ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 392 by tim, Wed Mar 2 15:36:14 2005 UTC vs.
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 <
61 < #ifdef IS_MPI
62 < #include "io/mpiBASS.h"
63 < #include "math/ParallelRandNumGen.hpp"
64 < #endif
65 <
66 < namespace oopse {
67 <
68 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
69 <
70 < #ifdef IS_MPI
71 <
72 <    if (worldRank == 0) {
73 < #endif // is_mpi
74 <
75 <        simParams->initalize();
76 <        set_interface_stamps(stamps, simParams);
77 <
78 < #ifdef IS_MPI
79 <
80 <        mpiEventInit();
81 <
82 < #endif
83 <
84 <        yacc_BASS(mdFileName.c_str());
85 <
86 < #ifdef IS_MPI
87 <
88 <        throwMPIEvent(NULL);
89 <    } else {
90 <        set_interface_stamps(stamps, simParams);
91 <        mpiEventInit();
92 <        MPIcheckPoint();
93 <        mpiEventLoop();
94 <    }
95 <
96 < #endif
97 <
98 < }
99 <
100 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
101 <    
102 <    MakeStamps * stamps = new MakeStamps();
103 <
104 <    Globals * simParams = new Globals();
105 <
106 <    //parse meta-data file
107 <    parseFile(mdFileName, stamps, simParams);
108 <
109 <    //create the force field
110 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
111 <                          simParams->getForceField());
112 <    
113 <    if (ff == NULL) {
114 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
115 <                simParams->getForceField());
116 <        painCave.isFatal = 1;
117 <        simError();
118 <    }
119 <
120 <    if (simParams->haveForceFieldFileName()) {
121 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
122 <    }
123 <    
124 <    std::string forcefieldFileName;
125 <    forcefieldFileName = ff->getForceFieldFileName();
126 <
127 <    if (simParams->haveForceFieldVariant()) {
128 <        //If the force field has variant, the variant force field name will be
129 <        //Base.variant.frc. For exampel EAM.u6.frc
130 <        
131 <        std::string variant = simParams->getForceFieldVariant();
132 <
133 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
134 <        variant = "." + variant;
135 <        if (pos != std::string::npos) {
136 <            forcefieldFileName.insert(pos, variant);
137 <        } else {
138 <            //If the default force field file name does not containt .frc suffix, just append the .variant
139 <            forcefieldFileName.append(variant);
140 <        }
141 <    }
142 <    
143 <    ff->parse(forcefieldFileName);
144 <    
145 <    //extract the molecule stamps
146 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
147 <    compList(stamps, simParams, moleculeStampPairs);
148 <
149 <    //create SimInfo
150 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
151 <
152 <    //gather parameters (SimCreator only retrieves part of the parameters)
153 <    gatherParameters(info, mdFileName);
154 <
155 <    //divide the molecules and determine the global index of molecules
156 < #ifdef IS_MPI
157 <    divideMolecules(info);
158 < #endif
159 <
160 <    //create the molecules
161 <    createMolecules(info);
162 <
163 <
164 <    //allocate memory for DataStorage(circular reference, need to break it)
165 <    info->setSnapshotManager(new SimSnapshotManager(info));
166 <    
167 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
168 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
169 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
170 <    setGlobalIndex(info);
171 <
172 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
173 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
174 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
175 <    //we can determine the beginning global indices of atoms before they get created.
176 <    SimInfo::MoleculeIterator mi;
177 <    Molecule* mol;
178 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
179 <        info->addExcludePairs(mol);
180 <    }
181 <    
182 <
183 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
184 <    //eta, chi for NPT integrator)
185 <    if (loadInitCoords)
186 <        loadCoordinates(info);    
187 <    
188 <    return info;
189 < }
190 <
191 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
192 <
193 <    //figure out the ouput file names
194 <    std::string prefix;
195 <
196 < #ifdef IS_MPI
197 <
198 <    if (worldRank == 0) {
199 < #endif // is_mpi
200 <        Globals * simParams = info->getSimParams();
201 <        if (simParams->haveFinalConfig()) {
202 <            prefix = getPrefix(simParams->getFinalConfig());
203 <        } else {
204 <            prefix = getPrefix(mdfile);
205 <        }
206 <
207 <        info->setFinalConfigFileName(prefix + ".eor");
208 <        info->setDumpFileName(prefix + ".dump");
209 <        info->setStatFileName(prefix + ".stat");
210 <
211 < #ifdef IS_MPI
212 <
213 <    }
214 <
215 < #endif
216 <
217 < }
218 <
219 < #ifdef IS_MPI
220 < void SimCreator::divideMolecules(SimInfo *info) {
221 <    double numerator;
222 <    double denominator;
223 <    double precast;
224 <    double x;
225 <    double y;
226 <    double a;
227 <    int old_atoms;
228 <    int add_atoms;
229 <    int new_atoms;
230 <    int nTarget;
231 <    int done;
232 <    int i;
233 <    int j;
234 <    int loops;
235 <    int which_proc;
236 <    int nProcessors;
237 <    std::vector<int> atomsPerProc;
238 <    int nGlobalMols = info->getNGlobalMolecules();
239 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
240 <    
241 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
242 <
243 <    if (nProcessors > nGlobalMols) {
244 <        sprintf(painCave.errMsg,
245 <                "nProcessors (%d) > nMol (%d)\n"
246 <                    "\tThe number of processors is larger than\n"
247 <                    "\tthe number of molecules.  This will not result in a \n"
248 <                    "\tusable division of atoms for force decomposition.\n"
249 <                    "\tEither try a smaller number of processors, or run the\n"
250 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
251 <
252 <        painCave.isFatal = 1;
253 <        simError();
254 <    }
255 <
256 <    int seedValue;
257 <    Globals * simParams = info->getSimParams();
258 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
259 <    if (simParams->haveSeed()) {
260 <        seedValue = simParams->getSeed();
261 <        myRandom = new MTRand(seedValue);
262 <    }else {
263 <        myRandom = new MTRand();
264 <    }  
265 <
266 <
267 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
268 <
269 <    //initialize atomsPerProc
270 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
271 <
272 <    if (worldRank == 0) {
273 <        numerator = info->getNGlobalAtoms();
274 <        denominator = nProcessors;
275 <        precast = numerator / denominator;
276 <        nTarget = (int)(precast + 0.5);
277 <
278 <        for(i = 0; i < nGlobalMols; i++) {
279 <            done = 0;
280 <            loops = 0;
281 <
282 <            while (!done) {
283 <                loops++;
284 <
285 <                // Pick a processor at random
286 <
287 <                which_proc = (int) (myRandom->rand() * nProcessors);
288 <
289 <                //get the molecule stamp first
290 <                int stampId = info->getMoleculeStampId(i);
291 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
292 <
293 <                // How many atoms does this processor have so far?
294 <                old_atoms = atomsPerProc[which_proc];
295 <                add_atoms = moleculeStamp->getNAtoms();
296 <                new_atoms = old_atoms + add_atoms;
297 <
298 <                // If we've been through this loop too many times, we need
299 <                // to just give up and assign the molecule to this processor
300 <                // and be done with it.
301 <
302 <                if (loops > 100) {
303 <                    sprintf(painCave.errMsg,
304 <                            "I've tried 100 times to assign molecule %d to a "
305 <                                " processor, but can't find a good spot.\n"
306 <                                "I'm assigning it at random to processor %d.\n",
307 <                            i, which_proc);
308 <
309 <                    painCave.isFatal = 0;
310 <                    simError();
311 <
312 <                    molToProcMap[i] = which_proc;
313 <                    atomsPerProc[which_proc] += add_atoms;
314 <
315 <                    done = 1;
316 <                    continue;
317 <                }
318 <
319 <                // If we can add this molecule to this processor without sending
320 <                // it above nTarget, then go ahead and do it:
321 <
322 <                if (new_atoms <= nTarget) {
323 <                    molToProcMap[i] = which_proc;
324 <                    atomsPerProc[which_proc] += add_atoms;
325 <
326 <                    done = 1;
327 <                    continue;
328 <                }
329 <
330 <                // The only situation left is when new_atoms > nTarget.  We
331 <                // want to accept this with some probability that dies off the
332 <                // farther we are from nTarget
333 <
334 <                // roughly:  x = new_atoms - nTarget
335 <                //           Pacc(x) = exp(- a * x)
336 <                // where a = penalty / (average atoms per molecule)
337 <
338 <                x = (double)(new_atoms - nTarget);
339 <                y = myRandom->rand();
340 <
341 <                if (y < exp(- a * x)) {
342 <                    molToProcMap[i] = which_proc;
343 <                    atomsPerProc[which_proc] += add_atoms;
344 <
345 <                    done = 1;
346 <                    continue;
347 <                } else {
348 <                    continue;
349 <                }
350 <            }
351 <        }
352 <
353 <        delete myRandom;
354 <        
355 <        // Spray out this nonsense to all other processors:
356 <
357 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
358 <    } else {
359 <
360 <        // Listen to your marching orders from processor 0:
361 <
362 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
363 <    }
364 <
365 <    info->setMolToProcMap(molToProcMap);
366 <    sprintf(checkPointMsg,
367 <            "Successfully divided the molecules among the processors.\n");
368 <    MPIcheckPoint();
369 < }
370 <
371 < #endif
372 <
373 < void SimCreator::createMolecules(SimInfo *info) {
374 <    MoleculeCreator molCreator;
375 <    int stampId;
376 <
377 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
378 <
379 < #ifdef IS_MPI
380 <
381 <        if (info->getMolToProc(i) == worldRank) {
382 < #endif
383 <
384 <            stampId = info->getMoleculeStampId(i);
385 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
386 <                                                                                    stampId, i, info->getLocalIndexManager());
387 <
388 <            info->addMolecule(mol);
389 <
390 < #ifdef IS_MPI
391 <
392 <        }
393 <
394 < #endif
395 <
396 <    } //end for(int i=0)  
397 < }
398 <
399 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
400 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
401 <    int i;
402 <    char * id;
403 <    MoleculeStamp * currentStamp;
404 <    Component** the_components = simParams->getComponents();
405 <    int n_components = simParams->getNComponents();
406 <
407 <    if (!simParams->haveNMol()) {
408 <        // we don't have the total number of molecules, so we assume it is
409 <        // given in each component
410 <
411 <        for(i = 0; i < n_components; i++) {
412 <            if (!the_components[i]->haveNMol()) {
413 <                // we have a problem
414 <                sprintf(painCave.errMsg,
415 <                        "SimCreator Error. No global NMol or component NMol given.\n"
416 <                            "\tCannot calculate the number of atoms.\n");
417 <
418 <                painCave.isFatal = 1;
419 <                simError();
420 <            }
421 <
422 <            id = the_components[i]->getType();
423 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
424 <
425 <            if (currentStamp == NULL) {
426 <                sprintf(painCave.errMsg,
427 <                        "SimCreator error: Component \"%s\" was not found in the "
428 <                            "list of declared molecules\n", id);
429 <
430 <                painCave.isFatal = 1;
431 <                simError();
432 <            }
433 <
434 <            moleculeStampPairs.push_back(
435 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
436 <        } //end for (i = 0; i < n_components; i++)
437 <    } else {
438 <        sprintf(painCave.errMsg, "SimSetup error.\n"
439 <                                     "\tSorry, the ability to specify total"
440 <                                     " nMols and then give molfractions in the components\n"
441 <                                     "\tis not currently supported."
442 <                                     " Please give nMol in the components.\n");
443 <
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <
448 < #ifdef IS_MPI
449 <
450 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
451 <    MPIcheckPoint();
452 <
453 < #endif // is_mpi
454 <
455 < }
456 <
457 < void SimCreator::setGlobalIndex(SimInfo *info) {
458 <    SimInfo::MoleculeIterator mi;
459 <    Molecule::AtomIterator ai;
460 <    Molecule::RigidBodyIterator ri;
461 <    Molecule::CutoffGroupIterator ci;
462 <    Molecule * mol;
463 <    Atom * atom;
464 <    RigidBody * rb;
465 <    CutoffGroup * cg;
466 <    int beginAtomIndex;
467 <    int beginRigidBodyIndex;
468 <    int beginCutoffGroupIndex;
469 <    int nGlobalAtoms = info->getNGlobalAtoms();
470 <    
471 < #ifndef IS_MPI
472 <
473 <    beginAtomIndex = 0;
474 <    beginRigidBodyIndex = 0;
475 <    beginCutoffGroupIndex = 0;
476 <
477 < #else
478 <
479 <    int nproc;
480 <    int myNode;
481 <
482 <    myNode = worldRank;
483 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
484 <
485 <    std::vector < int > tmpAtomsInProc(nproc, 0);
486 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
487 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
488 <    std::vector < int > NumAtomsInProc(nproc, 0);
489 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
490 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
491 <
492 <    tmpAtomsInProc[myNode] = info->getNAtoms();
493 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
494 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
495 <
496 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
497 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
498 <                  MPI_SUM, MPI_COMM_WORLD);
499 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
500 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
501 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
502 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
503 <
504 <    beginAtomIndex = 0;
505 <    beginRigidBodyIndex = 0;
506 <    beginCutoffGroupIndex = 0;
507 <
508 <    for(int i = 0; i < myNode; i++) {
509 <        beginAtomIndex += NumAtomsInProc[i];
510 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
511 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
512 <    }
513 <
514 < #endif
515 <
516 <    //rigidbody's index begins right after atom's
517 <    beginRigidBodyIndex += info->getNGlobalAtoms();
518 <
519 <    for(mol = info->beginMolecule(mi); mol != NULL;
520 <        mol = info->nextMolecule(mi)) {
521 <
522 <        //local index(index in DataStorge) of atom is important
523 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
524 <            atom->setGlobalIndex(beginAtomIndex++);
525 <        }
526 <
527 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
528 <            rb = mol->nextRigidBody(ri)) {
529 <            rb->setGlobalIndex(beginRigidBodyIndex++);
530 <        }
531 <
532 <        //local index of cutoff group is trivial, it only depends on the order of travesing
533 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
534 <            cg = mol->nextCutoffGroup(ci)) {
535 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
536 <        }
537 <    }
538 <
539 <    //fill globalGroupMembership
540 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
541 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
542 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
543 <
544 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
545 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
546 <            }
547 <
548 <        }      
549 <    }
550 <
551 < #ifdef IS_MPI    
552 <    // Since the globalGroupMembership has been zero filled and we've only
553 <    // poked values into the atoms we know, we can do an Allreduce
554 <    // to get the full globalGroupMembership array (We think).
555 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
556 <    // docs said we could.
557 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
558 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
559 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
560 <     info->setGlobalGroupMembership(tmpGroupMembership);
561 < #else
562 <    info->setGlobalGroupMembership(globalGroupMembership);
563 < #endif
564 <
565 <    //fill molMembership
566 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
567 <    
568 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
569 <
570 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
571 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
572 <        }
573 <    }
574 <
575 < #ifdef IS_MPI
576 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
577 <
578 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
579 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
580 <    
581 <    info->setGlobalMolMembership(tmpMolMembership);
582 < #else
583 <    info->setGlobalMolMembership(globalMolMembership);
584 < #endif
585 <
586 < }
587 <
588 < void SimCreator::loadCoordinates(SimInfo* info) {
589 <    Globals* simParams;
590 <    simParams = info->getSimParams();
591 <    
592 <    if (!simParams->haveInitialConfig()) {
593 <        sprintf(painCave.errMsg,
594 <                "Cannot intialize a simulation without an initial configuration file.\n");
595 <        painCave.isFatal = 1;;
596 <        simError();
597 <    }
598 <        
599 <    DumpReader reader(info, simParams->getInitialConfig());
600 <    int nframes = reader.getNFrames();
601 <
602 <    if (nframes > 0) {
603 <        reader.readFrame(nframes - 1);
604 <    } else {
605 <        //invalid initial coordinate file
606 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
607 <                simParams->getInitialConfig());
608 <        painCave.isFatal = 1;
609 <        simError();
610 <    }
611 <
612 <    //copy the current snapshot to previous snapshot
613 <    info->getSnapshotManager()->advance();
614 < }
615 <
616 < } //end namespace oopse
617 <
618 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimCreator.cpp
44 > * @author tlin
45 > * @date 11/03/2004
46 > * @time 13:51am
47 > * @version 1.0
48 > */
49 > #include <exception>
50 > #include <iostream>
51 > #include <sstream>
52 > #include <string>
53 >
54 > #include "brains/MoleculeCreator.hpp"
55 > #include "brains/SimCreator.hpp"
56 > #include "brains/SimSnapshotManager.hpp"
57 > #include "io/DumpReader.hpp"
58 > #include "UseTheForce/ForceFieldFactory.hpp"
59 > #include "utils/simError.h"
60 > #include "utils/StringUtils.hpp"
61 > #include "math/SeqRandNumGen.hpp"
62 > #include "mdParser/MDLexer.hpp"
63 > #include "mdParser/MDParser.hpp"
64 > #include "mdParser/MDTreeParser.hpp"
65 > #include "mdParser/SimplePreprocessor.hpp"
66 > #include "antlr/ANTLRException.hpp"
67 > #include "antlr/TokenStreamRecognitionException.hpp"
68 > #include "antlr/TokenStreamIOException.hpp"
69 > #include "antlr/TokenStreamException.hpp"
70 > #include "antlr/RecognitionException.hpp"
71 > #include "antlr/CharStreamException.hpp"
72 >
73 > #include "antlr/MismatchedCharException.hpp"
74 > #include "antlr/MismatchedTokenException.hpp"
75 > #include "antlr/NoViableAltForCharException.hpp"
76 > #include "antlr/NoViableAltException.hpp"
77 >
78 > #ifdef IS_MPI
79 > #include "math/ParallelRandNumGen.hpp"
80 > #endif
81 >
82 > namespace oopse {
83 >  
84 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int startOfMetaDataBlock ){
85 >    Globals* simParams = NULL;
86 >    try {
87 >
88 >      // Create a preprocessor that preprocesses md file into an ostringstream
89 >      std::stringstream ppStream;
90 > #ifdef IS_MPI            
91 >      int streamSize;
92 >      const int masterNode = 0;
93 >      int commStatus;
94 >      if (worldRank == masterNode) {
95 > #endif
96 >                
97 >        SimplePreprocessor preprocessor;
98 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
99 >                
100 > #ifdef IS_MPI            
101 >        //brocasting the stream size
102 >        streamSize = ppStream.str().size() +1;
103 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
104 >
105 >        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
106 >            
107 >                
108 >      } else {
109 >        //get stream size
110 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
111 >                
112 >        char* buf = new char[streamSize];
113 >        assert(buf);
114 >                
115 >        //receive file content
116 >        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
117 >                
118 >        ppStream.str(buf);
119 >        delete buf;
120 >
121 >      }
122 > #endif            
123 >      // Create a scanner that reads from the input stream
124 >      MDLexer lexer(ppStream);
125 >      lexer.setFilename(filename);
126 >      lexer.initDeferredLineCount();
127 >    
128 >      // Create a parser that reads from the scanner
129 >      MDParser parser(lexer);
130 >      parser.setFilename(filename);
131 >
132 >      // Create an observer that synchorizes file name change
133 >      FilenameObserver observer;
134 >      observer.setLexer(&lexer);
135 >      observer.setParser(&parser);
136 >      lexer.setObserver(&observer);
137 >    
138 >      antlr::ASTFactory factory;
139 >      parser.initializeASTFactory(factory);
140 >      parser.setASTFactory(&factory);
141 >      parser.mdfile();
142 >
143 >      // Create a tree parser that reads information into Globals
144 >      MDTreeParser treeParser;
145 >      treeParser.initializeASTFactory(factory);
146 >      treeParser.setASTFactory(&factory);
147 >      simParams = treeParser.walkTree(parser.getAST());
148 >    }
149 >
150 >      
151 >    catch(antlr::MismatchedCharException& e) {
152 >      sprintf(painCave.errMsg,
153 >              "parser exception: %s %s:%d:%d\n",
154 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
155 >      painCave.isFatal = 1;
156 >      simError();          
157 >    }
158 >    catch(antlr::MismatchedTokenException &e) {
159 >      sprintf(painCave.errMsg,
160 >              "parser exception: %s %s:%d:%d\n",
161 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
162 >      painCave.isFatal = 1;
163 >      simError();  
164 >    }
165 >    catch(antlr::NoViableAltForCharException &e) {
166 >      sprintf(painCave.errMsg,
167 >              "parser exception: %s %s:%d:%d\n",
168 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
169 >      painCave.isFatal = 1;
170 >      simError();  
171 >    }
172 >    catch(antlr::NoViableAltException &e) {
173 >      sprintf(painCave.errMsg,
174 >              "parser exception: %s %s:%d:%d\n",
175 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
176 >      painCave.isFatal = 1;
177 >      simError();  
178 >    }
179 >      
180 >    catch(antlr::TokenStreamRecognitionException& e) {
181 >      sprintf(painCave.errMsg,
182 >              "parser exception: %s %s:%d:%d\n",
183 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
184 >      painCave.isFatal = 1;
185 >      simError();  
186 >    }
187 >        
188 >    catch(antlr::TokenStreamIOException& e) {
189 >      sprintf(painCave.errMsg,
190 >              "parser exception: %s\n",
191 >              e.getMessage().c_str());
192 >      painCave.isFatal = 1;
193 >      simError();
194 >    }
195 >        
196 >    catch(antlr::TokenStreamException& e) {
197 >      sprintf(painCave.errMsg,
198 >              "parser exception: %s\n",
199 >              e.getMessage().c_str());
200 >      painCave.isFatal = 1;
201 >      simError();
202 >    }        
203 >    catch (antlr::RecognitionException& e) {
204 >      sprintf(painCave.errMsg,
205 >              "parser exception: %s %s:%d:%d\n",
206 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
207 >      painCave.isFatal = 1;
208 >      simError();          
209 >    }
210 >    catch (antlr::CharStreamException& e) {
211 >      sprintf(painCave.errMsg,
212 >              "parser exception: %s\n",
213 >              e.getMessage().c_str());
214 >      painCave.isFatal = 1;
215 >      simError();        
216 >    }
217 >    catch (OOPSEException& e) {
218 >      sprintf(painCave.errMsg,
219 >              "%s\n",
220 >              e.getMessage().c_str());
221 >      painCave.isFatal = 1;
222 >      simError();
223 >    }
224 >    catch (std::exception& e) {
225 >      sprintf(painCave.errMsg,
226 >              "parser exception: %s\n",
227 >              e.what());
228 >      painCave.isFatal = 1;
229 >      simError();
230 >    }
231 >
232 >    return simParams;
233 >  }
234 >  
235 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
236 >                                  bool loadInitCoords) {
237 >
238 >    const int bufferSize = 65535;
239 >    char buffer[bufferSize];
240 >    int lineNo = 0;
241 >    std::string mdRawData;
242 >    int metaDataBlockStart = -1;
243 >    int metaDataBlockEnd = -1;
244 >    int i;
245 >    int mdOffset;
246 >
247 > #ifdef IS_MPI            
248 >    const int masterNode = 0;
249 >    if (worldRank == masterNode) {
250 > #endif
251 >
252 >      std::ifstream mdFile_(mdFileName.c_str());
253 >      
254 >      if (mdFile_.fail()) {
255 >        sprintf(painCave.errMsg,
256 >                "SimCreator: Cannot open file: %s\n",
257 >                mdFileName.c_str());
258 >        painCave.isFatal = 1;
259 >        simError();
260 >      }
261 >
262 >      mdFile_.getline(buffer, bufferSize);
263 >      ++lineNo;
264 >      std::string line = trimLeftCopy(buffer);
265 >      i = CaseInsensitiveFind(line, "<OOPSE");
266 >      if (i == string::npos) {
267 >        sprintf(painCave.errMsg,
268 >                "SimCreator: File: %s is not an OOPSE file!\n",
269 >                mdFileName.c_str());
270 >        painCave.isFatal = 1;
271 >        simError();
272 >      }
273 >
274 >      //scan through the input stream and find MetaData tag        
275 >      while(mdFile_.getline(buffer, bufferSize)) {
276 >        ++lineNo;
277 >        
278 >        std::string line = trimLeftCopy(buffer);
279 >        if (metaDataBlockStart == -1) {
280 >          i = CaseInsensitiveFind(line, "<MetaData>");
281 >          if (i != string::npos) {
282 >            metaDataBlockStart = lineNo;
283 >            mdOffset = mdFile_.tellg();
284 >          }
285 >        } else {
286 >          i = CaseInsensitiveFind(line, "</MetaData>");
287 >          if (i != string::npos) {
288 >            metaDataBlockEnd = lineNo;
289 >          }
290 >        }
291 >      }
292 >
293 >      if (metaDataBlockStart == -1) {
294 >        sprintf(painCave.errMsg,
295 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
296 >                mdFileName.c_str());
297 >        painCave.isFatal = 1;
298 >        simError();
299 >      }
300 >      if (metaDataBlockEnd == -1) {
301 >        sprintf(painCave.errMsg,
302 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
303 >                mdFileName.c_str());
304 >        painCave.isFatal = 1;
305 >        simError();
306 >      }
307 >        
308 >      mdFile_.clear();
309 >      mdFile_.seekg(0);
310 >      mdFile_.seekg(mdOffset);
311 >
312 >      mdRawData.clear();
313 >
314 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
315 >        mdFile_.getline(buffer, bufferSize);
316 >        mdRawData += buffer;
317 >        mdRawData += "\n";
318 >      }
319 >
320 >      mdFile_.close();
321 >
322 > #ifdef IS_MPI
323 >    }
324 > #endif
325 >
326 >    std::stringstream rawMetaDataStream(mdRawData);
327 >
328 >    //parse meta-data file
329 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, metaDataBlockStart+1);
330 >    
331 >    //create the force field
332 >    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(simParams->getForceField());
333 >
334 >    if (ff == NULL) {
335 >      sprintf(painCave.errMsg,
336 >              "ForceField Factory can not create %s force field\n",
337 >              simParams->getForceField().c_str());
338 >      painCave.isFatal = 1;
339 >      simError();
340 >    }
341 >    
342 >    if (simParams->haveForceFieldFileName()) {
343 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
344 >    }
345 >    
346 >    std::string forcefieldFileName;
347 >    forcefieldFileName = ff->getForceFieldFileName();
348 >    
349 >    if (simParams->haveForceFieldVariant()) {
350 >      //If the force field has variant, the variant force field name will be
351 >      //Base.variant.frc. For exampel EAM.u6.frc
352 >      
353 >      std::string variant = simParams->getForceFieldVariant();
354 >      
355 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
356 >      variant = "." + variant;
357 >      if (pos != std::string::npos) {
358 >        forcefieldFileName.insert(pos, variant);
359 >      } else {
360 >        //If the default force field file name does not containt .frc suffix, just append the .variant
361 >        forcefieldFileName.append(variant);
362 >      }
363 >    }
364 >    
365 >    ff->parse(forcefieldFileName);
366 >    ff->setFortranForceOptions();
367 >    //create SimInfo
368 >    SimInfo * info = new SimInfo(ff, simParams);
369 >
370 >    info->setRawMetaData(mdRawData);
371 >    
372 >    //gather parameters (SimCreator only retrieves part of the
373 >    //parameters)
374 >    gatherParameters(info, mdFileName);
375 >    
376 >    //divide the molecules and determine the global index of molecules
377 > #ifdef IS_MPI
378 >    divideMolecules(info);
379 > #endif
380 >    
381 >    //create the molecules
382 >    createMolecules(info);
383 >    
384 >    
385 >    //allocate memory for DataStorage(circular reference, need to
386 >    //break it)
387 >    info->setSnapshotManager(new SimSnapshotManager(info));
388 >    
389 >    //set the global index of atoms, rigidbodies and cutoffgroups
390 >    //(only need to be set once, the global index will never change
391 >    //again). Local indices of atoms and rigidbodies are already set
392 >    //by MoleculeCreator class which actually delegates the
393 >    //responsibility to LocalIndexManager.
394 >    setGlobalIndex(info);
395 >    
396 >    //Although addExcludePairs is called inside SimInfo's addMolecule
397 >    //method, at that point atoms don't have the global index yet
398 >    //(their global index are all initialized to -1).  Therefore we
399 >    //have to call addExcludePairs explicitly here. A way to work
400 >    //around is that we can determine the beginning global indices of
401 >    //atoms before they get created.
402 >    SimInfo::MoleculeIterator mi;
403 >    Molecule* mol;
404 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
405 >      info->addExcludePairs(mol);
406 >    }
407 >    
408 >    if (loadInitCoords)
409 >      loadCoordinates(info, mdFileName);    
410 >    
411 >    return info;
412 >  }
413 >  
414 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
415 >    
416 >    //figure out the output file names
417 >    std::string prefix;
418 >    
419 > #ifdef IS_MPI
420 >    
421 >    if (worldRank == 0) {
422 > #endif // is_mpi
423 >      Globals * simParams = info->getSimParams();
424 >      if (simParams->haveFinalConfig()) {
425 >        prefix = getPrefix(simParams->getFinalConfig());
426 >      } else {
427 >        prefix = getPrefix(mdfile);
428 >      }
429 >      
430 >      info->setFinalConfigFileName(prefix + ".eor");
431 >      info->setDumpFileName(prefix + ".dump");
432 >      info->setStatFileName(prefix + ".stat");
433 >      info->setRestFileName(prefix + ".zang");
434 >      
435 > #ifdef IS_MPI
436 >      
437 >    }
438 >    
439 > #endif
440 >    
441 >  }
442 >  
443 > #ifdef IS_MPI
444 >  void SimCreator::divideMolecules(SimInfo *info) {
445 >    RealType numerator;
446 >    RealType denominator;
447 >    RealType precast;
448 >    RealType x;
449 >    RealType y;
450 >    RealType a;
451 >    int old_atoms;
452 >    int add_atoms;
453 >    int new_atoms;
454 >    int nTarget;
455 >    int done;
456 >    int i;
457 >    int j;
458 >    int loops;
459 >    int which_proc;
460 >    int nProcessors;
461 >    std::vector<int> atomsPerProc;
462 >    int nGlobalMols = info->getNGlobalMolecules();
463 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
464 >    
465 >    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
466 >    
467 >    if (nProcessors > nGlobalMols) {
468 >      sprintf(painCave.errMsg,
469 >              "nProcessors (%d) > nMol (%d)\n"
470 >              "\tThe number of processors is larger than\n"
471 >              "\tthe number of molecules.  This will not result in a \n"
472 >              "\tusable division of atoms for force decomposition.\n"
473 >              "\tEither try a smaller number of processors, or run the\n"
474 >              "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
475 >      
476 >      painCave.isFatal = 1;
477 >      simError();
478 >    }
479 >    
480 >    int seedValue;
481 >    Globals * simParams = info->getSimParams();
482 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
483 >    if (simParams->haveSeed()) {
484 >      seedValue = simParams->getSeed();
485 >      myRandom = new SeqRandNumGen(seedValue);
486 >    }else {
487 >      myRandom = new SeqRandNumGen();
488 >    }  
489 >    
490 >    
491 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
492 >    
493 >    //initialize atomsPerProc
494 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
495 >    
496 >    if (worldRank == 0) {
497 >      numerator = info->getNGlobalAtoms();
498 >      denominator = nProcessors;
499 >      precast = numerator / denominator;
500 >      nTarget = (int)(precast + 0.5);
501 >      
502 >      for(i = 0; i < nGlobalMols; i++) {
503 >        done = 0;
504 >        loops = 0;
505 >        
506 >        while (!done) {
507 >          loops++;
508 >          
509 >          // Pick a processor at random
510 >          
511 >          which_proc = (int) (myRandom->rand() * nProcessors);
512 >          
513 >          //get the molecule stamp first
514 >          int stampId = info->getMoleculeStampId(i);
515 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
516 >          
517 >          // How many atoms does this processor have so far?
518 >          old_atoms = atomsPerProc[which_proc];
519 >          add_atoms = moleculeStamp->getNAtoms();
520 >          new_atoms = old_atoms + add_atoms;
521 >          
522 >          // If we've been through this loop too many times, we need
523 >          // to just give up and assign the molecule to this processor
524 >          // and be done with it.
525 >          
526 >          if (loops > 100) {
527 >            sprintf(painCave.errMsg,
528 >                    "I've tried 100 times to assign molecule %d to a "
529 >                    " processor, but can't find a good spot.\n"
530 >                    "I'm assigning it at random to processor %d.\n",
531 >                    i, which_proc);
532 >            
533 >            painCave.isFatal = 0;
534 >            simError();
535 >            
536 >            molToProcMap[i] = which_proc;
537 >            atomsPerProc[which_proc] += add_atoms;
538 >            
539 >            done = 1;
540 >            continue;
541 >          }
542 >          
543 >          // If we can add this molecule to this processor without sending
544 >          // it above nTarget, then go ahead and do it:
545 >          
546 >          if (new_atoms <= nTarget) {
547 >            molToProcMap[i] = which_proc;
548 >            atomsPerProc[which_proc] += add_atoms;
549 >            
550 >            done = 1;
551 >            continue;
552 >          }
553 >          
554 >          // The only situation left is when new_atoms > nTarget.  We
555 >          // want to accept this with some probability that dies off the
556 >          // farther we are from nTarget
557 >          
558 >          // roughly:  x = new_atoms - nTarget
559 >          //           Pacc(x) = exp(- a * x)
560 >          // where a = penalty / (average atoms per molecule)
561 >          
562 >          x = (RealType)(new_atoms - nTarget);
563 >          y = myRandom->rand();
564 >          
565 >          if (y < exp(- a * x)) {
566 >            molToProcMap[i] = which_proc;
567 >            atomsPerProc[which_proc] += add_atoms;
568 >            
569 >            done = 1;
570 >            continue;
571 >          } else {
572 >            continue;
573 >          }
574 >        }
575 >      }
576 >      
577 >      delete myRandom;
578 >      
579 >      // Spray out this nonsense to all other processors:
580 >      
581 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
582 >    } else {
583 >      
584 >      // Listen to your marching orders from processor 0:
585 >      
586 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
587 >    }
588 >    
589 >    info->setMolToProcMap(molToProcMap);
590 >    sprintf(checkPointMsg,
591 >            "Successfully divided the molecules among the processors.\n");
592 >    errorCheckPoint();
593 >  }
594 >  
595 > #endif
596 >  
597 >  void SimCreator::createMolecules(SimInfo *info) {
598 >    MoleculeCreator molCreator;
599 >    int stampId;
600 >    
601 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
602 >      
603 > #ifdef IS_MPI
604 >      
605 >      if (info->getMolToProc(i) == worldRank) {
606 > #endif
607 >        
608 >        stampId = info->getMoleculeStampId(i);
609 >        Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
610 >                                                   stampId, i, info->getLocalIndexManager());
611 >        
612 >        info->addMolecule(mol);
613 >        
614 > #ifdef IS_MPI
615 >        
616 >      }
617 >      
618 > #endif
619 >      
620 >    } //end for(int i=0)  
621 >  }
622 >    
623 >  void SimCreator::setGlobalIndex(SimInfo *info) {
624 >    SimInfo::MoleculeIterator mi;
625 >    Molecule::AtomIterator ai;
626 >    Molecule::RigidBodyIterator ri;
627 >    Molecule::CutoffGroupIterator ci;
628 >    Molecule::IntegrableObjectIterator  ioi;
629 >    Molecule * mol;
630 >    Atom * atom;
631 >    RigidBody * rb;
632 >    CutoffGroup * cg;
633 >    int beginAtomIndex;
634 >    int beginRigidBodyIndex;
635 >    int beginCutoffGroupIndex;
636 >    int nGlobalAtoms = info->getNGlobalAtoms();
637 >
638 >    /**@todo fixme */
639 > #ifndef IS_MPI
640 >    
641 >    beginAtomIndex = 0;
642 >    beginRigidBodyIndex = 0;
643 >    beginCutoffGroupIndex = 0;
644 >    
645 > #else
646 >    
647 >    int nproc;
648 >    int myNode;
649 >    
650 >    myNode = worldRank;
651 >    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
652 >    
653 >    std::vector < int > tmpAtomsInProc(nproc, 0);
654 >    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
655 >    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
656 >    std::vector < int > NumAtomsInProc(nproc, 0);
657 >    std::vector < int > NumRigidBodiesInProc(nproc, 0);
658 >    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
659 >    
660 >    tmpAtomsInProc[myNode] = info->getNAtoms();
661 >    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
662 >    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
663 >    
664 >    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
665 >    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
666 >                  MPI_SUM, MPI_COMM_WORLD);
667 >    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
668 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
669 >    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
670 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
671 >    
672 >    beginAtomIndex = 0;
673 >    beginRigidBodyIndex = 0;
674 >    beginCutoffGroupIndex = 0;
675 >    
676 >    for(int i = 0; i < myNode; i++) {
677 >      beginAtomIndex += NumAtomsInProc[i];
678 >      beginRigidBodyIndex += NumRigidBodiesInProc[i];
679 >      beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
680 >    }
681 >    
682 > #endif
683 >    
684 >    //rigidbody's index begins right after atom's
685 >    beginRigidBodyIndex += info->getNGlobalAtoms();
686 >    
687 >    for(mol = info->beginMolecule(mi); mol != NULL;
688 >        mol = info->nextMolecule(mi)) {
689 >      
690 >      //local index(index in DataStorge) of atom is important
691 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 >        atom->setGlobalIndex(beginAtomIndex++);
693 >      }
694 >      
695 >      for(rb = mol->beginRigidBody(ri); rb != NULL;
696 >          rb = mol->nextRigidBody(ri)) {
697 >        rb->setGlobalIndex(beginRigidBodyIndex++);
698 >      }
699 >      
700 >      //local index of cutoff group is trivial, it only depends on the order of travesing
701 >      for(cg = mol->beginCutoffGroup(ci); cg != NULL;
702 >          cg = mol->nextCutoffGroup(ci)) {
703 >        cg->setGlobalIndex(beginCutoffGroupIndex++);
704 >      }
705 >    }
706 >    
707 >    //fill globalGroupMembership
708 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
709 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
710 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
711 >        
712 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
713 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
714 >        }
715 >        
716 >      }      
717 >    }
718 >    
719 > #ifdef IS_MPI    
720 >    // Since the globalGroupMembership has been zero filled and we've only
721 >    // poked values into the atoms we know, we can do an Allreduce
722 >    // to get the full globalGroupMembership array (We think).
723 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
724 >    // docs said we could.
725 >    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
726 >    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
727 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
728 >    info->setGlobalGroupMembership(tmpGroupMembership);
729 > #else
730 >    info->setGlobalGroupMembership(globalGroupMembership);
731 > #endif
732 >    
733 >    //fill molMembership
734 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
735 >    
736 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
737 >      
738 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
739 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
740 >      }
741 >    }
742 >    
743 > #ifdef IS_MPI
744 >    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
745 >    
746 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
747 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
748 >    
749 >    info->setGlobalMolMembership(tmpMolMembership);
750 > #else
751 >    info->setGlobalMolMembership(globalMolMembership);
752 > #endif
753 >
754 >    // nIOPerMol holds the number of integrable objects per molecule
755 >    // here the molecules are listed by their global indices.
756 >
757 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
758 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
759 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
760 >    }
761 >    
762 > #ifdef IS_MPI
763 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
764 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
765 >                  info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
766 > #else
767 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
768 > #endif    
769 >
770 > std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
771 >
772 > int startingIndex = 0;
773 > for (int i = 0; i < info->getNGlobalMolecules(); i++) {
774 >  startingIOIndexForMol[i] = startingIndex;
775 >  startingIndex += numIntegrableObjectsPerMol[i];
776 > }
777 >
778 > std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
779 > for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
780 >      int myGlobalIndex = mol->getGlobalIndex();
781 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
782 >      for (StuntDouble* integrableObject = mol->beginIntegrableObject(ioi); integrableObject != NULL;
783 >           integrableObject = mol->nextIntegrableObject(ioi)) {
784 >            integrableObject->setGlobalIntegrableObjectIndex(globalIO);
785 >            IOIndexToIntegrableObject[globalIO] = integrableObject;
786 >            globalIO++;
787 >      }
788 >    }
789 >
790 >  info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
791 >  
792 >  }
793 >  
794 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
795 >    Globals* simParams;
796 >    simParams = info->getSimParams();
797 >    
798 >    
799 >    DumpReader reader(info, mdFileName);
800 >    int nframes = reader.getNFrames();
801 >    
802 >    if (nframes > 0) {
803 >      reader.readFrame(nframes - 1);
804 >    } else {
805 >      //invalid initial coordinate file
806 >      sprintf(painCave.errMsg,
807 >              "Initial configuration file %s should at least contain one frame\n",
808 >              mdFileName.c_str());
809 >      painCave.isFatal = 1;
810 >      simError();
811 >    }
812 >    
813 >    //copy the current snapshot to previous snapshot
814 >    info->getSnapshotManager()->advance();
815 >  }
816 >  
817 > } //end namespace oopse
818 >
819 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines