ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 384 by tim, Tue Mar 1 19:11:47 2005 UTC vs.
Revision 1801 by gezelter, Mon Oct 1 18:21:15 2012 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #include "math/OOPSERandNumGen.hpp"
61 < #ifdef IS_MPI
62 < #include "io/mpiBASS.h"
63 <
64 < #endif
65 <
66 < namespace oopse {
67 <
68 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
69 <
70 < #ifdef IS_MPI
71 <
72 <    if (worldRank == 0) {
73 < #endif // is_mpi
74 <
75 <        simParams->initalize();
76 <        set_interface_stamps(stamps, simParams);
77 <
78 < #ifdef IS_MPI
79 <
80 <        mpiEventInit();
81 <
82 < #endif
83 <
84 <        yacc_BASS(mdFileName.c_str());
85 <
86 < #ifdef IS_MPI
87 <
88 <        throwMPIEvent(NULL);
89 <    } else {
90 <        set_interface_stamps(stamps, simParams);
91 <        mpiEventInit();
92 <        MPIcheckPoint();
93 <        mpiEventLoop();
94 <    }
95 <
96 < #endif
97 <
98 < }
99 <
100 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
101 <    
102 <    MakeStamps * stamps = new MakeStamps();
103 <
104 <    Globals * simParams = new Globals();
105 <
106 <    //parse meta-data file
107 <    parseFile(mdFileName, stamps, simParams);
108 <
109 <    //create the force field
110 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
111 <                          simParams->getForceField());
112 <    
113 <    if (ff == NULL) {
114 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
115 <                simParams->getForceField());
116 <        painCave.isFatal = 1;
117 <        simError();
118 <    }
119 <
120 <    if (simParams->haveForceFieldFileName()) {
121 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
122 <    }
123 <    
124 <    std::string forcefieldFileName;
125 <    forcefieldFileName = ff->getForceFieldFileName();
126 <
127 <    if (simParams->haveForceFieldVariant()) {
128 <        //If the force field has variant, the variant force field name will be
129 <        //Base.variant.frc. For exampel EAM.u6.frc
130 <        
131 <        std::string variant = simParams->getForceFieldVariant();
132 <
133 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
134 <        variant = "." + variant;
135 <        if (pos != std::string::npos) {
136 <            forcefieldFileName.insert(pos, variant);
137 <        } else {
138 <            //If the default force field file name does not containt .frc suffix, just append the .variant
139 <            forcefieldFileName.append(variant);
140 <        }
141 <    }
142 <    
143 <    ff->parse(forcefieldFileName);
144 <    
145 <    //extract the molecule stamps
146 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
147 <    compList(stamps, simParams, moleculeStampPairs);
148 <
149 <    //create SimInfo
150 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
151 <
152 <    //gather parameters (SimCreator only retrieves part of the parameters)
153 <    gatherParameters(info, mdFileName);
154 <
155 <    //divide the molecules and determine the global index of molecules
156 < #ifdef IS_MPI
157 <    divideMolecules(info);
158 < #endif
159 <
160 <    //create the molecules
161 <    createMolecules(info);
162 <
163 <
164 <    //allocate memory for DataStorage(circular reference, need to break it)
165 <    info->setSnapshotManager(new SimSnapshotManager(info));
166 <    
167 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
168 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
169 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
170 <    setGlobalIndex(info);
171 <
172 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
173 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
174 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
175 <    //we can determine the beginning global indices of atoms before they get created.
176 <    SimInfo::MoleculeIterator mi;
177 <    Molecule* mol;
178 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
179 <        info->addExcludePairs(mol);
180 <    }
181 <    
182 <
183 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
184 <    //eta, chi for NPT integrator)
185 <    if (loadInitCoords)
186 <        loadCoordinates(info);    
187 <    
188 <    return info;
189 < }
190 <
191 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
192 <
193 <    //figure out the ouput file names
194 <    std::string prefix;
195 <
196 < #ifdef IS_MPI
197 <
198 <    if (worldRank == 0) {
199 < #endif // is_mpi
200 <        Globals * simParams = info->getSimParams();
201 <        if (simParams->haveFinalConfig()) {
202 <            prefix = getPrefix(simParams->getFinalConfig());
203 <        } else {
204 <            prefix = getPrefix(mdfile);
205 <        }
206 <
207 <        info->setFinalConfigFileName(prefix + ".eor");
208 <        info->setDumpFileName(prefix + ".dump");
209 <        info->setStatFileName(prefix + ".stat");
210 <
211 < #ifdef IS_MPI
212 <
213 <    }
214 <
215 < #endif
216 <
217 < }
218 <
219 < #ifdef IS_MPI
220 < void SimCreator::divideMolecules(SimInfo *info) {
221 <    double numerator;
222 <    double denominator;
223 <    double precast;
224 <    double x;
225 <    double y;
226 <    double a;
227 <    int old_atoms;
228 <    int add_atoms;
229 <    int new_atoms;
230 <    int nTarget;
231 <    int done;
232 <    int i;
233 <    int j;
234 <    int loops;
235 <    int which_proc;
236 <    int nProcessors;
237 <    std::vector<int> atomsPerProc;
238 <    int nGlobalMols = info->getNGlobalMolecules();
239 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
240 <    
241 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
242 <
243 <    if (nProcessors > nGlobalMols) {
244 <        sprintf(painCave.errMsg,
245 <                "nProcessors (%d) > nMol (%d)\n"
246 <                    "\tThe number of processors is larger than\n"
247 <                    "\tthe number of molecules.  This will not result in a \n"
248 <                    "\tusable division of atoms for force decomposition.\n"
249 <                    "\tEither try a smaller number of processors, or run the\n"
250 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
251 <
252 <        painCave.isFatal = 1;
253 <        simError();
254 <    }
255 <
256 <    int seedValue;
257 <    Globals * simParams = info->getSimParams();
258 <    OOPSERandNumGen* myRandom;
259 <    if (simParams->haveSeed()) {
260 <        seedValue = simParams->getSeed();
261 <        myRandom = new OOPSERandNumGen(seedValue);
262 <    }else {
263 <        myRandom = new OOPSERandNumGen();
264 <    }  
265 <
266 <
267 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
268 <
269 <    //initialize atomsPerProc
270 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
271 <
272 <    if (worldRank == 0) {
273 <        numerator = info->getNGlobalAtoms();
274 <        denominator = nProcessors;
275 <        precast = numerator / denominator;
276 <        nTarget = (int)(precast + 0.5);
277 <
278 <        for(i = 0; i < nGlobalMols; i++) {
279 <            done = 0;
280 <            loops = 0;
281 <
282 <            while (!done) {
283 <                loops++;
284 <
285 <                // Pick a processor at random
286 <
287 <                which_proc = (int) (myRandom->rand() * nProcessors);
288 <
289 <                //get the molecule stamp first
290 <                int stampId = info->getMoleculeStampId(i);
291 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
292 <
293 <                // How many atoms does this processor have so far?
294 <                old_atoms = atomsPerProc[which_proc];
295 <                add_atoms = moleculeStamp->getNAtoms();
296 <                new_atoms = old_atoms + add_atoms;
297 <
298 <                // If we've been through this loop too many times, we need
299 <                // to just give up and assign the molecule to this processor
300 <                // and be done with it.
301 <
302 <                if (loops > 100) {
303 <                    sprintf(painCave.errMsg,
304 <                            "I've tried 100 times to assign molecule %d to a "
305 <                                " processor, but can't find a good spot.\n"
306 <                                "I'm assigning it at random to processor %d.\n",
307 <                            i, which_proc);
308 <
309 <                    painCave.isFatal = 0;
310 <                    simError();
311 <
312 <                    molToProcMap[i] = which_proc;
313 <                    atomsPerProc[which_proc] += add_atoms;
314 <
315 <                    done = 1;
316 <                    continue;
317 <                }
318 <
319 <                // If we can add this molecule to this processor without sending
320 <                // it above nTarget, then go ahead and do it:
321 <
322 <                if (new_atoms <= nTarget) {
323 <                    molToProcMap[i] = which_proc;
324 <                    atomsPerProc[which_proc] += add_atoms;
325 <
326 <                    done = 1;
327 <                    continue;
328 <                }
329 <
330 <                // The only situation left is when new_atoms > nTarget.  We
331 <                // want to accept this with some probability that dies off the
332 <                // farther we are from nTarget
333 <
334 <                // roughly:  x = new_atoms - nTarget
335 <                //           Pacc(x) = exp(- a * x)
336 <                // where a = penalty / (average atoms per molecule)
337 <
338 <                x = (double)(new_atoms - nTarget);
339 <                y = myRandom->rand();
340 <
341 <                if (y < exp(- a * x)) {
342 <                    molToProcMap[i] = which_proc;
343 <                    atomsPerProc[which_proc] += add_atoms;
344 <
345 <                    done = 1;
346 <                    continue;
347 <                } else {
348 <                    continue;
349 <                }
350 <            }
351 <        }
352 <
353 <        delete myRandom;
354 <        
355 <        // Spray out this nonsense to all other processors:
356 <
357 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
358 <    } else {
359 <
360 <        // Listen to your marching orders from processor 0:
361 <
362 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
363 <    }
364 <
365 <    info->setMolToProcMap(molToProcMap);
366 <    sprintf(checkPointMsg,
367 <            "Successfully divided the molecules among the processors.\n");
368 <    MPIcheckPoint();
369 < }
370 <
371 < #endif
372 <
373 < void SimCreator::createMolecules(SimInfo *info) {
374 <    MoleculeCreator molCreator;
375 <    int stampId;
376 <
377 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
378 <
379 < #ifdef IS_MPI
380 <
381 <        if (info->getMolToProc(i) == worldRank) {
382 < #endif
383 <
384 <            stampId = info->getMoleculeStampId(i);
385 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
386 <                                                                                    stampId, i, info->getLocalIndexManager());
387 <
388 <            info->addMolecule(mol);
389 <
390 < #ifdef IS_MPI
391 <
392 <        }
393 <
394 < #endif
395 <
396 <    } //end for(int i=0)  
397 < }
398 <
399 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
400 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
401 <    int i;
402 <    char * id;
403 <    MoleculeStamp * currentStamp;
404 <    Component** the_components = simParams->getComponents();
405 <    int n_components = simParams->getNComponents();
406 <
407 <    if (!simParams->haveNMol()) {
408 <        // we don't have the total number of molecules, so we assume it is
409 <        // given in each component
410 <
411 <        for(i = 0; i < n_components; i++) {
412 <            if (!the_components[i]->haveNMol()) {
413 <                // we have a problem
414 <                sprintf(painCave.errMsg,
415 <                        "SimCreator Error. No global NMol or component NMol given.\n"
416 <                            "\tCannot calculate the number of atoms.\n");
417 <
418 <                painCave.isFatal = 1;
419 <                simError();
420 <            }
421 <
422 <            id = the_components[i]->getType();
423 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
424 <
425 <            if (currentStamp == NULL) {
426 <                sprintf(painCave.errMsg,
427 <                        "SimCreator error: Component \"%s\" was not found in the "
428 <                            "list of declared molecules\n", id);
429 <
430 <                painCave.isFatal = 1;
431 <                simError();
432 <            }
433 <
434 <            moleculeStampPairs.push_back(
435 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
436 <        } //end for (i = 0; i < n_components; i++)
437 <    } else {
438 <        sprintf(painCave.errMsg, "SimSetup error.\n"
439 <                                     "\tSorry, the ability to specify total"
440 <                                     " nMols and then give molfractions in the components\n"
441 <                                     "\tis not currently supported."
442 <                                     " Please give nMol in the components.\n");
443 <
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <
448 < #ifdef IS_MPI
449 <
450 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
451 <    MPIcheckPoint();
452 <
453 < #endif // is_mpi
454 <
455 < }
456 <
457 < void SimCreator::setGlobalIndex(SimInfo *info) {
458 <    SimInfo::MoleculeIterator mi;
459 <    Molecule::AtomIterator ai;
460 <    Molecule::RigidBodyIterator ri;
461 <    Molecule::CutoffGroupIterator ci;
462 <    Molecule * mol;
463 <    Atom * atom;
464 <    RigidBody * rb;
465 <    CutoffGroup * cg;
466 <    int beginAtomIndex;
467 <    int beginRigidBodyIndex;
468 <    int beginCutoffGroupIndex;
469 <    int nGlobalAtoms = info->getNGlobalAtoms();
470 <    
471 < #ifndef IS_MPI
472 <
473 <    beginAtomIndex = 0;
474 <    beginRigidBodyIndex = 0;
475 <    beginCutoffGroupIndex = 0;
476 <
477 < #else
478 <
479 <    int nproc;
480 <    int myNode;
481 <
482 <    myNode = worldRank;
483 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
484 <
485 <    std::vector < int > tmpAtomsInProc(nproc, 0);
486 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
487 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
488 <    std::vector < int > NumAtomsInProc(nproc, 0);
489 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
490 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
491 <
492 <    tmpAtomsInProc[myNode] = info->getNAtoms();
493 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
494 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
495 <
496 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
497 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
498 <                  MPI_SUM, MPI_COMM_WORLD);
499 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
500 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
501 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
502 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
503 <
504 <    beginAtomIndex = 0;
505 <    beginRigidBodyIndex = 0;
506 <    beginCutoffGroupIndex = 0;
507 <
508 <    for(int i = 0; i < myNode; i++) {
509 <        beginAtomIndex += NumAtomsInProc[i];
510 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
511 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
512 <    }
513 <
514 < #endif
515 <
516 <    //rigidbody's index begins right after atom's
517 <    beginRigidBodyIndex += info->getNGlobalAtoms();
518 <
519 <    for(mol = info->beginMolecule(mi); mol != NULL;
520 <        mol = info->nextMolecule(mi)) {
521 <
522 <        //local index(index in DataStorge) of atom is important
523 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
524 <            atom->setGlobalIndex(beginAtomIndex++);
525 <        }
526 <
527 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
528 <            rb = mol->nextRigidBody(ri)) {
529 <            rb->setGlobalIndex(beginRigidBodyIndex++);
530 <        }
531 <
532 <        //local index of cutoff group is trivial, it only depends on the order of travesing
533 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
534 <            cg = mol->nextCutoffGroup(ci)) {
535 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
536 <        }
537 <    }
538 <
539 <    //fill globalGroupMembership
540 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
541 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
542 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
543 <
544 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
545 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
546 <            }
547 <
548 <        }      
549 <    }
550 <
551 < #ifdef IS_MPI    
552 <    // Since the globalGroupMembership has been zero filled and we've only
553 <    // poked values into the atoms we know, we can do an Allreduce
554 <    // to get the full globalGroupMembership array (We think).
555 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
556 <    // docs said we could.
557 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
558 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
559 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
560 <     info->setGlobalGroupMembership(tmpGroupMembership);
561 < #else
562 <    info->setGlobalGroupMembership(globalGroupMembership);
563 < #endif
564 <
565 <    //fill molMembership
566 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
567 <    
568 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
569 <
570 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
571 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
572 <        }
573 <    }
574 <
575 < #ifdef IS_MPI
576 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
577 <
578 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
579 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
580 <    
581 <    info->setGlobalMolMembership(tmpMolMembership);
582 < #else
583 <    info->setGlobalMolMembership(globalMolMembership);
584 < #endif
585 <
586 < }
587 <
588 < void SimCreator::loadCoordinates(SimInfo* info) {
589 <    Globals* simParams;
590 <    simParams = info->getSimParams();
591 <    
592 <    if (!simParams->haveInitialConfig()) {
593 <        sprintf(painCave.errMsg,
594 <                "Cannot intialize a simulation without an initial configuration file.\n");
595 <        painCave.isFatal = 1;;
596 <        simError();
597 <    }
598 <        
599 <    DumpReader reader(info, simParams->getInitialConfig());
600 <    int nframes = reader.getNFrames();
601 <
602 <    if (nframes > 0) {
603 <        reader.readFrame(nframes - 1);
604 <    } else {
605 <        //invalid initial coordinate file
606 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
607 <                simParams->getInitialConfig());
608 <        painCave.isFatal = 1;
609 <        simError();
610 <    }
611 <
612 <    //copy the current snapshot to previous snapshot
613 <    info->getSnapshotManager()->advance();
614 < }
615 <
616 < } //end namespace oopse
617 <
618 <
1 > /*
2 > * copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimCreator.cpp
45 > * @author tlin
46 > * @date 11/03/2004
47 > * @time 13:51am
48 > * @version 1.0
49 > */
50 > #include <exception>
51 > #include <iostream>
52 > #include <sstream>
53 > #include <string>
54 >
55 > #include "brains/MoleculeCreator.hpp"
56 > #include "brains/SimCreator.hpp"
57 > #include "brains/SimSnapshotManager.hpp"
58 > #include "io/DumpReader.hpp"
59 > #include "brains/ForceField.hpp"
60 > #include "utils/simError.h"
61 > #include "utils/StringUtils.hpp"
62 > #include "math/SeqRandNumGen.hpp"
63 > #include "mdParser/MDLexer.hpp"
64 > #include "mdParser/MDParser.hpp"
65 > #include "mdParser/MDTreeParser.hpp"
66 > #include "mdParser/SimplePreprocessor.hpp"
67 > #include "antlr/ANTLRException.hpp"
68 > #include "antlr/TokenStreamRecognitionException.hpp"
69 > #include "antlr/TokenStreamIOException.hpp"
70 > #include "antlr/TokenStreamException.hpp"
71 > #include "antlr/RecognitionException.hpp"
72 > #include "antlr/CharStreamException.hpp"
73 >
74 > #include "antlr/MismatchedCharException.hpp"
75 > #include "antlr/MismatchedTokenException.hpp"
76 > #include "antlr/NoViableAltForCharException.hpp"
77 > #include "antlr/NoViableAltException.hpp"
78 >
79 > #include "types/DirectionalAdapter.hpp"
80 > #include "types/MultipoleAdapter.hpp"
81 > #include "types/EAMAdapter.hpp"
82 > #include "types/SuttonChenAdapter.hpp"
83 > #include "types/PolarizableAdapter.hpp"
84 > #include "types/FixedChargeAdapter.hpp"
85 > #include "types/FluctuatingChargeAdapter.hpp"
86 >
87 > #ifdef IS_MPI
88 > #include "mpi.h"
89 > #include "math/ParallelRandNumGen.hpp"
90 > #endif
91 >
92 > namespace OpenMD {
93 >  
94 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
95 >    Globals* simParams = NULL;
96 >    try {
97 >
98 >      // Create a preprocessor that preprocesses md file into an ostringstream
99 >      std::stringstream ppStream;
100 > #ifdef IS_MPI            
101 >      int streamSize;
102 >      const int masterNode = 0;
103 >
104 >      if (worldRank == masterNode) {
105 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
106 > #endif                
107 >        SimplePreprocessor preprocessor;
108 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock,
109 >                                ppStream);
110 >                
111 > #ifdef IS_MPI            
112 >        //brocasting the stream size
113 >        streamSize = ppStream.str().size() +1;
114 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
115 >        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
116 >                              streamSize, MPI::CHAR, masterNode);
117 >                
118 >      } else {
119 >
120 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
121 >
122 >        //get stream size
123 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
124 >
125 >        char* buf = new char[streamSize];
126 >        assert(buf);
127 >                
128 >        //receive file content
129 >        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
130 >                
131 >        ppStream.str(buf);
132 >        delete [] buf;
133 >
134 >      }
135 > #endif            
136 >      // Create a scanner that reads from the input stream
137 >      MDLexer lexer(ppStream);
138 >      lexer.setFilename(filename);
139 >      lexer.initDeferredLineCount();
140 >    
141 >      // Create a parser that reads from the scanner
142 >      MDParser parser(lexer);
143 >      parser.setFilename(filename);
144 >
145 >      // Create an observer that synchorizes file name change
146 >      FilenameObserver observer;
147 >      observer.setLexer(&lexer);
148 >      observer.setParser(&parser);
149 >      lexer.setObserver(&observer);
150 >    
151 >      antlr::ASTFactory factory;
152 >      parser.initializeASTFactory(factory);
153 >      parser.setASTFactory(&factory);
154 >      parser.mdfile();
155 >
156 >      // Create a tree parser that reads information into Globals
157 >      MDTreeParser treeParser;
158 >      treeParser.initializeASTFactory(factory);
159 >      treeParser.setASTFactory(&factory);
160 >      simParams = treeParser.walkTree(parser.getAST());
161 >    }
162 >
163 >      
164 >    catch(antlr::MismatchedCharException& e) {
165 >      sprintf(painCave.errMsg,
166 >              "parser exception: %s %s:%d:%d\n",
167 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
168 >      painCave.isFatal = 1;
169 >      simError();          
170 >    }
171 >    catch(antlr::MismatchedTokenException &e) {
172 >      sprintf(painCave.errMsg,
173 >              "parser exception: %s %s:%d:%d\n",
174 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
175 >      painCave.isFatal = 1;
176 >      simError();  
177 >    }
178 >    catch(antlr::NoViableAltForCharException &e) {
179 >      sprintf(painCave.errMsg,
180 >              "parser exception: %s %s:%d:%d\n",
181 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
182 >      painCave.isFatal = 1;
183 >      simError();  
184 >    }
185 >    catch(antlr::NoViableAltException &e) {
186 >      sprintf(painCave.errMsg,
187 >              "parser exception: %s %s:%d:%d\n",
188 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
189 >      painCave.isFatal = 1;
190 >      simError();  
191 >    }
192 >      
193 >    catch(antlr::TokenStreamRecognitionException& e) {
194 >      sprintf(painCave.errMsg,
195 >              "parser exception: %s %s:%d:%d\n",
196 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
197 >      painCave.isFatal = 1;
198 >      simError();  
199 >    }
200 >        
201 >    catch(antlr::TokenStreamIOException& e) {
202 >      sprintf(painCave.errMsg,
203 >              "parser exception: %s\n",
204 >              e.getMessage().c_str());
205 >      painCave.isFatal = 1;
206 >      simError();
207 >    }
208 >        
209 >    catch(antlr::TokenStreamException& e) {
210 >      sprintf(painCave.errMsg,
211 >              "parser exception: %s\n",
212 >              e.getMessage().c_str());
213 >      painCave.isFatal = 1;
214 >      simError();
215 >    }        
216 >    catch (antlr::RecognitionException& e) {
217 >      sprintf(painCave.errMsg,
218 >              "parser exception: %s %s:%d:%d\n",
219 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
220 >      painCave.isFatal = 1;
221 >      simError();          
222 >    }
223 >    catch (antlr::CharStreamException& e) {
224 >      sprintf(painCave.errMsg,
225 >              "parser exception: %s\n",
226 >              e.getMessage().c_str());
227 >      painCave.isFatal = 1;
228 >      simError();        
229 >    }
230 >    catch (OpenMDException& e) {
231 >      sprintf(painCave.errMsg,
232 >              "%s\n",
233 >              e.getMessage().c_str());
234 >      painCave.isFatal = 1;
235 >      simError();
236 >    }
237 >    catch (std::exception& e) {
238 >      sprintf(painCave.errMsg,
239 >              "parser exception: %s\n",
240 >              e.what());
241 >      painCave.isFatal = 1;
242 >      simError();
243 >    }
244 >
245 >    simParams->setMDfileVersion(mdFileVersion);
246 >    return simParams;
247 >  }
248 >  
249 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
250 >                                  bool loadInitCoords) {
251 >    
252 >    const int bufferSize = 65535;
253 >    char buffer[bufferSize];
254 >    int lineNo = 0;
255 >    std::string mdRawData;
256 >    int metaDataBlockStart = -1;
257 >    int metaDataBlockEnd = -1;
258 >    int i;
259 >    streamoff mdOffset(0);
260 >    int mdFileVersion;
261 >
262 >
263 > #ifdef IS_MPI            
264 >    const int masterNode = 0;
265 >    if (worldRank == masterNode) {
266 > #endif
267 >
268 >      std::ifstream mdFile_;
269 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
270 >      
271 >      if (mdFile_.fail()) {
272 >        sprintf(painCave.errMsg,
273 >                "SimCreator: Cannot open file: %s\n",
274 >                mdFileName.c_str());
275 >        painCave.isFatal = 1;
276 >        simError();
277 >      }
278 >
279 >      mdFile_.getline(buffer, bufferSize);
280 >      ++lineNo;
281 >      std::string line = trimLeftCopy(buffer);
282 >      i = CaseInsensitiveFind(line, "<OpenMD");
283 >      if (static_cast<size_t>(i) == string::npos) {
284 >        // try the older file strings to see if that works:
285 >        i = CaseInsensitiveFind(line, "<OOPSE");
286 >      }
287 >      
288 >      if (static_cast<size_t>(i) == string::npos) {
289 >        // still no luck!
290 >        sprintf(painCave.errMsg,
291 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
292 >                mdFileName.c_str());
293 >        painCave.isFatal = 1;
294 >        simError();
295 >      }
296 >      
297 >      // found the correct opening string, now try to get the file
298 >      // format version number.
299 >
300 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
301 >      std::string fileType = tokenizer.nextToken();
302 >      toUpper(fileType);
303 >
304 >      mdFileVersion = 0;
305 >
306 >      if (fileType == "OPENMD") {
307 >        while (tokenizer.hasMoreTokens()) {
308 >          std::string token(tokenizer.nextToken());
309 >          toUpper(token);
310 >          if (token == "VERSION") {
311 >            mdFileVersion = tokenizer.nextTokenAsInt();
312 >            break;
313 >          }
314 >        }
315 >      }
316 >            
317 >      //scan through the input stream and find MetaData tag        
318 >      while(mdFile_.getline(buffer, bufferSize)) {
319 >        ++lineNo;
320 >        
321 >        std::string line = trimLeftCopy(buffer);
322 >        if (metaDataBlockStart == -1) {
323 >          i = CaseInsensitiveFind(line, "<MetaData>");
324 >          if (i != string::npos) {
325 >            metaDataBlockStart = lineNo;
326 >            mdOffset = mdFile_.tellg();
327 >          }
328 >        } else {
329 >          i = CaseInsensitiveFind(line, "</MetaData>");
330 >          if (i != string::npos) {
331 >            metaDataBlockEnd = lineNo;
332 >          }
333 >        }
334 >      }
335 >
336 >      if (metaDataBlockStart == -1) {
337 >        sprintf(painCave.errMsg,
338 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
339 >                mdFileName.c_str());
340 >        painCave.isFatal = 1;
341 >        simError();
342 >      }
343 >      if (metaDataBlockEnd == -1) {
344 >        sprintf(painCave.errMsg,
345 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
346 >                mdFileName.c_str());
347 >        painCave.isFatal = 1;
348 >        simError();
349 >      }
350 >        
351 >      mdFile_.clear();
352 >      mdFile_.seekg(0);
353 >      mdFile_.seekg(mdOffset);
354 >
355 >      mdRawData.clear();
356 >
357 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
358 >        mdFile_.getline(buffer, bufferSize);
359 >        mdRawData += buffer;
360 >        mdRawData += "\n";
361 >      }
362 >
363 >      mdFile_.close();
364 >
365 > #ifdef IS_MPI
366 >    }
367 > #endif
368 >
369 >    std::stringstream rawMetaDataStream(mdRawData);
370 >
371 >    //parse meta-data file
372 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
373 >                                   metaDataBlockStart + 1);
374 >    
375 >    //create the force field
376 >    ForceField * ff = new ForceField(simParams->getForceField());
377 >
378 >    if (ff == NULL) {
379 >      sprintf(painCave.errMsg,
380 >              "ForceField Factory can not create %s force field\n",
381 >              simParams->getForceField().c_str());
382 >      painCave.isFatal = 1;
383 >      simError();
384 >    }
385 >    
386 >    if (simParams->haveForceFieldFileName()) {
387 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
388 >    }
389 >    
390 >    std::string forcefieldFileName;
391 >    forcefieldFileName = ff->getForceFieldFileName();
392 >    
393 >    if (simParams->haveForceFieldVariant()) {
394 >      //If the force field has variant, the variant force field name will be
395 >      //Base.variant.frc. For exampel EAM.u6.frc
396 >      
397 >      std::string variant = simParams->getForceFieldVariant();
398 >      
399 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
400 >      variant = "." + variant;
401 >      if (pos != std::string::npos) {
402 >        forcefieldFileName.insert(pos, variant);
403 >      } else {
404 >        //If the default force field file name does not containt .frc suffix, just append the .variant
405 >        forcefieldFileName.append(variant);
406 >      }
407 >    }
408 >    
409 >    ff->parse(forcefieldFileName);
410 >    //create SimInfo
411 >    SimInfo * info = new SimInfo(ff, simParams);
412 >
413 >    info->setRawMetaData(mdRawData);
414 >    
415 >    //gather parameters (SimCreator only retrieves part of the
416 >    //parameters)
417 >    gatherParameters(info, mdFileName);
418 >    
419 >    //divide the molecules and determine the global index of molecules
420 > #ifdef IS_MPI
421 >    divideMolecules(info);
422 > #endif
423 >    
424 >    //create the molecules
425 >    createMolecules(info);
426 >    
427 >    //find the storage layout
428 >
429 >    int storageLayout = computeStorageLayout(info);
430 >
431 >    //allocate memory for DataStorage(circular reference, need to
432 >    //break it)
433 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
434 >    
435 >    //set the global index of atoms, rigidbodies and cutoffgroups
436 >    //(only need to be set once, the global index will never change
437 >    //again). Local indices of atoms and rigidbodies are already set
438 >    //by MoleculeCreator class which actually delegates the
439 >    //responsibility to LocalIndexManager.
440 >    setGlobalIndex(info);
441 >    
442 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
443 >    //method, at that point atoms don't have the global index yet
444 >    //(their global index are all initialized to -1).  Therefore we
445 >    //have to call addInteractionPairs explicitly here. A way to work
446 >    //around is that we can determine the beginning global indices of
447 >    //atoms before they get created.
448 >    SimInfo::MoleculeIterator mi;
449 >    Molecule* mol;
450 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
451 >      info->addInteractionPairs(mol);
452 >    }
453 >    
454 >    if (loadInitCoords)
455 >      loadCoordinates(info, mdFileName);    
456 >    return info;
457 >  }
458 >  
459 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
460 >    
461 >    //figure out the output file names
462 >    std::string prefix;
463 >    
464 > #ifdef IS_MPI
465 >    
466 >    if (worldRank == 0) {
467 > #endif // is_mpi
468 >      Globals * simParams = info->getSimParams();
469 >      if (simParams->haveFinalConfig()) {
470 >        prefix = getPrefix(simParams->getFinalConfig());
471 >      } else {
472 >        prefix = getPrefix(mdfile);
473 >      }
474 >      
475 >      info->setFinalConfigFileName(prefix + ".eor");
476 >      info->setDumpFileName(prefix + ".dump");
477 >      info->setStatFileName(prefix + ".stat");
478 >      info->setRestFileName(prefix + ".zang");
479 >      
480 > #ifdef IS_MPI
481 >      
482 >    }
483 >    
484 > #endif
485 >    
486 >  }
487 >  
488 > #ifdef IS_MPI
489 >  void SimCreator::divideMolecules(SimInfo *info) {
490 >    RealType numerator;
491 >    RealType denominator;
492 >    RealType precast;
493 >    RealType x;
494 >    RealType y;
495 >    RealType a;
496 >    int old_atoms;
497 >    int add_atoms;
498 >    int new_atoms;
499 >    int nTarget;
500 >    int done;
501 >    int i;
502 >    int loops;
503 >    int which_proc;
504 >    int nProcessors;
505 >    std::vector<int> atomsPerProc;
506 >    int nGlobalMols = info->getNGlobalMolecules();
507 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
508 >    
509 >    nProcessors = MPI::COMM_WORLD.Get_size();
510 >    
511 >    if (nProcessors > nGlobalMols) {
512 >      sprintf(painCave.errMsg,
513 >              "nProcessors (%d) > nMol (%d)\n"
514 >              "\tThe number of processors is larger than\n"
515 >              "\tthe number of molecules.  This will not result in a \n"
516 >              "\tusable division of atoms for force decomposition.\n"
517 >              "\tEither try a smaller number of processors, or run the\n"
518 >              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
519 >      
520 >      painCave.isFatal = 1;
521 >      simError();
522 >    }
523 >    
524 >    int seedValue;
525 >    Globals * simParams = info->getSimParams();
526 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
527 >    if (simParams->haveSeed()) {
528 >      seedValue = simParams->getSeed();
529 >      myRandom = new SeqRandNumGen(seedValue);
530 >    }else {
531 >      myRandom = new SeqRandNumGen();
532 >    }  
533 >    
534 >    
535 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
536 >    
537 >    //initialize atomsPerProc
538 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
539 >    
540 >    if (worldRank == 0) {
541 >      numerator = info->getNGlobalAtoms();
542 >      denominator = nProcessors;
543 >      precast = numerator / denominator;
544 >      nTarget = (int)(precast + 0.5);
545 >      
546 >      for(i = 0; i < nGlobalMols; i++) {
547 >
548 >        done = 0;
549 >        loops = 0;
550 >        
551 >        while (!done) {
552 >          loops++;
553 >          
554 >          // Pick a processor at random
555 >          
556 >          which_proc = (int) (myRandom->rand() * nProcessors);
557 >          
558 >          //get the molecule stamp first
559 >          int stampId = info->getMoleculeStampId(i);
560 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
561 >          
562 >          // How many atoms does this processor have so far?
563 >          old_atoms = atomsPerProc[which_proc];
564 >          add_atoms = moleculeStamp->getNAtoms();
565 >          new_atoms = old_atoms + add_atoms;
566 >          
567 >          // If we've been through this loop too many times, we need
568 >          // to just give up and assign the molecule to this processor
569 >          // and be done with it.
570 >          
571 >          if (loops > 100) {
572 >
573 >            sprintf(painCave.errMsg,
574 >                    "There have been 100 attempts to assign molecule %d to an\n"
575 >                    "\tunderworked processor, but there's no good place to\n"
576 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
577 >                    i, which_proc);
578 >          
579 >            painCave.isFatal = 0;
580 >            painCave.severity = OPENMD_INFO;
581 >            simError();
582 >            
583 >            molToProcMap[i] = which_proc;
584 >            atomsPerProc[which_proc] += add_atoms;
585 >            
586 >            done = 1;
587 >            continue;
588 >          }
589 >          
590 >          // If we can add this molecule to this processor without sending
591 >          // it above nTarget, then go ahead and do it:
592 >          
593 >          if (new_atoms <= nTarget) {
594 >            molToProcMap[i] = which_proc;
595 >            atomsPerProc[which_proc] += add_atoms;
596 >            
597 >            done = 1;
598 >            continue;
599 >          }
600 >          
601 >          // The only situation left is when new_atoms > nTarget.  We
602 >          // want to accept this with some probability that dies off the
603 >          // farther we are from nTarget
604 >          
605 >          // roughly:  x = new_atoms - nTarget
606 >          //           Pacc(x) = exp(- a * x)
607 >          // where a = penalty / (average atoms per molecule)
608 >          
609 >          x = (RealType)(new_atoms - nTarget);
610 >          y = myRandom->rand();
611 >          
612 >          if (y < exp(- a * x)) {
613 >            molToProcMap[i] = which_proc;
614 >            atomsPerProc[which_proc] += add_atoms;
615 >            
616 >            done = 1;
617 >            continue;
618 >          } else {
619 >            continue;
620 >          }
621 >        }
622 >      }
623 >      
624 >      delete myRandom;
625 >
626 >      // Spray out this nonsense to all other processors:
627 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
628 >    } else {
629 >      
630 >      // Listen to your marching orders from processor 0:
631 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
632 >
633 >    }
634 >    
635 >    info->setMolToProcMap(molToProcMap);
636 >    sprintf(checkPointMsg,
637 >            "Successfully divided the molecules among the processors.\n");
638 >    errorCheckPoint();
639 >  }
640 >  
641 > #endif
642 >  
643 >  void SimCreator::createMolecules(SimInfo *info) {
644 >    MoleculeCreator molCreator;
645 >    int stampId;
646 >    
647 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
648 >      
649 > #ifdef IS_MPI
650 >      
651 >      if (info->getMolToProc(i) == worldRank) {
652 > #endif
653 >        
654 >        stampId = info->getMoleculeStampId(i);
655 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
656 >                                                   info->getMoleculeStamp(stampId),
657 >                                                   stampId, i,
658 >                                                   info->getLocalIndexManager());
659 >        
660 >        info->addMolecule(mol);
661 >        
662 > #ifdef IS_MPI
663 >        
664 >      }
665 >      
666 > #endif
667 >      
668 >    } //end for(int i=0)  
669 >  }
670 >    
671 >  int SimCreator::computeStorageLayout(SimInfo* info) {
672 >
673 >    Globals* simParams = info->getSimParams();
674 >    int nRigidBodies = info->getNGlobalRigidBodies();
675 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
676 >    set<AtomType*>::iterator i;
677 >    bool hasDirectionalAtoms = false;
678 >    bool hasFixedCharge = false;
679 >    bool hasMultipoles = false;    
680 >    bool hasPolarizable = false;    
681 >    bool hasFluctuatingCharge = false;    
682 >    bool hasMetallic = false;
683 >    int storageLayout = 0;
684 >    storageLayout |= DataStorage::dslPosition;
685 >    storageLayout |= DataStorage::dslVelocity;
686 >    storageLayout |= DataStorage::dslForce;
687 >
688 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
689 >
690 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
691 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
692 >      EAMAdapter ea = EAMAdapter( (*i) );
693 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
694 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
695 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
696 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
697 >
698 >      if (da.isDirectional()){
699 >        hasDirectionalAtoms = true;
700 >      }
701 >      if (ma.isMultipole()){
702 >        hasMultipoles = true;
703 >      }
704 >      if (ea.isEAM() || sca.isSuttonChen()){
705 >        hasMetallic = true;
706 >      }
707 >      if ( fca.isFixedCharge() ){
708 >        hasFixedCharge = true;
709 >      }
710 >      if ( fqa.isFluctuatingCharge() ){
711 >        hasFluctuatingCharge = true;
712 >      }
713 >      if ( pa.isPolarizable() ){
714 >        hasPolarizable = true;
715 >      }
716 >    }
717 >    
718 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
719 >      storageLayout |= DataStorage::dslAmat;
720 >      if(storageLayout & DataStorage::dslVelocity) {
721 >        storageLayout |= DataStorage::dslAngularMomentum;
722 >      }
723 >      if (storageLayout & DataStorage::dslForce) {
724 >        storageLayout |= DataStorage::dslTorque;
725 >      }
726 >    }
727 >    if (hasMultipoles) {
728 >      storageLayout |= DataStorage::dslElectroFrame;
729 >    }
730 >    if (hasFixedCharge || hasFluctuatingCharge) {
731 >      storageLayout |= DataStorage::dslSkippedCharge;
732 >    }
733 >    if (hasMetallic) {
734 >      storageLayout |= DataStorage::dslDensity;
735 >      storageLayout |= DataStorage::dslFunctional;
736 >      storageLayout |= DataStorage::dslFunctionalDerivative;
737 >    }
738 >    if (hasPolarizable) {
739 >      storageLayout |= DataStorage::dslElectricField;
740 >    }
741 >    if (hasFluctuatingCharge){
742 >      storageLayout |= DataStorage::dslFlucQPosition;
743 >      if(storageLayout & DataStorage::dslVelocity) {
744 >        storageLayout |= DataStorage::dslFlucQVelocity;
745 >      }
746 >      if (storageLayout & DataStorage::dslForce) {
747 >        storageLayout |= DataStorage::dslFlucQForce;
748 >      }
749 >    }
750 >    
751 >    // if the user has asked for them, make sure we've got the memory for the
752 >    // objects defined.
753 >
754 >    if (simParams->getOutputParticlePotential()) {
755 >      storageLayout |= DataStorage::dslParticlePot;
756 >    }
757 >
758 >    if (simParams->havePrintHeatFlux()) {
759 >      if (simParams->getPrintHeatFlux()) {
760 >        storageLayout |= DataStorage::dslParticlePot;
761 >      }
762 >    }
763 >
764 >    if (simParams->getOutputElectricField()) {
765 >      storageLayout |= DataStorage::dslElectricField;
766 >    }
767 >    if (simParams->getOutputFluctuatingCharges()) {
768 >      storageLayout |= DataStorage::dslFlucQPosition;
769 >      storageLayout |= DataStorage::dslFlucQVelocity;
770 >      storageLayout |= DataStorage::dslFlucQForce;
771 >    }
772 >
773 >    return storageLayout;
774 >  }
775 >
776 >  void SimCreator::setGlobalIndex(SimInfo *info) {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule::AtomIterator ai;
779 >    Molecule::RigidBodyIterator ri;
780 >    Molecule::CutoffGroupIterator ci;
781 >    Molecule::IntegrableObjectIterator  ioi;
782 >    Molecule * mol;
783 >    Atom * atom;
784 >    RigidBody * rb;
785 >    CutoffGroup * cg;
786 >    int beginAtomIndex;
787 >    int beginRigidBodyIndex;
788 >    int beginCutoffGroupIndex;
789 >    int nGlobalAtoms = info->getNGlobalAtoms();
790 >    
791 >    beginAtomIndex = 0;
792 >    //rigidbody's index begins right after atom's
793 >    beginRigidBodyIndex = info->getNGlobalAtoms();
794 >    beginCutoffGroupIndex = 0;
795 >
796 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
797 >      
798 > #ifdef IS_MPI      
799 >      if (info->getMolToProc(i) == worldRank) {
800 > #endif        
801 >        // stuff to do if I own this molecule
802 >        mol = info->getMoleculeByGlobalIndex(i);
803 >
804 >        //local index(index in DataStorge) of atom is important
805 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
806 >          atom->setGlobalIndex(beginAtomIndex++);
807 >        }
808 >        
809 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
810 >            rb = mol->nextRigidBody(ri)) {
811 >          rb->setGlobalIndex(beginRigidBodyIndex++);
812 >        }
813 >        
814 >        //local index of cutoff group is trivial, it only depends on
815 >        //the order of travesing
816 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
817 >            cg = mol->nextCutoffGroup(ci)) {
818 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
819 >        }        
820 >        
821 > #ifdef IS_MPI        
822 >      }  else {
823 >
824 >        // stuff to do if I don't own this molecule
825 >        
826 >        int stampId = info->getMoleculeStampId(i);
827 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
828 >
829 >        beginAtomIndex += stamp->getNAtoms();
830 >        beginRigidBodyIndex += stamp->getNRigidBodies();
831 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
832 >      }
833 > #endif          
834 >
835 >    } //end for(int i=0)  
836 >
837 >    //fill globalGroupMembership
838 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
839 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
840 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
841 >        
842 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
843 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
844 >        }
845 >        
846 >      }      
847 >    }
848 >  
849 > #ifdef IS_MPI    
850 >    // Since the globalGroupMembership has been zero filled and we've only
851 >    // poked values into the atoms we know, we can do an Allreduce
852 >    // to get the full globalGroupMembership array (We think).
853 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
854 >    // docs said we could.
855 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
856 >    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
857 >                              &tmpGroupMembership[0], nGlobalAtoms,
858 >                              MPI::INT, MPI::SUM);
859 >    info->setGlobalGroupMembership(tmpGroupMembership);
860 > #else
861 >    info->setGlobalGroupMembership(globalGroupMembership);
862 > #endif
863 >    
864 >    //fill molMembership
865 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
866 >    
867 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
868 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
869 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
870 >      }
871 >    }
872 >    
873 > #ifdef IS_MPI
874 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
875 >    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
876 >                              nGlobalAtoms,
877 >                              MPI::INT, MPI::SUM);
878 >    
879 >    info->setGlobalMolMembership(tmpMolMembership);
880 > #else
881 >    info->setGlobalMolMembership(globalMolMembership);
882 > #endif
883 >
884 >    // nIOPerMol holds the number of integrable objects per molecule
885 >    // here the molecules are listed by their global indices.
886 >
887 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
888 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
889 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
890 >    }
891 >    
892 > #ifdef IS_MPI
893 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
894 >    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
895 >                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
896 > #else
897 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
898 > #endif    
899 >
900 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
901 >    
902 >    int startingIndex = 0;
903 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
904 >      startingIOIndexForMol[i] = startingIndex;
905 >      startingIndex += numIntegrableObjectsPerMol[i];
906 >    }
907 >    
908 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
909 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
910 >      int myGlobalIndex = mol->getGlobalIndex();
911 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
912 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
913 >           sd = mol->nextIntegrableObject(ioi)) {
914 >        sd->setGlobalIntegrableObjectIndex(globalIO);
915 >        IOIndexToIntegrableObject[globalIO] = sd;
916 >        globalIO++;
917 >      }
918 >    }
919 >      
920 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
921 >    
922 >  }
923 >  
924 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
925 >
926 >    DumpReader reader(info, mdFileName);
927 >    int nframes = reader.getNFrames();
928 >
929 >    if (nframes > 0) {
930 >      reader.readFrame(nframes - 1);
931 >    } else {
932 >      //invalid initial coordinate file
933 >      sprintf(painCave.errMsg,
934 >              "Initial configuration file %s should at least contain one frame\n",
935 >              mdFileName.c_str());
936 >      painCave.isFatal = 1;
937 >      simError();
938 >    }
939 >    //copy the current snapshot to previous snapshot
940 >    info->getSnapshotManager()->advance();
941 >  }
942 >  
943 > } //end namespace OpenMD
944 >
945 >

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 384 by tim, Tue Mar 1 19:11:47 2005 UTC vs.
Revision 1801 by gezelter, Mon Oct 1 18:21:15 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines