ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC vs.
Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 1 | Line 1
1   /*
2 < * copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 44 | Line 44
44   * @file SimCreator.cpp
45   * @author tlin
46   * @date 11/03/2004
47 * @time 13:51am
47   * @version 1.0
48   */
49 +
50 + #ifdef IS_MPI
51 + #include "mpi.h"
52 + #include "math/ParallelRandNumGen.hpp"
53 + #endif
54 +
55   #include <exception>
56   #include <iostream>
57   #include <sstream>
# Line 59 | Line 64
64   #include "brains/ForceField.hpp"
65   #include "utils/simError.h"
66   #include "utils/StringUtils.hpp"
67 + #include "utils/Revision.hpp"
68   #include "math/SeqRandNumGen.hpp"
69   #include "mdParser/MDLexer.hpp"
70   #include "mdParser/MDParser.hpp"
# Line 84 | Line 90
90   #include "types/FixedChargeAdapter.hpp"
91   #include "types/FluctuatingChargeAdapter.hpp"
92  
87 #ifdef IS_MPI
88 #include "mpi.h"
89 #include "math/ParallelRandNumGen.hpp"
90 #endif
93  
94   namespace OpenMD {
95    
# Line 102 | Line 104 | namespace OpenMD {
104        const int masterNode = 0;
105  
106        if (worldRank == masterNode) {
107 <        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
107 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
108   #endif                
109          SimplePreprocessor preprocessor;
110 <        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock,
111 <                                ppStream);
110 >        preprocessor.preprocess(rawMetaDataStream, filename,
111 >                                startOfMetaDataBlock, ppStream);
112                  
113   #ifdef IS_MPI            
114 <        //brocasting the stream size
114 >        //broadcasting the stream size
115          streamSize = ppStream.str().size() +1;
116 <        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
117 <        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 <                              streamSize, MPI::CHAR, masterNode);
117 <                
116 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
117 >        MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 >                  streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
119        } else {
120  
121 <        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
121 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
122  
123          //get stream size
124 <        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
124 <
124 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
125          char* buf = new char[streamSize];
126          assert(buf);
127                  
128          //receive file content
129 <        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
130 <                
129 >        MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
130 >
131          ppStream.str(buf);
132          delete [] buf;
133
133        }
134   #endif            
135        // Create a scanner that reads from the input stream
# Line 152 | Line 151 | namespace OpenMD {
151        parser.initializeASTFactory(factory);
152        parser.setASTFactory(&factory);
153        parser.mdfile();
155
154        // Create a tree parser that reads information into Globals
155        MDTreeParser treeParser;
156        treeParser.initializeASTFactory(factory);
# Line 255 | Line 253 | namespace OpenMD {
253      std::string mdRawData;
254      int metaDataBlockStart = -1;
255      int metaDataBlockEnd = -1;
256 <    int i;
257 <    streamoff mdOffset(0);
256 >    int i, j;
257 >    streamoff mdOffset;
258      int mdFileVersion;
259  
260 +    // Create a string for embedding the version information in the MetaData
261 +    std::string version;
262 +    version.assign("## Last run using OpenMD Version: ");
263 +    version.append(OPENMD_VERSION_MAJOR);
264 +    version.append(".");
265 +    version.append(OPENMD_VERSION_MINOR);
266  
267 +    std::string svnrev(g_REVISION, strnlen(g_REVISION, 20));
268 +    //convert a macro from compiler to a string in c++
269 +    // STR_DEFINE(svnrev, SVN_REV );
270 +    version.append(" Revision: ");
271 +    // If there's no SVN revision, just call this the RELEASE revision.
272 +    if (!svnrev.empty()) {
273 +      version.append(svnrev);
274 +    } else {
275 +      version.append("RELEASE");
276 +    }
277 +  
278   #ifdef IS_MPI            
279      const int masterNode = 0;
280      if (worldRank == masterNode) {
# Line 354 | Line 369 | namespace OpenMD {
369  
370        mdRawData.clear();
371  
372 +      bool foundVersion = false;
373 +
374        for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
375          mdFile_.getline(buffer, bufferSize);
376 <        mdRawData += buffer;
376 >        std::string line = trimLeftCopy(buffer);
377 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
378 >        if (static_cast<size_t>(j) != string::npos) {
379 >          foundVersion = true;
380 >          mdRawData += version;
381 >        } else {
382 >          mdRawData += buffer;
383 >        }
384          mdRawData += "\n";
385        }
386 <
386 >      
387 >      if (!foundVersion) mdRawData += version + "\n";
388 >      
389        mdFile_.close();
390  
391   #ifdef IS_MPI
# Line 487 | Line 513 | namespace OpenMD {
513    
514   #ifdef IS_MPI
515    void SimCreator::divideMolecules(SimInfo *info) {
490    RealType numerator;
491    RealType denominator;
492    RealType precast;
493    RealType x;
494    RealType y;
516      RealType a;
496    int old_atoms;
497    int add_atoms;
498    int new_atoms;
499    int nTarget;
500    int done;
501    int i;
502    int loops;
503    int which_proc;
517      int nProcessors;
518      std::vector<int> atomsPerProc;
519      int nGlobalMols = info->getNGlobalMolecules();
520 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
520 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
521 >                                                    // error
522 >                                                    // condition:
523      
524 <    nProcessors = MPI::COMM_WORLD.Get_size();
524 >    MPI_Comm_size( MPI_COMM_WORLD, &nProcessors);    
525      
526      if (nProcessors > nGlobalMols) {
527        sprintf(painCave.errMsg,
# Line 515 | Line 530 | namespace OpenMD {
530                "\tthe number of molecules.  This will not result in a \n"
531                "\tusable division of atoms for force decomposition.\n"
532                "\tEither try a smaller number of processors, or run the\n"
533 <              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
533 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
534 >              nGlobalMols);
535        
536        painCave.isFatal = 1;
537        simError();
538      }
539      
524    int seedValue;
540      Globals * simParams = info->getSimParams();
541 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
541 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
542 >                             //random number generator
543      if (simParams->haveSeed()) {
544 <      seedValue = simParams->getSeed();
544 >      int seedValue = simParams->getSeed();
545        myRandom = new SeqRandNumGen(seedValue);
546      }else {
547        myRandom = new SeqRandNumGen();
# Line 538 | Line 554 | namespace OpenMD {
554      atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
555      
556      if (worldRank == 0) {
557 <      numerator = info->getNGlobalAtoms();
558 <      denominator = nProcessors;
559 <      precast = numerator / denominator;
560 <      nTarget = (int)(precast + 0.5);
557 >      RealType numerator = info->getNGlobalAtoms();
558 >      RealType denominator = nProcessors;
559 >      RealType precast = numerator / denominator;
560 >      int nTarget = (int)(precast + 0.5);
561        
562 <      for(i = 0; i < nGlobalMols; i++) {
563 <        done = 0;
564 <        loops = 0;
562 >      for(int i = 0; i < nGlobalMols; i++) {
563 >
564 >        int done = 0;
565 >        int loops = 0;
566          
567          while (!done) {
568            loops++;
569            
570            // Pick a processor at random
571            
572 <          which_proc = (int) (myRandom->rand() * nProcessors);
572 >          int which_proc = (int) (myRandom->rand() * nProcessors);
573            
574            //get the molecule stamp first
575            int stampId = info->getMoleculeStampId(i);
576            MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
577            
578            // How many atoms does this processor have so far?
579 <          old_atoms = atomsPerProc[which_proc];
580 <          add_atoms = moleculeStamp->getNAtoms();
581 <          new_atoms = old_atoms + add_atoms;
579 >          int old_atoms = atomsPerProc[which_proc];
580 >          int add_atoms = moleculeStamp->getNAtoms();
581 >          int new_atoms = old_atoms + add_atoms;
582            
583            // If we've been through this loop too many times, we need
584            // to just give up and assign the molecule to this processor
585            // and be done with it.
586            
587            if (loops > 100) {
588 +
589              sprintf(painCave.errMsg,
590 <                    "I've tried 100 times to assign molecule %d to a "
591 <                    " processor, but can't find a good spot.\n"
592 <                    "I'm assigning it at random to processor %d.\n",
590 >                    "There have been 100 attempts to assign molecule %d to an\n"
591 >                    "\tunderworked processor, but there's no good place to\n"
592 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
593                      i, which_proc);
594 <            
594 >          
595              painCave.isFatal = 0;
596 +            painCave.severity = OPENMD_INFO;
597              simError();
598              
599              molToProcMap[i] = which_proc;
# Line 603 | Line 622 | namespace OpenMD {
622            //           Pacc(x) = exp(- a * x)
623            // where a = penalty / (average atoms per molecule)
624            
625 <          x = (RealType)(new_atoms - nTarget);
626 <          y = myRandom->rand();
625 >          RealType x = (RealType)(new_atoms - nTarget);
626 >          RealType y = myRandom->rand();
627            
628            if (y < exp(- a * x)) {
629              molToProcMap[i] = which_proc;
# Line 619 | Line 638 | namespace OpenMD {
638        }
639        
640        delete myRandom;
641 <      
641 >
642        // Spray out this nonsense to all other processors:
643 <      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
643 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
644 >
645      } else {
646        
647        // Listen to your marching orders from processor 0:
648 <      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
648 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
649 >
650      }
651      
652      info->setMolToProcMap(molToProcMap);
# Line 672 | Line 693 | namespace OpenMD {
693      set<AtomType*>::iterator i;
694      bool hasDirectionalAtoms = false;
695      bool hasFixedCharge = false;
696 <    bool hasMultipoles = false;    
696 >    bool hasDipoles = false;    
697 >    bool hasQuadrupoles = false;    
698      bool hasPolarizable = false;    
699      bool hasFluctuatingCharge = false;    
700      bool hasMetallic = false;
# Line 694 | Line 716 | namespace OpenMD {
716        if (da.isDirectional()){
717          hasDirectionalAtoms = true;
718        }
719 <      if (ma.isMultipole()){
720 <        hasMultipoles = true;
719 >      if (ma.isDipole()){
720 >        hasDipoles = true;
721        }
722 +      if (ma.isQuadrupole()){
723 +        hasQuadrupoles = true;
724 +      }
725        if (ea.isEAM() || sca.isSuttonChen()){
726          hasMetallic = true;
727        }
# Line 720 | Line 745 | namespace OpenMD {
745          storageLayout |= DataStorage::dslTorque;
746        }
747      }
748 <    if (hasMultipoles) {
749 <      storageLayout |= DataStorage::dslElectroFrame;
748 >    if (hasDipoles) {
749 >      storageLayout |= DataStorage::dslDipole;
750      }
751 +    if (hasQuadrupoles) {
752 +      storageLayout |= DataStorage::dslQuadrupole;
753 +    }
754      if (hasFixedCharge || hasFluctuatingCharge) {
755        storageLayout |= DataStorage::dslSkippedCharge;
756      }
# Line 757 | Line 785 | namespace OpenMD {
785        }
786      }
787  
788 <    if (simParams->getOutputElectricField()) {
788 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
789        storageLayout |= DataStorage::dslElectricField;
790      }
791 +
792 +    if (simParams->getOutputSitePotential() ) {
793 +      storageLayout |= DataStorage::dslSitePotential;
794 +    }
795 +
796      if (simParams->getOutputFluctuatingCharges()) {
797        storageLayout |= DataStorage::dslFlucQPosition;
798        storageLayout |= DataStorage::dslFlucQVelocity;
799        storageLayout |= DataStorage::dslFlucQForce;
800      }
801  
802 +    info->setStorageLayout(storageLayout);
803 +
804      return storageLayout;
805    }
806  
# Line 774 | Line 809 | namespace OpenMD {
809      Molecule::AtomIterator ai;
810      Molecule::RigidBodyIterator ri;
811      Molecule::CutoffGroupIterator ci;
812 +    Molecule::BondIterator boi;
813 +    Molecule::BendIterator bei;
814 +    Molecule::TorsionIterator ti;
815 +    Molecule::InversionIterator ii;
816      Molecule::IntegrableObjectIterator  ioi;
817 <    Molecule * mol;
818 <    Atom * atom;
819 <    RigidBody * rb;
820 <    CutoffGroup * cg;
817 >    Molecule* mol;
818 >    Atom* atom;
819 >    RigidBody* rb;
820 >    CutoffGroup* cg;
821 >    Bond* bond;
822 >    Bend* bend;
823 >    Torsion* torsion;
824 >    Inversion* inversion;
825      int beginAtomIndex;
826      int beginRigidBodyIndex;
827      int beginCutoffGroupIndex;
828 +    int beginBondIndex;
829 +    int beginBendIndex;
830 +    int beginTorsionIndex;
831 +    int beginInversionIndex;
832      int nGlobalAtoms = info->getNGlobalAtoms();
833 +    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
834      
835      beginAtomIndex = 0;
836 <    //rigidbody's index begins right after atom's
836 >    // The rigid body indices begin immediately after the atom indices:
837      beginRigidBodyIndex = info->getNGlobalAtoms();
838      beginCutoffGroupIndex = 0;
839 <
839 >    beginBondIndex = 0;
840 >    beginBendIndex = 0;
841 >    beginTorsionIndex = 0;
842 >    beginInversionIndex = 0;
843 >  
844      for(int i = 0; i < info->getNGlobalMolecules(); i++) {
845        
846   #ifdef IS_MPI      
# Line 797 | Line 849 | namespace OpenMD {
849          // stuff to do if I own this molecule
850          mol = info->getMoleculeByGlobalIndex(i);
851  
852 <        //local index(index in DataStorge) of atom is important
853 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 >        // The local index(index in DataStorge) of the atom is important:
853 >        for(atom = mol->beginAtom(ai); atom != NULL;
854 >            atom = mol->nextAtom(ai)) {
855            atom->setGlobalIndex(beginAtomIndex++);
856          }
857          
# Line 807 | Line 860 | namespace OpenMD {
860            rb->setGlobalIndex(beginRigidBodyIndex++);
861          }
862          
863 <        //local index of cutoff group is trivial, it only depends on
864 <        //the order of travesing
863 >        // The local index of other objects only depends on the order
864 >        // of traversal:
865          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
866              cg = mol->nextCutoffGroup(ci)) {
867            cg->setGlobalIndex(beginCutoffGroupIndex++);
868          }        
869 +        for(bond = mol->beginBond(boi); bond != NULL;
870 +            bond = mol->nextBond(boi)) {
871 +          bond->setGlobalIndex(beginBondIndex++);
872 +        }        
873 +        for(bend = mol->beginBend(bei); bend != NULL;
874 +            bend = mol->nextBend(bei)) {
875 +          bend->setGlobalIndex(beginBendIndex++);
876 +        }        
877 +        for(torsion = mol->beginTorsion(ti); torsion != NULL;
878 +            torsion = mol->nextTorsion(ti)) {
879 +          torsion->setGlobalIndex(beginTorsionIndex++);
880 +        }        
881 +        for(inversion = mol->beginInversion(ii); inversion != NULL;
882 +            inversion = mol->nextInversion(ii)) {
883 +          inversion->setGlobalIndex(beginInversionIndex++);
884 +        }        
885          
886   #ifdef IS_MPI        
887        }  else {
# Line 825 | Line 894 | namespace OpenMD {
894          beginAtomIndex += stamp->getNAtoms();
895          beginRigidBodyIndex += stamp->getNRigidBodies();
896          beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
897 +        beginBondIndex += stamp->getNBonds();
898 +        beginBendIndex += stamp->getNBends();
899 +        beginTorsionIndex += stamp->getNTorsions();
900 +        beginInversionIndex += stamp->getNInversions();
901        }
902   #endif          
903  
# Line 832 | Line 905 | namespace OpenMD {
905  
906      //fill globalGroupMembership
907      std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
908 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
909 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
910 <        
908 >    for(mol = info->beginMolecule(mi); mol != NULL;
909 >        mol = info->nextMolecule(mi)) {        
910 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
911 >           cg = mol->nextCutoffGroup(ci)) {        
912          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
913            globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
914          }
# Line 849 | Line 923 | namespace OpenMD {
923      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
924      // docs said we could.
925      std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
926 <    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
927 <                              &tmpGroupMembership[0], nGlobalAtoms,
928 <                              MPI::INT, MPI::SUM);
926 >    MPI_Allreduce(&globalGroupMembership[0],
927 >                  &tmpGroupMembership[0], nGlobalAtoms,
928 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
929 >
930      info->setGlobalGroupMembership(tmpGroupMembership);
931   #else
932      info->setGlobalGroupMembership(globalGroupMembership);
933   #endif
934      
935      //fill molMembership
936 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
936 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
937 >                                         info->getNGlobalRigidBodies(), 0);
938      
939 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
939 >    for(mol = info->beginMolecule(mi); mol != NULL;
940 >        mol = info->nextMolecule(mi)) {
941        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
942          globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
943        }
944 +      for (rb = mol->beginRigidBody(ri); rb != NULL;
945 +           rb = mol->nextRigidBody(ri)) {
946 +        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
947 +      }
948      }
949      
950   #ifdef IS_MPI
951 <    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
952 <    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
953 <                              nGlobalAtoms,
954 <                              MPI::INT, MPI::SUM);
951 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
952 >                                      info->getNGlobalRigidBodies(), 0);
953 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
954 >                  nGlobalAtoms + nGlobalRigidBodies,
955 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
956      
957      info->setGlobalMolMembership(tmpMolMembership);
958   #else
# Line 881 | Line 963 | namespace OpenMD {
963      // here the molecules are listed by their global indices.
964  
965      std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
966 <    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
966 >    for (mol = info->beginMolecule(mi); mol != NULL;
967 >         mol = info->nextMolecule(mi)) {
968        nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
969      }
970      
971   #ifdef IS_MPI
972      std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
973 <    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
974 <                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
973 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
974 >      info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
975   #else
976      std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
977   #endif    
# Line 902 | Line 985 | namespace OpenMD {
985      }
986      
987      std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
988 <    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
988 >    for (mol = info->beginMolecule(mi); mol != NULL;
989 >         mol = info->nextMolecule(mi)) {
990        int myGlobalIndex = mol->getGlobalIndex();
991        int globalIO = startingIOIndexForMol[myGlobalIndex];
992        for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
# Line 918 | Line 1002 | namespace OpenMD {
1002    }
1003    
1004    void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
1005 <
1005 >    
1006      DumpReader reader(info, mdFileName);
1007      int nframes = reader.getNFrames();
1008 <
1008 >    
1009      if (nframes > 0) {
1010        reader.readFrame(nframes - 1);
1011      } else {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines