ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 393 by tim, Wed Mar 2 16:28:20 2005 UTC vs.
Revision 1938 by gezelter, Thu Oct 31 15:32:17 2013 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #include "math/SeqRandNumGen.hpp"
61 < #ifdef IS_MPI
62 < #include "io/mpiBASS.h"
63 < #include "math/ParallelRandNumGen.hpp"
64 < #endif
65 <
66 < namespace oopse {
67 <
68 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
69 <
70 < #ifdef IS_MPI
71 <
72 <    if (worldRank == 0) {
73 < #endif // is_mpi
74 <
75 <        simParams->initalize();
76 <        set_interface_stamps(stamps, simParams);
77 <
78 < #ifdef IS_MPI
79 <
80 <        mpiEventInit();
81 <
82 < #endif
83 <
84 <        yacc_BASS(mdFileName.c_str());
85 <
86 < #ifdef IS_MPI
87 <
88 <        throwMPIEvent(NULL);
89 <    } else {
90 <        set_interface_stamps(stamps, simParams);
91 <        mpiEventInit();
92 <        MPIcheckPoint();
93 <        mpiEventLoop();
94 <    }
95 <
96 < #endif
97 <
98 < }
99 <
100 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
101 <    
102 <    MakeStamps * stamps = new MakeStamps();
103 <
104 <    Globals * simParams = new Globals();
105 <
106 <    //parse meta-data file
107 <    parseFile(mdFileName, stamps, simParams);
108 <
109 <    //create the force field
110 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
111 <                          simParams->getForceField());
112 <    
113 <    if (ff == NULL) {
114 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
115 <                simParams->getForceField());
116 <        painCave.isFatal = 1;
117 <        simError();
118 <    }
119 <
120 <    if (simParams->haveForceFieldFileName()) {
121 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
122 <    }
123 <    
124 <    std::string forcefieldFileName;
125 <    forcefieldFileName = ff->getForceFieldFileName();
126 <
127 <    if (simParams->haveForceFieldVariant()) {
128 <        //If the force field has variant, the variant force field name will be
129 <        //Base.variant.frc. For exampel EAM.u6.frc
130 <        
131 <        std::string variant = simParams->getForceFieldVariant();
132 <
133 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
134 <        variant = "." + variant;
135 <        if (pos != std::string::npos) {
136 <            forcefieldFileName.insert(pos, variant);
137 <        } else {
138 <            //If the default force field file name does not containt .frc suffix, just append the .variant
139 <            forcefieldFileName.append(variant);
140 <        }
141 <    }
142 <    
143 <    ff->parse(forcefieldFileName);
144 <    
145 <    //extract the molecule stamps
146 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
147 <    compList(stamps, simParams, moleculeStampPairs);
148 <
149 <    //create SimInfo
150 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
151 <
152 <    //gather parameters (SimCreator only retrieves part of the parameters)
153 <    gatherParameters(info, mdFileName);
154 <
155 <    //divide the molecules and determine the global index of molecules
156 < #ifdef IS_MPI
157 <    divideMolecules(info);
158 < #endif
159 <
160 <    //create the molecules
161 <    createMolecules(info);
162 <
163 <
164 <    //allocate memory for DataStorage(circular reference, need to break it)
165 <    info->setSnapshotManager(new SimSnapshotManager(info));
166 <    
167 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
168 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
169 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
170 <    setGlobalIndex(info);
171 <
172 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
173 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
174 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
175 <    //we can determine the beginning global indices of atoms before they get created.
176 <    SimInfo::MoleculeIterator mi;
177 <    Molecule* mol;
178 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
179 <        info->addExcludePairs(mol);
180 <    }
181 <    
182 <
183 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
184 <    //eta, chi for NPT integrator)
185 <    if (loadInitCoords)
186 <        loadCoordinates(info);    
187 <    
188 <    return info;
189 < }
190 <
191 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
192 <
193 <    //figure out the ouput file names
194 <    std::string prefix;
195 <
196 < #ifdef IS_MPI
197 <
198 <    if (worldRank == 0) {
199 < #endif // is_mpi
200 <        Globals * simParams = info->getSimParams();
201 <        if (simParams->haveFinalConfig()) {
202 <            prefix = getPrefix(simParams->getFinalConfig());
203 <        } else {
204 <            prefix = getPrefix(mdfile);
205 <        }
206 <
207 <        info->setFinalConfigFileName(prefix + ".eor");
208 <        info->setDumpFileName(prefix + ".dump");
209 <        info->setStatFileName(prefix + ".stat");
210 <
211 < #ifdef IS_MPI
212 <
213 <    }
214 <
215 < #endif
216 <
217 < }
218 <
219 < #ifdef IS_MPI
220 < void SimCreator::divideMolecules(SimInfo *info) {
221 <    double numerator;
222 <    double denominator;
223 <    double precast;
224 <    double x;
225 <    double y;
226 <    double a;
227 <    int old_atoms;
228 <    int add_atoms;
229 <    int new_atoms;
230 <    int nTarget;
231 <    int done;
232 <    int i;
233 <    int j;
234 <    int loops;
235 <    int which_proc;
236 <    int nProcessors;
237 <    std::vector<int> atomsPerProc;
238 <    int nGlobalMols = info->getNGlobalMolecules();
239 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
240 <    
241 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
242 <
243 <    if (nProcessors > nGlobalMols) {
244 <        sprintf(painCave.errMsg,
245 <                "nProcessors (%d) > nMol (%d)\n"
246 <                    "\tThe number of processors is larger than\n"
247 <                    "\tthe number of molecules.  This will not result in a \n"
248 <                    "\tusable division of atoms for force decomposition.\n"
249 <                    "\tEither try a smaller number of processors, or run the\n"
250 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
251 <
252 <        painCave.isFatal = 1;
253 <        simError();
254 <    }
255 <
256 <    int seedValue;
257 <    Globals * simParams = info->getSimParams();
258 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
259 <    if (simParams->haveSeed()) {
260 <        seedValue = simParams->getSeed();
261 <        myRandom = new SeqRandNumGen(seedValue);
262 <    }else {
263 <        myRandom = new SeqRandNumGen();
264 <    }  
265 <
266 <
267 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
268 <
269 <    //initialize atomsPerProc
270 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
271 <
272 <    if (worldRank == 0) {
273 <        numerator = info->getNGlobalAtoms();
274 <        denominator = nProcessors;
275 <        precast = numerator / denominator;
276 <        nTarget = (int)(precast + 0.5);
277 <
278 <        for(i = 0; i < nGlobalMols; i++) {
279 <            done = 0;
280 <            loops = 0;
281 <
282 <            while (!done) {
283 <                loops++;
284 <
285 <                // Pick a processor at random
286 <
287 <                which_proc = (int) (myRandom->rand() * nProcessors);
288 <
289 <                //get the molecule stamp first
290 <                int stampId = info->getMoleculeStampId(i);
291 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
292 <
293 <                // How many atoms does this processor have so far?
294 <                old_atoms = atomsPerProc[which_proc];
295 <                add_atoms = moleculeStamp->getNAtoms();
296 <                new_atoms = old_atoms + add_atoms;
297 <
298 <                // If we've been through this loop too many times, we need
299 <                // to just give up and assign the molecule to this processor
300 <                // and be done with it.
301 <
302 <                if (loops > 100) {
303 <                    sprintf(painCave.errMsg,
304 <                            "I've tried 100 times to assign molecule %d to a "
305 <                                " processor, but can't find a good spot.\n"
306 <                                "I'm assigning it at random to processor %d.\n",
307 <                            i, which_proc);
308 <
309 <                    painCave.isFatal = 0;
310 <                    simError();
311 <
312 <                    molToProcMap[i] = which_proc;
313 <                    atomsPerProc[which_proc] += add_atoms;
314 <
315 <                    done = 1;
316 <                    continue;
317 <                }
318 <
319 <                // If we can add this molecule to this processor without sending
320 <                // it above nTarget, then go ahead and do it:
321 <
322 <                if (new_atoms <= nTarget) {
323 <                    molToProcMap[i] = which_proc;
324 <                    atomsPerProc[which_proc] += add_atoms;
325 <
326 <                    done = 1;
327 <                    continue;
328 <                }
329 <
330 <                // The only situation left is when new_atoms > nTarget.  We
331 <                // want to accept this with some probability that dies off the
332 <                // farther we are from nTarget
333 <
334 <                // roughly:  x = new_atoms - nTarget
335 <                //           Pacc(x) = exp(- a * x)
336 <                // where a = penalty / (average atoms per molecule)
337 <
338 <                x = (double)(new_atoms - nTarget);
339 <                y = myRandom->rand();
340 <
341 <                if (y < exp(- a * x)) {
342 <                    molToProcMap[i] = which_proc;
343 <                    atomsPerProc[which_proc] += add_atoms;
344 <
345 <                    done = 1;
346 <                    continue;
347 <                } else {
348 <                    continue;
349 <                }
350 <            }
351 <        }
352 <
353 <        delete myRandom;
354 <        
355 <        // Spray out this nonsense to all other processors:
356 <
357 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
358 <    } else {
359 <
360 <        // Listen to your marching orders from processor 0:
361 <
362 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
363 <    }
364 <
365 <    info->setMolToProcMap(molToProcMap);
366 <    sprintf(checkPointMsg,
367 <            "Successfully divided the molecules among the processors.\n");
368 <    MPIcheckPoint();
369 < }
370 <
371 < #endif
372 <
373 < void SimCreator::createMolecules(SimInfo *info) {
374 <    MoleculeCreator molCreator;
375 <    int stampId;
376 <
377 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
378 <
379 < #ifdef IS_MPI
380 <
381 <        if (info->getMolToProc(i) == worldRank) {
382 < #endif
383 <
384 <            stampId = info->getMoleculeStampId(i);
385 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
386 <                                                                                    stampId, i, info->getLocalIndexManager());
387 <
388 <            info->addMolecule(mol);
389 <
390 < #ifdef IS_MPI
391 <
392 <        }
393 <
394 < #endif
395 <
396 <    } //end for(int i=0)  
397 < }
398 <
399 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
400 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
401 <    int i;
402 <    char * id;
403 <    MoleculeStamp * currentStamp;
404 <    Component** the_components = simParams->getComponents();
405 <    int n_components = simParams->getNComponents();
406 <
407 <    if (!simParams->haveNMol()) {
408 <        // we don't have the total number of molecules, so we assume it is
409 <        // given in each component
410 <
411 <        for(i = 0; i < n_components; i++) {
412 <            if (!the_components[i]->haveNMol()) {
413 <                // we have a problem
414 <                sprintf(painCave.errMsg,
415 <                        "SimCreator Error. No global NMol or component NMol given.\n"
416 <                            "\tCannot calculate the number of atoms.\n");
417 <
418 <                painCave.isFatal = 1;
419 <                simError();
420 <            }
421 <
422 <            id = the_components[i]->getType();
423 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
424 <
425 <            if (currentStamp == NULL) {
426 <                sprintf(painCave.errMsg,
427 <                        "SimCreator error: Component \"%s\" was not found in the "
428 <                            "list of declared molecules\n", id);
429 <
430 <                painCave.isFatal = 1;
431 <                simError();
432 <            }
433 <
434 <            moleculeStampPairs.push_back(
435 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
436 <        } //end for (i = 0; i < n_components; i++)
437 <    } else {
438 <        sprintf(painCave.errMsg, "SimSetup error.\n"
439 <                                     "\tSorry, the ability to specify total"
440 <                                     " nMols and then give molfractions in the components\n"
441 <                                     "\tis not currently supported."
442 <                                     " Please give nMol in the components.\n");
443 <
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <
448 < #ifdef IS_MPI
449 <
450 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
451 <    MPIcheckPoint();
452 <
453 < #endif // is_mpi
454 <
455 < }
456 <
457 < void SimCreator::setGlobalIndex(SimInfo *info) {
458 <    SimInfo::MoleculeIterator mi;
459 <    Molecule::AtomIterator ai;
460 <    Molecule::RigidBodyIterator ri;
461 <    Molecule::CutoffGroupIterator ci;
462 <    Molecule * mol;
463 <    Atom * atom;
464 <    RigidBody * rb;
465 <    CutoffGroup * cg;
466 <    int beginAtomIndex;
467 <    int beginRigidBodyIndex;
468 <    int beginCutoffGroupIndex;
469 <    int nGlobalAtoms = info->getNGlobalAtoms();
470 <    
471 < #ifndef IS_MPI
472 <
473 <    beginAtomIndex = 0;
474 <    beginRigidBodyIndex = 0;
475 <    beginCutoffGroupIndex = 0;
476 <
477 < #else
478 <
479 <    int nproc;
480 <    int myNode;
481 <
482 <    myNode = worldRank;
483 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
484 <
485 <    std::vector < int > tmpAtomsInProc(nproc, 0);
486 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
487 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
488 <    std::vector < int > NumAtomsInProc(nproc, 0);
489 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
490 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
491 <
492 <    tmpAtomsInProc[myNode] = info->getNAtoms();
493 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
494 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
495 <
496 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
497 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
498 <                  MPI_SUM, MPI_COMM_WORLD);
499 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
500 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
501 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
502 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
503 <
504 <    beginAtomIndex = 0;
505 <    beginRigidBodyIndex = 0;
506 <    beginCutoffGroupIndex = 0;
507 <
508 <    for(int i = 0; i < myNode; i++) {
509 <        beginAtomIndex += NumAtomsInProc[i];
510 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
511 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
512 <    }
513 <
514 < #endif
515 <
516 <    //rigidbody's index begins right after atom's
517 <    beginRigidBodyIndex += info->getNGlobalAtoms();
518 <
519 <    for(mol = info->beginMolecule(mi); mol != NULL;
520 <        mol = info->nextMolecule(mi)) {
521 <
522 <        //local index(index in DataStorge) of atom is important
523 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
524 <            atom->setGlobalIndex(beginAtomIndex++);
525 <        }
526 <
527 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
528 <            rb = mol->nextRigidBody(ri)) {
529 <            rb->setGlobalIndex(beginRigidBodyIndex++);
530 <        }
531 <
532 <        //local index of cutoff group is trivial, it only depends on the order of travesing
533 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
534 <            cg = mol->nextCutoffGroup(ci)) {
535 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
536 <        }
537 <    }
538 <
539 <    //fill globalGroupMembership
540 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
541 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
542 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
543 <
544 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
545 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
546 <            }
547 <
548 <        }      
549 <    }
550 <
551 < #ifdef IS_MPI    
552 <    // Since the globalGroupMembership has been zero filled and we've only
553 <    // poked values into the atoms we know, we can do an Allreduce
554 <    // to get the full globalGroupMembership array (We think).
555 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
556 <    // docs said we could.
557 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
558 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
559 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
560 <     info->setGlobalGroupMembership(tmpGroupMembership);
561 < #else
562 <    info->setGlobalGroupMembership(globalGroupMembership);
563 < #endif
564 <
565 <    //fill molMembership
566 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
567 <    
568 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
569 <
570 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
571 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
572 <        }
573 <    }
574 <
575 < #ifdef IS_MPI
576 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
577 <
578 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
579 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
580 <    
581 <    info->setGlobalMolMembership(tmpMolMembership);
582 < #else
583 <    info->setGlobalMolMembership(globalMolMembership);
584 < #endif
585 <
586 < }
587 <
588 < void SimCreator::loadCoordinates(SimInfo* info) {
589 <    Globals* simParams;
590 <    simParams = info->getSimParams();
591 <    
592 <    if (!simParams->haveInitialConfig()) {
593 <        sprintf(painCave.errMsg,
594 <                "Cannot intialize a simulation without an initial configuration file.\n");
595 <        painCave.isFatal = 1;;
596 <        simError();
597 <    }
598 <        
599 <    DumpReader reader(info, simParams->getInitialConfig());
600 <    int nframes = reader.getNFrames();
601 <
602 <    if (nframes > 0) {
603 <        reader.readFrame(nframes - 1);
604 <    } else {
605 <        //invalid initial coordinate file
606 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
607 <                simParams->getInitialConfig());
608 <        painCave.isFatal = 1;
609 <        simError();
610 <    }
611 <
612 <    //copy the current snapshot to previous snapshot
613 <    info->getSnapshotManager()->advance();
614 < }
615 <
616 < } //end namespace oopse
617 <
618 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimCreator.cpp
45 > * @author tlin
46 > * @date 11/03/2004
47 > * @version 1.0
48 > */
49 >
50 > #ifdef IS_MPI
51 > #include "mpi.h"
52 > #include "math/ParallelRandNumGen.hpp"
53 > #endif
54 >
55 > #include <exception>
56 > #include <iostream>
57 > #include <sstream>
58 > #include <string>
59 >
60 > #include "brains/MoleculeCreator.hpp"
61 > #include "brains/SimCreator.hpp"
62 > #include "brains/SimSnapshotManager.hpp"
63 > #include "io/DumpReader.hpp"
64 > #include "brains/ForceField.hpp"
65 > #include "utils/simError.h"
66 > #include "utils/StringUtils.hpp"
67 > #include "math/SeqRandNumGen.hpp"
68 > #include "mdParser/MDLexer.hpp"
69 > #include "mdParser/MDParser.hpp"
70 > #include "mdParser/MDTreeParser.hpp"
71 > #include "mdParser/SimplePreprocessor.hpp"
72 > #include "antlr/ANTLRException.hpp"
73 > #include "antlr/TokenStreamRecognitionException.hpp"
74 > #include "antlr/TokenStreamIOException.hpp"
75 > #include "antlr/TokenStreamException.hpp"
76 > #include "antlr/RecognitionException.hpp"
77 > #include "antlr/CharStreamException.hpp"
78 >
79 > #include "antlr/MismatchedCharException.hpp"
80 > #include "antlr/MismatchedTokenException.hpp"
81 > #include "antlr/NoViableAltForCharException.hpp"
82 > #include "antlr/NoViableAltException.hpp"
83 >
84 > #include "types/DirectionalAdapter.hpp"
85 > #include "types/MultipoleAdapter.hpp"
86 > #include "types/EAMAdapter.hpp"
87 > #include "types/SuttonChenAdapter.hpp"
88 > #include "types/PolarizableAdapter.hpp"
89 > #include "types/FixedChargeAdapter.hpp"
90 > #include "types/FluctuatingChargeAdapter.hpp"
91 >
92 >
93 > namespace OpenMD {
94 >  
95 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
96 >    Globals* simParams = NULL;
97 >    try {
98 >
99 >      // Create a preprocessor that preprocesses md file into an ostringstream
100 >      std::stringstream ppStream;
101 > #ifdef IS_MPI            
102 >      int streamSize;
103 >      const int masterNode = 0;
104 >
105 >      if (worldRank == masterNode) {
106 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
107 > #endif                
108 >        SimplePreprocessor preprocessor;
109 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
110 >                
111 > #ifdef IS_MPI            
112 >        //brocasting the stream size
113 >        streamSize = ppStream.str().size() +1;
114 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
115 >        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI::CHAR, masterNode);
116 >                          
117 >      } else {
118 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
119 >
120 >        //get stream size
121 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
122 >
123 >        char* buf = new char[streamSize];
124 >        assert(buf);
125 >                
126 >        //receive file content
127 >        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
128 >                
129 >        ppStream.str(buf);
130 >        delete [] buf;
131 >      }
132 > #endif            
133 >      // Create a scanner that reads from the input stream
134 >      MDLexer lexer(ppStream);
135 >      lexer.setFilename(filename);
136 >      lexer.initDeferredLineCount();
137 >    
138 >      // Create a parser that reads from the scanner
139 >      MDParser parser(lexer);
140 >      parser.setFilename(filename);
141 >
142 >      // Create an observer that synchorizes file name change
143 >      FilenameObserver observer;
144 >      observer.setLexer(&lexer);
145 >      observer.setParser(&parser);
146 >      lexer.setObserver(&observer);
147 >    
148 >      antlr::ASTFactory factory;
149 >      parser.initializeASTFactory(factory);
150 >      parser.setASTFactory(&factory);
151 >      parser.mdfile();
152 >
153 >      // Create a tree parser that reads information into Globals
154 >      MDTreeParser treeParser;
155 >      treeParser.initializeASTFactory(factory);
156 >      treeParser.setASTFactory(&factory);
157 >      simParams = treeParser.walkTree(parser.getAST());
158 >    }
159 >
160 >      
161 >    catch(antlr::MismatchedCharException& e) {
162 >      sprintf(painCave.errMsg,
163 >              "parser exception: %s %s:%d:%d\n",
164 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
165 >      painCave.isFatal = 1;
166 >      simError();          
167 >    }
168 >    catch(antlr::MismatchedTokenException &e) {
169 >      sprintf(painCave.errMsg,
170 >              "parser exception: %s %s:%d:%d\n",
171 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
172 >      painCave.isFatal = 1;
173 >      simError();  
174 >    }
175 >    catch(antlr::NoViableAltForCharException &e) {
176 >      sprintf(painCave.errMsg,
177 >              "parser exception: %s %s:%d:%d\n",
178 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
179 >      painCave.isFatal = 1;
180 >      simError();  
181 >    }
182 >    catch(antlr::NoViableAltException &e) {
183 >      sprintf(painCave.errMsg,
184 >              "parser exception: %s %s:%d:%d\n",
185 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
186 >      painCave.isFatal = 1;
187 >      simError();  
188 >    }
189 >      
190 >    catch(antlr::TokenStreamRecognitionException& e) {
191 >      sprintf(painCave.errMsg,
192 >              "parser exception: %s %s:%d:%d\n",
193 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
194 >      painCave.isFatal = 1;
195 >      simError();  
196 >    }
197 >        
198 >    catch(antlr::TokenStreamIOException& e) {
199 >      sprintf(painCave.errMsg,
200 >              "parser exception: %s\n",
201 >              e.getMessage().c_str());
202 >      painCave.isFatal = 1;
203 >      simError();
204 >    }
205 >        
206 >    catch(antlr::TokenStreamException& e) {
207 >      sprintf(painCave.errMsg,
208 >              "parser exception: %s\n",
209 >              e.getMessage().c_str());
210 >      painCave.isFatal = 1;
211 >      simError();
212 >    }        
213 >    catch (antlr::RecognitionException& e) {
214 >      sprintf(painCave.errMsg,
215 >              "parser exception: %s %s:%d:%d\n",
216 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
217 >      painCave.isFatal = 1;
218 >      simError();          
219 >    }
220 >    catch (antlr::CharStreamException& e) {
221 >      sprintf(painCave.errMsg,
222 >              "parser exception: %s\n",
223 >              e.getMessage().c_str());
224 >      painCave.isFatal = 1;
225 >      simError();        
226 >    }
227 >    catch (OpenMDException& e) {
228 >      sprintf(painCave.errMsg,
229 >              "%s\n",
230 >              e.getMessage().c_str());
231 >      painCave.isFatal = 1;
232 >      simError();
233 >    }
234 >    catch (std::exception& e) {
235 >      sprintf(painCave.errMsg,
236 >              "parser exception: %s\n",
237 >              e.what());
238 >      painCave.isFatal = 1;
239 >      simError();
240 >    }
241 >
242 >    simParams->setMDfileVersion(mdFileVersion);
243 >    return simParams;
244 >  }
245 >  
246 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
247 >                                  bool loadInitCoords) {
248 >    
249 >    const int bufferSize = 65535;
250 >    char buffer[bufferSize];
251 >    int lineNo = 0;
252 >    std::string mdRawData;
253 >    int metaDataBlockStart = -1;
254 >    int metaDataBlockEnd = -1;
255 >    int i, j;
256 >    streamoff mdOffset;
257 >    int mdFileVersion;
258 >
259 >    // Create a string for embedding the version information in the MetaData
260 >    std::string version;
261 >    version.assign("## Last run using OpenMD Version: ");
262 >    version.append(OPENMD_VERSION_MAJOR);
263 >    version.append(".");
264 >    version.append(OPENMD_VERSION_MINOR);
265 >
266 >    std::string svnrev;
267 >    //convert a macro from compiler to a string in c++
268 >    STR_DEFINE(svnrev, SVN_REV );
269 >    version.append(" Revision: ");
270 >    // If there's no SVN revision, just call this the RELEASE revision.
271 >    if (!svnrev.empty()) {
272 >      version.append(svnrev);
273 >    } else {
274 >      version.append("RELEASE");
275 >    }
276 >  
277 > #ifdef IS_MPI            
278 >    const int masterNode = 0;
279 >    if (worldRank == masterNode) {
280 > #endif
281 >
282 >      std::ifstream mdFile_;
283 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
284 >      
285 >      if (mdFile_.fail()) {
286 >        sprintf(painCave.errMsg,
287 >                "SimCreator: Cannot open file: %s\n",
288 >                mdFileName.c_str());
289 >        painCave.isFatal = 1;
290 >        simError();
291 >      }
292 >
293 >      mdFile_.getline(buffer, bufferSize);
294 >      ++lineNo;
295 >      std::string line = trimLeftCopy(buffer);
296 >      i = CaseInsensitiveFind(line, "<OpenMD");
297 >      if (static_cast<size_t>(i) == string::npos) {
298 >        // try the older file strings to see if that works:
299 >        i = CaseInsensitiveFind(line, "<OOPSE");
300 >      }
301 >      
302 >      if (static_cast<size_t>(i) == string::npos) {
303 >        // still no luck!
304 >        sprintf(painCave.errMsg,
305 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
306 >                mdFileName.c_str());
307 >        painCave.isFatal = 1;
308 >        simError();
309 >      }
310 >      
311 >      // found the correct opening string, now try to get the file
312 >      // format version number.
313 >
314 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
315 >      std::string fileType = tokenizer.nextToken();
316 >      toUpper(fileType);
317 >
318 >      mdFileVersion = 0;
319 >
320 >      if (fileType == "OPENMD") {
321 >        while (tokenizer.hasMoreTokens()) {
322 >          std::string token(tokenizer.nextToken());
323 >          toUpper(token);
324 >          if (token == "VERSION") {
325 >            mdFileVersion = tokenizer.nextTokenAsInt();
326 >            break;
327 >          }
328 >        }
329 >      }
330 >            
331 >      //scan through the input stream and find MetaData tag        
332 >      while(mdFile_.getline(buffer, bufferSize)) {
333 >        ++lineNo;
334 >        
335 >        std::string line = trimLeftCopy(buffer);
336 >        if (metaDataBlockStart == -1) {
337 >          i = CaseInsensitiveFind(line, "<MetaData>");
338 >          if (i != string::npos) {
339 >            metaDataBlockStart = lineNo;
340 >            mdOffset = mdFile_.tellg();
341 >          }
342 >        } else {
343 >          i = CaseInsensitiveFind(line, "</MetaData>");
344 >          if (i != string::npos) {
345 >            metaDataBlockEnd = lineNo;
346 >          }
347 >        }
348 >      }
349 >
350 >      if (metaDataBlockStart == -1) {
351 >        sprintf(painCave.errMsg,
352 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
353 >                mdFileName.c_str());
354 >        painCave.isFatal = 1;
355 >        simError();
356 >      }
357 >      if (metaDataBlockEnd == -1) {
358 >        sprintf(painCave.errMsg,
359 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
360 >                mdFileName.c_str());
361 >        painCave.isFatal = 1;
362 >        simError();
363 >      }
364 >        
365 >      mdFile_.clear();
366 >      mdFile_.seekg(0);
367 >      mdFile_.seekg(mdOffset);
368 >
369 >      mdRawData.clear();
370 >
371 >      bool foundVersion = false;
372 >
373 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
374 >        mdFile_.getline(buffer, bufferSize);
375 >        std::string line = trimLeftCopy(buffer);
376 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
377 >        if (static_cast<size_t>(j) != string::npos) {
378 >          foundVersion = true;
379 >          mdRawData += version;
380 >        } else {
381 >          mdRawData += buffer;
382 >        }
383 >        mdRawData += "\n";
384 >      }
385 >      
386 >      if (!foundVersion) mdRawData += version + "\n";
387 >      
388 >      mdFile_.close();
389 >
390 > #ifdef IS_MPI
391 >    }
392 > #endif
393 >
394 >    std::stringstream rawMetaDataStream(mdRawData);
395 >
396 >    //parse meta-data file
397 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
398 >                                   metaDataBlockStart + 1);
399 >    
400 >    //create the force field
401 >    ForceField * ff = new ForceField(simParams->getForceField());
402 >
403 >    if (ff == NULL) {
404 >      sprintf(painCave.errMsg,
405 >              "ForceField Factory can not create %s force field\n",
406 >              simParams->getForceField().c_str());
407 >      painCave.isFatal = 1;
408 >      simError();
409 >    }
410 >    
411 >    if (simParams->haveForceFieldFileName()) {
412 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
413 >    }
414 >    
415 >    std::string forcefieldFileName;
416 >    forcefieldFileName = ff->getForceFieldFileName();
417 >    
418 >    if (simParams->haveForceFieldVariant()) {
419 >      //If the force field has variant, the variant force field name will be
420 >      //Base.variant.frc. For exampel EAM.u6.frc
421 >      
422 >      std::string variant = simParams->getForceFieldVariant();
423 >      
424 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
425 >      variant = "." + variant;
426 >      if (pos != std::string::npos) {
427 >        forcefieldFileName.insert(pos, variant);
428 >      } else {
429 >        //If the default force field file name does not containt .frc suffix, just append the .variant
430 >        forcefieldFileName.append(variant);
431 >      }
432 >    }
433 >    
434 >    ff->parse(forcefieldFileName);
435 >    //create SimInfo
436 >    SimInfo * info = new SimInfo(ff, simParams);
437 >
438 >    info->setRawMetaData(mdRawData);
439 >    
440 >    //gather parameters (SimCreator only retrieves part of the
441 >    //parameters)
442 >    gatherParameters(info, mdFileName);
443 >    
444 >    //divide the molecules and determine the global index of molecules
445 > #ifdef IS_MPI
446 >    divideMolecules(info);
447 > #endif
448 >    
449 >    //create the molecules
450 >    createMolecules(info);
451 >    
452 >    //find the storage layout
453 >
454 >    int storageLayout = computeStorageLayout(info);
455 >
456 >    //allocate memory for DataStorage(circular reference, need to
457 >    //break it)
458 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
459 >    
460 >    //set the global index of atoms, rigidbodies and cutoffgroups
461 >    //(only need to be set once, the global index will never change
462 >    //again). Local indices of atoms and rigidbodies are already set
463 >    //by MoleculeCreator class which actually delegates the
464 >    //responsibility to LocalIndexManager.
465 >    setGlobalIndex(info);
466 >    
467 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
468 >    //method, at that point atoms don't have the global index yet
469 >    //(their global index are all initialized to -1).  Therefore we
470 >    //have to call addInteractionPairs explicitly here. A way to work
471 >    //around is that we can determine the beginning global indices of
472 >    //atoms before they get created.
473 >    SimInfo::MoleculeIterator mi;
474 >    Molecule* mol;
475 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
476 >      info->addInteractionPairs(mol);
477 >    }
478 >    
479 >    if (loadInitCoords)
480 >      loadCoordinates(info, mdFileName);    
481 >    return info;
482 >  }
483 >  
484 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
485 >    
486 >    //figure out the output file names
487 >    std::string prefix;
488 >    
489 > #ifdef IS_MPI
490 >    
491 >    if (worldRank == 0) {
492 > #endif // is_mpi
493 >      Globals * simParams = info->getSimParams();
494 >      if (simParams->haveFinalConfig()) {
495 >        prefix = getPrefix(simParams->getFinalConfig());
496 >      } else {
497 >        prefix = getPrefix(mdfile);
498 >      }
499 >      
500 >      info->setFinalConfigFileName(prefix + ".eor");
501 >      info->setDumpFileName(prefix + ".dump");
502 >      info->setStatFileName(prefix + ".stat");
503 >      info->setRestFileName(prefix + ".zang");
504 >      
505 > #ifdef IS_MPI
506 >      
507 >    }
508 >    
509 > #endif
510 >    
511 >  }
512 >  
513 > #ifdef IS_MPI
514 >  void SimCreator::divideMolecules(SimInfo *info) {
515 >    RealType a;
516 >    int nProcessors;
517 >    std::vector<int> atomsPerProc;
518 >    int nGlobalMols = info->getNGlobalMolecules();
519 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
520 >                                                    // error
521 >                                                    // condition:
522 >    
523 >    nProcessors = MPI::COMM_WORLD.Get_size();
524 >    
525 >    if (nProcessors > nGlobalMols) {
526 >      sprintf(painCave.errMsg,
527 >              "nProcessors (%d) > nMol (%d)\n"
528 >              "\tThe number of processors is larger than\n"
529 >              "\tthe number of molecules.  This will not result in a \n"
530 >              "\tusable division of atoms for force decomposition.\n"
531 >              "\tEither try a smaller number of processors, or run the\n"
532 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
533 >              nGlobalMols);
534 >      
535 >      painCave.isFatal = 1;
536 >      simError();
537 >    }
538 >    
539 >    Globals * simParams = info->getSimParams();
540 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
541 >                             //random number generator
542 >    if (simParams->haveSeed()) {
543 >      int seedValue = simParams->getSeed();
544 >      myRandom = new SeqRandNumGen(seedValue);
545 >    }else {
546 >      myRandom = new SeqRandNumGen();
547 >    }  
548 >    
549 >    
550 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
551 >    
552 >    //initialize atomsPerProc
553 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
554 >    
555 >    if (worldRank == 0) {
556 >      RealType numerator = info->getNGlobalAtoms();
557 >      RealType denominator = nProcessors;
558 >      RealType precast = numerator / denominator;
559 >      int nTarget = (int)(precast + 0.5);
560 >      
561 >      for(int i = 0; i < nGlobalMols; i++) {
562 >
563 >        int done = 0;
564 >        int loops = 0;
565 >        
566 >        while (!done) {
567 >          loops++;
568 >          
569 >          // Pick a processor at random
570 >          
571 >          int which_proc = (int) (myRandom->rand() * nProcessors);
572 >          
573 >          //get the molecule stamp first
574 >          int stampId = info->getMoleculeStampId(i);
575 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
576 >          
577 >          // How many atoms does this processor have so far?
578 >          int old_atoms = atomsPerProc[which_proc];
579 >          int add_atoms = moleculeStamp->getNAtoms();
580 >          int new_atoms = old_atoms + add_atoms;
581 >          
582 >          // If we've been through this loop too many times, we need
583 >          // to just give up and assign the molecule to this processor
584 >          // and be done with it.
585 >          
586 >          if (loops > 100) {
587 >
588 >            sprintf(painCave.errMsg,
589 >                    "There have been 100 attempts to assign molecule %d to an\n"
590 >                    "\tunderworked processor, but there's no good place to\n"
591 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
592 >                    i, which_proc);
593 >          
594 >            painCave.isFatal = 0;
595 >            painCave.severity = OPENMD_INFO;
596 >            simError();
597 >            
598 >            molToProcMap[i] = which_proc;
599 >            atomsPerProc[which_proc] += add_atoms;
600 >            
601 >            done = 1;
602 >            continue;
603 >          }
604 >          
605 >          // If we can add this molecule to this processor without sending
606 >          // it above nTarget, then go ahead and do it:
607 >          
608 >          if (new_atoms <= nTarget) {
609 >            molToProcMap[i] = which_proc;
610 >            atomsPerProc[which_proc] += add_atoms;
611 >            
612 >            done = 1;
613 >            continue;
614 >          }
615 >          
616 >          // The only situation left is when new_atoms > nTarget.  We
617 >          // want to accept this with some probability that dies off the
618 >          // farther we are from nTarget
619 >          
620 >          // roughly:  x = new_atoms - nTarget
621 >          //           Pacc(x) = exp(- a * x)
622 >          // where a = penalty / (average atoms per molecule)
623 >          
624 >          RealType x = (RealType)(new_atoms - nTarget);
625 >          RealType y = myRandom->rand();
626 >          
627 >          if (y < exp(- a * x)) {
628 >            molToProcMap[i] = which_proc;
629 >            atomsPerProc[which_proc] += add_atoms;
630 >            
631 >            done = 1;
632 >            continue;
633 >          } else {
634 >            continue;
635 >          }
636 >        }
637 >      }
638 >      
639 >      delete myRandom;
640 >
641 >      // Spray out this nonsense to all other processors:
642 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
643 >    } else {
644 >      
645 >      // Listen to your marching orders from processor 0:
646 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
647 >
648 >    }
649 >    
650 >    info->setMolToProcMap(molToProcMap);
651 >    sprintf(checkPointMsg,
652 >            "Successfully divided the molecules among the processors.\n");
653 >    errorCheckPoint();
654 >  }
655 >  
656 > #endif
657 >  
658 >  void SimCreator::createMolecules(SimInfo *info) {
659 >    MoleculeCreator molCreator;
660 >    int stampId;
661 >    
662 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
663 >      
664 > #ifdef IS_MPI
665 >      
666 >      if (info->getMolToProc(i) == worldRank) {
667 > #endif
668 >        
669 >        stampId = info->getMoleculeStampId(i);
670 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
671 >                                                   info->getMoleculeStamp(stampId),
672 >                                                   stampId, i,
673 >                                                   info->getLocalIndexManager());
674 >        
675 >        info->addMolecule(mol);
676 >        
677 > #ifdef IS_MPI
678 >        
679 >      }
680 >      
681 > #endif
682 >      
683 >    } //end for(int i=0)  
684 >  }
685 >    
686 >  int SimCreator::computeStorageLayout(SimInfo* info) {
687 >
688 >    Globals* simParams = info->getSimParams();
689 >    int nRigidBodies = info->getNGlobalRigidBodies();
690 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
691 >    set<AtomType*>::iterator i;
692 >    bool hasDirectionalAtoms = false;
693 >    bool hasFixedCharge = false;
694 >    bool hasDipoles = false;    
695 >    bool hasQuadrupoles = false;    
696 >    bool hasPolarizable = false;    
697 >    bool hasFluctuatingCharge = false;    
698 >    bool hasMetallic = false;
699 >    int storageLayout = 0;
700 >    storageLayout |= DataStorage::dslPosition;
701 >    storageLayout |= DataStorage::dslVelocity;
702 >    storageLayout |= DataStorage::dslForce;
703 >
704 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
705 >
706 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
707 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
708 >      EAMAdapter ea = EAMAdapter( (*i) );
709 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
710 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
711 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
712 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
713 >
714 >      if (da.isDirectional()){
715 >        hasDirectionalAtoms = true;
716 >      }
717 >      if (ma.isDipole()){
718 >        hasDipoles = true;
719 >      }
720 >      if (ma.isQuadrupole()){
721 >        hasQuadrupoles = true;
722 >      }
723 >      if (ea.isEAM() || sca.isSuttonChen()){
724 >        hasMetallic = true;
725 >      }
726 >      if ( fca.isFixedCharge() ){
727 >        hasFixedCharge = true;
728 >      }
729 >      if ( fqa.isFluctuatingCharge() ){
730 >        hasFluctuatingCharge = true;
731 >      }
732 >      if ( pa.isPolarizable() ){
733 >        hasPolarizable = true;
734 >      }
735 >    }
736 >    
737 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
738 >      storageLayout |= DataStorage::dslAmat;
739 >      if(storageLayout & DataStorage::dslVelocity) {
740 >        storageLayout |= DataStorage::dslAngularMomentum;
741 >      }
742 >      if (storageLayout & DataStorage::dslForce) {
743 >        storageLayout |= DataStorage::dslTorque;
744 >      }
745 >    }
746 >    if (hasDipoles) {
747 >      storageLayout |= DataStorage::dslDipole;
748 >    }
749 >    if (hasQuadrupoles) {
750 >      storageLayout |= DataStorage::dslQuadrupole;
751 >    }
752 >    if (hasFixedCharge || hasFluctuatingCharge) {
753 >      storageLayout |= DataStorage::dslSkippedCharge;
754 >    }
755 >    if (hasMetallic) {
756 >      storageLayout |= DataStorage::dslDensity;
757 >      storageLayout |= DataStorage::dslFunctional;
758 >      storageLayout |= DataStorage::dslFunctionalDerivative;
759 >    }
760 >    if (hasPolarizable) {
761 >      storageLayout |= DataStorage::dslElectricField;
762 >    }
763 >    if (hasFluctuatingCharge){
764 >      storageLayout |= DataStorage::dslFlucQPosition;
765 >      if(storageLayout & DataStorage::dslVelocity) {
766 >        storageLayout |= DataStorage::dslFlucQVelocity;
767 >      }
768 >      if (storageLayout & DataStorage::dslForce) {
769 >        storageLayout |= DataStorage::dslFlucQForce;
770 >      }
771 >    }
772 >    
773 >    // if the user has asked for them, make sure we've got the memory for the
774 >    // objects defined.
775 >
776 >    if (simParams->getOutputParticlePotential()) {
777 >      storageLayout |= DataStorage::dslParticlePot;
778 >    }
779 >
780 >    if (simParams->havePrintHeatFlux()) {
781 >      if (simParams->getPrintHeatFlux()) {
782 >        storageLayout |= DataStorage::dslParticlePot;
783 >      }
784 >    }
785 >
786 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
787 >      storageLayout |= DataStorage::dslElectricField;
788 >    }
789 >
790 >    if (simParams->getOutputFluctuatingCharges()) {
791 >      storageLayout |= DataStorage::dslFlucQPosition;
792 >      storageLayout |= DataStorage::dslFlucQVelocity;
793 >      storageLayout |= DataStorage::dslFlucQForce;
794 >    }
795 >
796 >    info->setStorageLayout(storageLayout);
797 >
798 >    return storageLayout;
799 >  }
800 >
801 >  void SimCreator::setGlobalIndex(SimInfo *info) {
802 >    SimInfo::MoleculeIterator mi;
803 >    Molecule::AtomIterator ai;
804 >    Molecule::RigidBodyIterator ri;
805 >    Molecule::CutoffGroupIterator ci;
806 >    Molecule::IntegrableObjectIterator  ioi;
807 >    Molecule * mol;
808 >    Atom * atom;
809 >    RigidBody * rb;
810 >    CutoffGroup * cg;
811 >    int beginAtomIndex;
812 >    int beginRigidBodyIndex;
813 >    int beginCutoffGroupIndex;
814 >    int nGlobalAtoms = info->getNGlobalAtoms();
815 >    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
816 >    
817 >    beginAtomIndex = 0;
818 >    //rigidbody's index begins right after atom's
819 >    beginRigidBodyIndex = info->getNGlobalAtoms();
820 >    beginCutoffGroupIndex = 0;
821 >
822 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
823 >      
824 > #ifdef IS_MPI      
825 >      if (info->getMolToProc(i) == worldRank) {
826 > #endif        
827 >        // stuff to do if I own this molecule
828 >        mol = info->getMoleculeByGlobalIndex(i);
829 >
830 >        //local index(index in DataStorge) of atom is important
831 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
832 >          atom->setGlobalIndex(beginAtomIndex++);
833 >        }
834 >        
835 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
836 >            rb = mol->nextRigidBody(ri)) {
837 >          rb->setGlobalIndex(beginRigidBodyIndex++);
838 >        }
839 >        
840 >        //local index of cutoff group is trivial, it only depends on
841 >        //the order of travesing
842 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
843 >            cg = mol->nextCutoffGroup(ci)) {
844 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
845 >        }        
846 >        
847 > #ifdef IS_MPI        
848 >      }  else {
849 >
850 >        // stuff to do if I don't own this molecule
851 >        
852 >        int stampId = info->getMoleculeStampId(i);
853 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
854 >
855 >        beginAtomIndex += stamp->getNAtoms();
856 >        beginRigidBodyIndex += stamp->getNRigidBodies();
857 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
858 >      }
859 > #endif          
860 >
861 >    } //end for(int i=0)  
862 >
863 >    //fill globalGroupMembership
864 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
865 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
866 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
867 >        
868 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
869 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
870 >        }
871 >        
872 >      }      
873 >    }
874 >  
875 > #ifdef IS_MPI    
876 >    // Since the globalGroupMembership has been zero filled and we've only
877 >    // poked values into the atoms we know, we can do an Allreduce
878 >    // to get the full globalGroupMembership array (We think).
879 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
880 >    // docs said we could.
881 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
882 >    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
883 >                              &tmpGroupMembership[0], nGlobalAtoms,
884 >                              MPI::INT, MPI::SUM);
885 >    info->setGlobalGroupMembership(tmpGroupMembership);
886 > #else
887 >    info->setGlobalGroupMembership(globalGroupMembership);
888 > #endif
889 >    
890 >    //fill molMembership
891 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
892 >                                         info->getNGlobalRigidBodies(), 0);
893 >    
894 >    for(mol = info->beginMolecule(mi); mol != NULL;
895 >        mol = info->nextMolecule(mi)) {
896 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
897 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
898 >      }
899 >      for (rb = mol->beginRigidBody(ri); rb != NULL;
900 >           rb = mol->nextRigidBody(ri)) {
901 >        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
902 >      }
903 >    }
904 >    
905 > #ifdef IS_MPI
906 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
907 >                                      info->getNGlobalRigidBodies(), 0);
908 >    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
909 >                              nGlobalAtoms + nGlobalRigidBodies,
910 >                              MPI::INT, MPI::SUM);
911 >    
912 >    info->setGlobalMolMembership(tmpMolMembership);
913 > #else
914 >    info->setGlobalMolMembership(globalMolMembership);
915 > #endif
916 >
917 >    // nIOPerMol holds the number of integrable objects per molecule
918 >    // here the molecules are listed by their global indices.
919 >
920 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
921 >    for (mol = info->beginMolecule(mi); mol != NULL;
922 >         mol = info->nextMolecule(mi)) {
923 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
924 >    }
925 >    
926 > #ifdef IS_MPI
927 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
928 >    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
929 >                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
930 > #else
931 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
932 > #endif    
933 >
934 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
935 >    
936 >    int startingIndex = 0;
937 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
938 >      startingIOIndexForMol[i] = startingIndex;
939 >      startingIndex += numIntegrableObjectsPerMol[i];
940 >    }
941 >    
942 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
943 >    for (mol = info->beginMolecule(mi); mol != NULL;
944 >         mol = info->nextMolecule(mi)) {
945 >      int myGlobalIndex = mol->getGlobalIndex();
946 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
947 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
948 >           sd = mol->nextIntegrableObject(ioi)) {
949 >        sd->setGlobalIntegrableObjectIndex(globalIO);
950 >        IOIndexToIntegrableObject[globalIO] = sd;
951 >        globalIO++;
952 >      }
953 >    }
954 >      
955 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
956 >    
957 >  }
958 >  
959 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
960 >    
961 >    DumpReader reader(info, mdFileName);
962 >    int nframes = reader.getNFrames();
963 >    
964 >    if (nframes > 0) {
965 >      reader.readFrame(nframes - 1);
966 >    } else {
967 >      //invalid initial coordinate file
968 >      sprintf(painCave.errMsg,
969 >              "Initial configuration file %s should at least contain one frame\n",
970 >              mdFileName.c_str());
971 >      painCave.isFatal = 1;
972 >      simError();
973 >    }
974 >    //copy the current snapshot to previous snapshot
975 >    info->getSnapshotManager()->advance();
976 >  }
977 >  
978 > } //end namespace OpenMD
979 >
980 >

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 393 by tim, Wed Mar 2 16:28:20 2005 UTC vs.
Revision 1938 by gezelter, Thu Oct 31 15:32:17 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines