925     parallelData.nAtomsLocal = getNAtoms();
926     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927     parallelData.nGroupsLocal = getNCutoffGroups();
928     parallelData.myNode = worldRank;
929     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930 gezelter 2
931 gezelter 246 //pass mpiSimData struct and index arrays to fortran
932     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
934     &localToGlobalCutoffGroupIndex[0], &isError);
935 gezelter 2
936 gezelter 246 if (isError) {
937 gezelter 507 sprintf(painCave.errMsg,
938     "mpiRefresh errror: fortran didn't like something we gave it.\n");
939     painCave.isFatal = 1;
940     simError();
941 gezelter 246 }
942 gezelter 2
943 gezelter 246 sprintf(checkPointMsg, " mpiRefresh successful.\n");
944     MPIcheckPoint();
945 gezelter 2
946    
947 gezelter 507 }
948 chrisfen 143
949 gezelter 246 #endif
950 chrisfen 143
951 gezelter 764 void SimInfo::setupCutoff() {
952 gezelter 2
953 chuckv 834 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954    
955 gezelter 764 // Check the cutoff policy
956 chuckv 834 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957    
958 chrisfen 1129 // Set LJ shifting bools to false
959     ljsp_ = false;
960     ljsf_ = false;
961    
962 chuckv 834 std::string myPolicy;
963     if (forceFieldOptions_.haveCutoffPolicy()){
964     myPolicy = forceFieldOptions_.getCutoffPolicy();
965     }else if (simParams_->haveCutoffPolicy()) {
966     myPolicy = simParams_->getCutoffPolicy();
967     }
968    
969     if (!myPolicy.empty()){
970 tim 665 toUpper(myPolicy);
971 gezelter 586 if (myPolicy == "MIX") {
972     cp = MIX_CUTOFF_POLICY;
973     } else {
974     if (myPolicy == "MAX") {
975     cp = MAX_CUTOFF_POLICY;
976     } else {
977     if (myPolicy == "TRADITIONAL") {
978     cp = TRADITIONAL_CUTOFF_POLICY;
979     } else {
980     // throw error
981     sprintf( painCave.errMsg,
982     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
983     painCave.isFatal = 1;
984     simError();
985     }
986     }
987     }
988 gezelter 764 }
989     notifyFortranCutoffPolicy(&cp);
990 chuckv 629
991 gezelter 764 // Check the Skin Thickness for neighborlists
992 tim 963 RealType skin;
993 gezelter 764 if (simParams_->haveSkinThickness()) {
994     skin = simParams_->getSkinThickness();
995     notifyFortranSkinThickness(&skin);
996     }
997    
998     // Check if the cutoff was set explicitly:
999     if (simParams_->haveCutoffRadius()) {
1000     rcut_ = simParams_->getCutoffRadius();
1001     if (simParams_->haveSwitchingRadius()) {
1002     rsw_ = simParams_->getSwitchingRadius();
1003     } else {
1004 chrisfen 878 if (fInfo_.SIM_uses_Charges |
1005     fInfo_.SIM_uses_Dipoles |
1006     fInfo_.SIM_uses_RF) {
1007    
1008     rsw_ = 0.85 * rcut_;
1009     sprintf(painCave.errMsg,
1010     "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 chrisfen 879 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1012 chrisfen 878 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013     painCave.isFatal = 0;
1014     simError();
1015     } else {
1016     rsw_ = rcut_;
1017     sprintf(painCave.errMsg,
1018     "SimCreator Warning: No value was set for the switchingRadius.\n"
1019     "\tOOPSE will use the same value as the cutoffRadius.\n"
1020     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1021     painCave.isFatal = 0;
1022     simError();
1023     }
1024 chrisfen 879 }
1025 chrisfen 1129
1026     if (simParams_->haveElectrostaticSummationMethod()) {
1027     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028     toUpper(myMethod);
1029    
1030     if (myMethod == "SHIFTED_POTENTIAL") {
1031     ljsp_ = true;
1032     } else if (myMethod == "SHIFTED_FORCE") {
1033     ljsf_ = true;
1034     }
1035     }
1036     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1037 chrisfen 879
1038 gezelter 764 } else {
1039    
1040     // For electrostatic atoms, we'll assume a large safe value:
1041     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1042     sprintf(painCave.errMsg,
1043     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1044     "\tOOPSE will use a default value of 15.0 angstroms"
1045     "\tfor the cutoffRadius.\n");
1046     painCave.isFatal = 0;
1047     simError();
1048     rcut_ = 15.0;
1049    
1050     if (simParams_->haveElectrostaticSummationMethod()) {
1051     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1052     toUpper(myMethod);
1053 chrisfen 1129
1054     // For the time being, we're tethering the LJ shifted behavior to the
1055     // electrostaticSummationMethod keyword options
1056     if (myMethod == "SHIFTED_POTENTIAL") {
1057     ljsp_ = true;
1058     } else if (myMethod == "SHIFTED_FORCE") {
1059     ljsf_ = true;
1060     }
1061     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1062 gezelter 764 if (simParams_->haveSwitchingRadius()){
1063     sprintf(painCave.errMsg,
1064     "SimInfo Warning: A value was set for the switchingRadius\n"
1065     "\teven though the electrostaticSummationMethod was\n"
1066     "\tset to %s\n", myMethod.c_str());
1067     painCave.isFatal = 1;
1068     simError();
1069     }
1070     }
1071     }
1072    
1073     if (simParams_->haveSwitchingRadius()){
1074     rsw_ = simParams_->getSwitchingRadius();
1075     } else {
1076     sprintf(painCave.errMsg,
1077     "SimCreator Warning: No value was set for switchingRadius.\n"
1078     "\tOOPSE will use a default value of\n"
1079     "\t0.85 * cutoffRadius for the switchingRadius\n");
1080     painCave.isFatal = 0;
1081     simError();
1082     rsw_ = 0.85 * rcut_;
1083     }
1084 chrisfen 1129
1085     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1086    
1087 gezelter 764 } else {
1088     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1089     // We'll punt and let fortran figure out the cutoffs later.
1090    
1091     notifyFortranYouAreOnYourOwn();
1092 chuckv 629
1093 gezelter 764 }
1094 chuckv 629 }
1095 gezelter 507 }
1096 gezelter 2
1097 chrisfen 603 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1098 chrisfen 598
1099     int errorOut;
1100 chrisfen 603 int esm = NONE;
1101 chrisfen 709 int sm = UNDAMPED;
1102 tim 963 RealType alphaVal;
1103     RealType dielectric;
1104 chrisfen 1045
1105 chrisfen 598 errorOut = isError;
1106    
1107 chrisfen 603 if (simParams_->haveElectrostaticSummationMethod()) {
1108 chrisfen 604 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1109 tim 665 toUpper(myMethod);
1110 chrisfen 603 if (myMethod == "NONE") {
1111     esm = NONE;
1112 chrisfen 598 } else {
1113 chrisfen 709 if (myMethod == "SWITCHING_FUNCTION") {
1114     esm = SWITCHING_FUNCTION;
1115 chrisfen 598 } else {
1116 chrisfen 709 if (myMethod == "SHIFTED_POTENTIAL") {
1117     esm = SHIFTED_POTENTIAL;
1118     } else {
1119     if (myMethod == "SHIFTED_FORCE") {
1120     esm = SHIFTED_FORCE;
1121 chrisfen 598 } else {
1122 chrisfen 1050 if (myMethod == "REACTION_FIELD") {
1123 chrisfen 709 esm = REACTION_FIELD;
1124 chrisfen 1050 dielectric = simParams_->getDielectric();
1125     if (!simParams_->haveDielectric()) {
1126     // throw warning
1127     sprintf( painCave.errMsg,
1128     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1129     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1130     painCave.isFatal = 0;
1131     simError();
1132     }
1133 chrisfen 709 } else {
1134     // throw error
1135     sprintf( painCave.errMsg,
1136 gezelter 764 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1137     "\t(Input file specified %s .)\n"
1138     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1139     "\t\"shifted_potential\", \"shifted_force\", or \n"
1140     "\t\"reaction_field\".\n", myMethod.c_str() );
1141 chrisfen 709 painCave.isFatal = 1;
1142     simError();
1143     }
1144     }
1145     }
1146 chrisfen 598 }
1147     }
1148     }
1149 chrisfen 709
1150 chrisfen 716 if (simParams_->haveElectrostaticScreeningMethod()) {
1151     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1152 chrisfen 709 toUpper(myScreen);
1153     if (myScreen == "UNDAMPED") {
1154     sm = UNDAMPED;
1155     } else {
1156     if (myScreen == "DAMPED") {
1157     sm = DAMPED;
1158     if (!simParams_->haveDampingAlpha()) {
1159 chrisfen 1045 // first set a cutoff dependent alpha value
1160     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1161     alphaVal = 0.5125 - rcut_* 0.025;
1162     // for values rcut > 20.5, alpha is zero
1163     if (alphaVal < 0) alphaVal = 0;
1164    
1165     // throw warning
1166 chrisfen 709 sprintf( painCave.errMsg,
1167 gezelter 764 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1168 chrisfen 1045 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1169 chrisfen 709 painCave.isFatal = 0;
1170     simError();
1171 chrisfen 1089 } else {
1172     alphaVal = simParams_->getDampingAlpha();
1173 chrisfen 709 }
1174 chrisfen 1089
1175 chrisfen 716 } else {
1176     // throw error
1177     sprintf( painCave.errMsg,
1178 gezelter 764 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1179     "\t(Input file specified %s .)\n"
1180     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1181     "or \"damped\".\n", myScreen.c_str() );
1182 chrisfen 716 painCave.isFatal = 1;
1183     simError();
1184 chrisfen 709 }
1185     }
1186     }
1187 chrisfen 716
1188 chrisfen 610 // let's pass some summation method variables to fortran
1189 chrisfen 853 setElectrostaticSummationMethod( &esm );
1190 gezelter 809 setFortranElectrostaticMethod( &esm );
1191 chrisfen 709 setScreeningMethod( &sm );
1192     setDampingAlpha( &alphaVal );
1193 chrisfen 610 setReactionFieldDielectric( &dielectric );
1194 gezelter 764 initFortranFF( &errorOut );
1195 chrisfen 598 }
1196    
1197 chrisfen 726 void SimInfo::setupSwitchingFunction() {
1198     int ft = CUBIC;
1199    
1200     if (simParams_->haveSwitchingFunctionType()) {
1201     std::string funcType = simParams_->getSwitchingFunctionType();
1202     toUpper(funcType);
1203     if (funcType == "CUBIC") {
1204     ft = CUBIC;
1205     } else {
1206     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1207     ft = FIFTH_ORDER_POLY;
1208     } else {
1209     // throw error
1210     sprintf( painCave.errMsg,
1211     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1212     painCave.isFatal = 1;
1213     simError();
1214     }
1215     }
1216     }
1217    
1218     // send switching function notification to switcheroo
1219     setFunctionType(&ft);
1220    
1221     }
1222    
1223 chrisfen 998 void SimInfo::setupAccumulateBoxDipole() {
1224    
1225     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1226     if ( simParams_->haveAccumulateBoxDipole() )
1227     if ( simParams_->getAccumulateBoxDipole() ) {
1228     setAccumulateBoxDipole();
1229     calcBoxDipole_ = true;
1230     }
1231    
1232     }
1233    
1234 gezelter 507 void SimInfo::addProperty(GenericData* genData) {
1235 gezelter 246 properties_.addProperty(genData);
1236 gezelter 507 }
1237 gezelter 2
1238 gezelter 507 void SimInfo::removeProperty(const std::string& propName) {
1239 gezelter 246 properties_.removeProperty(propName);
1240 gezelter 507 }
1241 gezelter 2
1242 gezelter 507 void SimInfo::clearProperties() {
1243 gezelter 246 properties_.clearProperties();
1244 gezelter 507 }
1245 gezelter 2
1246 gezelter 507 std::vector<std::string> SimInfo::getPropertyNames() {
1247 gezelter 246 return properties_.getPropertyNames();
1248 gezelter 507 }
1249 gezelter 246
1250 gezelter 507 std::vector<GenericData*> SimInfo::getProperties() {
1251 gezelter 246 return properties_.getProperties();
1252 gezelter 507 }
1253 gezelter 2
1254 gezelter 507 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1255 gezelter 246 return properties_.getPropertyByName(propName);
1256 gezelter 507 }
1257 gezelter 2
1258 gezelter 507 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1259 tim 432 if (sman_ == sman) {
1260 gezelter 507 return;
1261 tim 432 }
1262     delete sman_;
1263 gezelter 246 sman_ = sman;
1264 gezelter 2
1265 gezelter 246 Molecule* mol;
1266     RigidBody* rb;
1267     Atom* atom;
1268     SimInfo::MoleculeIterator mi;
1269     Molecule::RigidBodyIterator rbIter;
1270     Molecule::AtomIterator atomIter;;
1271    
1272     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1273    
1274 gezelter 507 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1275     atom->setSnapshotManager(sman_);
1276     }
1277 gezelter 246
1278 gezelter 507 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1279     rb->setSnapshotManager(sman_);
1280     }
1281 gezelter 246 }
1282 gezelter 2
1283 gezelter 507 }
1284 gezelter 2
1285 gezelter 507 Vector3d SimInfo::getComVel(){
1286 gezelter 246 SimInfo::MoleculeIterator i;
1287     Molecule* mol;
1288 gezelter 2
1289 gezelter 246 Vector3d comVel(0.0);
1290 tim 963 RealType totalMass = 0.0;
1291 gezelter 2
1292 gezelter 246
1293     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1294 tim 963 RealType mass = mol->getMass();
1295 gezelter 507 totalMass += mass;
1296     comVel += mass * mol->getComVel();
1297 gezelter 246 }
1298 gezelter 2
1299 gezelter 246 #ifdef IS_MPI
1300 tim 963 RealType tmpMass = totalMass;
1301 gezelter 246 Vector3d tmpComVel(comVel);
1302 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1303     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 gezelter 246 #endif
1305    
1306     comVel /= totalMass;
1307    
1308     return comVel;
1309 gezelter 507 }
1310 gezelter 2
1311 gezelter 507 Vector3d SimInfo::getCom(){
1312 gezelter 246 SimInfo::MoleculeIterator i;
1313     Molecule* mol;
1314 gezelter 2
1315 gezelter 246 Vector3d com(0.0);
1316 tim 963 RealType totalMass = 0.0;
1317 gezelter 246
1318     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1319 tim 963 RealType mass = mol->getMass();
1320 gezelter 507 totalMass += mass;
1321     com += mass * mol->getCom();
1322 gezelter 246 }
1323 gezelter 2
1324     #ifdef IS_MPI
1325 tim 963 RealType tmpMass = totalMass;
1326 gezelter 246 Vector3d tmpCom(com);
1327 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 gezelter 2 #endif
1330    
1331 gezelter 246 com /= totalMass;
1332 gezelter 2
1333 gezelter 246 return com;
1334 gezelter 2
1335 gezelter 507 }
1336 gezelter 246
1337 gezelter 507 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1338 gezelter 246
1339     return o;
1340 gezelter 507 }
1341 chuckv 555
1342    
1343     /*
1344     Returns center of mass and center of mass velocity in one function call.
1345     */
1346    
1347     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1348     SimInfo::MoleculeIterator i;
1349     Molecule* mol;
1350    
1351    
1352 tim 963 RealType totalMass = 0.0;
1353 chuckv 555
1354 gezelter 246
1355 chuckv 555 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1356 tim 963 RealType mass = mol->getMass();
1357 chuckv 555 totalMass += mass;
1358     com += mass * mol->getCom();
1359     comVel += mass * mol->getComVel();
1360     }
1361    
1362     #ifdef IS_MPI
1363 tim 963 RealType tmpMass = totalMass;
1364 chuckv 555 Vector3d tmpCom(com);
1365     Vector3d tmpComVel(comVel);
1366 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1367     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1368     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1369 chuckv 555 #endif
1370    
1371     com /= totalMass;
1372     comVel /= totalMass;
1373     }
1374    
1375     /*
1376     Return intertia tensor for entire system and angular momentum Vector.
1377 chuckv 557
1378    
1379     [ Ixx -Ixy -Ixz ]
1380     J =| -Iyx Iyy -Iyz |
1381     [ -Izx -Iyz Izz ]
1382 chuckv 555 */
1383    
1384     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1385    
1386    
1387 tim 963 RealType xx = 0.0;
1388     RealType yy = 0.0;
1389     RealType zz = 0.0;
1390     RealType xy = 0.0;
1391     RealType xz = 0.0;
1392     RealType yz = 0.0;
1393 chuckv 555 Vector3d com(0.0);
1394     Vector3d comVel(0.0);
1395    
1396     getComAll(com, comVel);
1397    
1398     SimInfo::MoleculeIterator i;
1399     Molecule* mol;
1400    
1401     Vector3d thisq(0.0);
1402     Vector3d thisv(0.0);
1403    
1404 tim 963 RealType thisMass = 0.0;
1405 chuckv 555
1406    
1407    
1408    
1409     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1410    
1411     thisq = mol->getCom()-com;
1412     thisv = mol->getComVel()-comVel;
1413     thisMass = mol->getMass();
1414     // Compute moment of intertia coefficients.
1415     xx += thisq[0]*thisq[0]*thisMass;
1416     yy += thisq[1]*thisq[1]*thisMass;
1417     zz += thisq[2]*thisq[2]*thisMass;
1418    
1419     // compute products of intertia
1420     xy += thisq[0]*thisq[1]*thisMass;
1421     xz += thisq[0]*thisq[2]*thisMass;
1422     yz += thisq[1]*thisq[2]*thisMass;
1423    
1424     angularMomentum += cross( thisq, thisv ) * thisMass;
1425    
1426     }
1427    
1428    
1429     inertiaTensor(0,0) = yy + zz;
1430     inertiaTensor(0,1) = -xy;
1431     inertiaTensor(0,2) = -xz;
1432     inertiaTensor(1,0) = -xy;
1433 chuckv 557 inertiaTensor(1,1) = xx + zz;
1434 chuckv 555 inertiaTensor(1,2) = -yz;
1435     inertiaTensor(2,0) = -xz;
1436     inertiaTensor(2,1) = -yz;
1437     inertiaTensor(2,2) = xx + yy;
1438    
1439     #ifdef IS_MPI
1440     Mat3x3d tmpI(inertiaTensor);
1441     Vector3d tmpAngMom;
1442 tim 963 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1444 chuckv 555 #endif
1445    
1446     return;
1447     }
1448    
1449     //Returns the angular momentum of the system
1450     Vector3d SimInfo::getAngularMomentum(){
1451    
1452     Vector3d com(0.0);
1453     Vector3d comVel(0.0);
1454     Vector3d angularMomentum(0.0);
1455    
1456     getComAll(com,comVel);
1457    
1458     SimInfo::MoleculeIterator i;
1459     Molecule* mol;
1460    
1461 chuckv 557 Vector3d thisr(0.0);
1462     Vector3d thisp(0.0);
1463 chuckv 555
1464 tim 963 RealType thisMass;
1465 chuckv 555
1466     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1467 chuckv 557 thisMass = mol->getMass();
1468     thisr = mol->getCom()-com;
1469     thisp = (mol->getComVel()-comVel)*thisMass;
1470 chuckv 555
1471 chuckv 557 angularMomentum += cross( thisr, thisp );
1472    
1473 chuckv 555 }
1474    
1475     #ifdef IS_MPI
1476     Vector3d tmpAngMom;
1477 tim 963 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1478 chuckv 555 #endif
1479    
1480     return angularMomentum;
1481     }
1482    
1483 tim 1024 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1484     return IOIndexToIntegrableObject.at(index);
1485     }
1486    
1487     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1488     IOIndexToIntegrableObject= v;
1489     }
1490    
1491 chuckv 1103 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1492     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1493     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1494     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1495     */
1496     void SimInfo::getGyrationalVolume(RealType &volume){
1497     Mat3x3d intTensor;
1498     RealType det;
1499     Vector3d dummyAngMom;
1500     RealType sysconstants;
1501     RealType geomCnst;
1502    
1503     geomCnst = 3.0/2.0;
1504     /* Get the inertial tensor and angular momentum for free*/
1505     getInertiaTensor(intTensor,dummyAngMom);
1506    
1507     det = intTensor.determinant();
1508     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1509     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1510     return;
1511     }
1512    
1513     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1514     Mat3x3d intTensor;
1515     Vector3d dummyAngMom;
1516     RealType sysconstants;
1517     RealType geomCnst;
1518    
1519     geomCnst = 3.0/2.0;
1520     /* Get the inertial tensor and angular momentum for free*/
1521     getInertiaTensor(intTensor,dummyAngMom);
1522    
1523     detI = intTensor.determinant();
1524     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1525     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1526     return;
1527     }
1528 tim 1024 /*
1529     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1530     assert( v.size() == nAtoms_ + nRigidBodies_);
1531     sdByGlobalIndex_ = v;
1532     }
1533    
1534     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1535     //assert(index < nAtoms_ + nRigidBodies_);
1536     return sdByGlobalIndex_.at(index);
1537     }
1538     */
1539 gezelter 246 }//end namespace oopse
1540