ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 381 by tim, Tue Mar 1 14:45:45 2005 UTC vs.
Revision 1879 by gezelter, Sun Jun 16 15:15:42 2013 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #ifdef IS_MPI
61 < #include "io/mpiBASS.h"
62 < #include "math/randomSPRNG.hpp"
63 < #endif
64 <
65 < namespace oopse {
66 <
67 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
68 <
69 < #ifdef IS_MPI
70 <
71 <    if (worldRank == 0) {
72 < #endif // is_mpi
73 <
74 <        simParams->initalize();
75 <        set_interface_stamps(stamps, simParams);
76 <
77 < #ifdef IS_MPI
78 <
79 <        mpiEventInit();
80 <
81 < #endif
82 <
83 <        yacc_BASS(mdFileName.c_str());
84 <
85 < #ifdef IS_MPI
86 <
87 <        throwMPIEvent(NULL);
88 <    } else {
89 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
93 <    }
94 <
95 < #endif
96 <
97 < }
98 <
99 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
100 <    
101 <    MakeStamps * stamps = new MakeStamps();
102 <
103 <    Globals * simParams = new Globals();
104 <
105 <    //parse meta-data file
106 <    parseFile(mdFileName, stamps, simParams);
107 <
108 <    //create the force field
109 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
110 <                          simParams->getForceField());
111 <    
112 <    if (ff == NULL) {
113 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
114 <                simParams->getForceField());
115 <        painCave.isFatal = 1;
116 <        simError();
117 <    }
118 <
119 <    if (simParams->haveForceFieldFileName()) {
120 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
121 <    }
122 <    
123 <    std::string forcefieldFileName;
124 <    forcefieldFileName = ff->getForceFieldFileName();
125 <
126 <    if (simParams->haveForceFieldVariant()) {
127 <        //If the force field has variant, the variant force field name will be
128 <        //Base.variant.frc. For exampel EAM.u6.frc
129 <        
130 <        std::string variant = simParams->getForceFieldVariant();
131 <
132 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
133 <        variant = "." + variant;
134 <        if (pos != std::string::npos) {
135 <            forcefieldFileName.insert(pos, variant);
136 <        } else {
137 <            //If the default force field file name does not containt .frc suffix, just append the .variant
138 <            forcefieldFileName.append(variant);
139 <        }
140 <    }
141 <    
142 <    ff->parse(forcefieldFileName);
143 <    
144 <    //extract the molecule stamps
145 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146 <    compList(stamps, simParams, moleculeStampPairs);
147 <
148 <    //create SimInfo
149 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
150 <
151 <    //gather parameters (SimCreator only retrieves part of the parameters)
152 <    gatherParameters(info, mdFileName);
153 <
154 <    //divide the molecules and determine the global index of molecules
155 < #ifdef IS_MPI
156 <    divideMolecules(info);
157 < #endif
158 <
159 <    //create the molecules
160 <    createMolecules(info);
161 <
162 <
163 <    //allocate memory for DataStorage(circular reference, need to break it)
164 <    info->setSnapshotManager(new SimSnapshotManager(info));
165 <    
166 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
167 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
168 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
169 <    setGlobalIndex(info);
170 <
171 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
172 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
173 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
174 <    //we can determine the beginning global indices of atoms before they get created.
175 <    SimInfo::MoleculeIterator mi;
176 <    Molecule* mol;
177 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
178 <        info->addExcludePairs(mol);
179 <    }
180 <    
181 <
182 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183 <    //eta, chi for NPT integrator)
184 <    if (loadInitCoords)
185 <        loadCoordinates(info);    
186 <    
187 <    return info;
188 < }
189 <
190 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
191 <
192 <    //setup seed for random number generator
193 <    int seedValue;
194 <    Globals * simParams = info->getSimParams();
195 <
196 <    if (simParams->haveSeed()) {
197 <        seedValue = simParams->getSeed();
198 <
199 <        if (seedValue < 100000000 ) {
200 <            sprintf(painCave.errMsg,
201 <                    "Seed for sprng library should contain at least 9 digits\n"
202 <                        "OOPSE will generate a seed for user\n");
203 <
204 <            painCave.isFatal = 0;
205 <            simError();
206 <
207 <            //using seed generated by system instead of invalid seed set by user
208 <
209 < #ifndef IS_MPI
210 <
211 <            seedValue = make_sprng_seed();
212 <
213 < #else
214 <
215 <            if (worldRank == 0) {
216 <                seedValue = make_sprng_seed();
217 <            }
218 <
219 <            MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
220 <
221 < #endif
222 <
223 <        } //end if (seedValue /1000000000 == 0)
224 <    } else {
225 <
226 < #ifndef IS_MPI
227 <
228 <        seedValue = make_sprng_seed();
229 <
230 < #else
231 <
232 <        if (worldRank == 0) {
233 <            seedValue = make_sprng_seed();
234 <        }
235 <
236 <        MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
237 <
238 < #endif
239 <
240 <    } //end of simParams->haveSeed()
241 <
242 <    info->setSeed(seedValue);
243 <
244 <
245 <    //figure out the ouput file names
246 <    std::string prefix;
247 <
248 < #ifdef IS_MPI
249 <
250 <    if (worldRank == 0) {
251 < #endif // is_mpi
252 <
253 <        if (simParams->haveFinalConfig()) {
254 <            prefix = getPrefix(simParams->getFinalConfig());
255 <        } else {
256 <            prefix = getPrefix(mdfile);
257 <        }
258 <
259 <        info->setFinalConfigFileName(prefix + ".eor");
260 <        info->setDumpFileName(prefix + ".dump");
261 <        info->setStatFileName(prefix + ".stat");
262 <
263 < #ifdef IS_MPI
264 <
265 <    }
266 <
267 < #endif
268 <
269 < }
270 <
271 < #ifdef IS_MPI
272 < void SimCreator::divideMolecules(SimInfo *info) {
273 <    double numerator;
274 <    double denominator;
275 <    double precast;
276 <    double x;
277 <    double y;
278 <    double a;
279 <    int old_atoms;
280 <    int add_atoms;
281 <    int new_atoms;
282 <    int nTarget;
283 <    int done;
284 <    int i;
285 <    int j;
286 <    int loops;
287 <    int which_proc;
288 <    int nProcessors;
289 <    std::vector<int> atomsPerProc;
290 <    int nGlobalMols = info->getNGlobalMolecules();
291 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
292 <    
293 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
294 <
295 <    if (nProcessors > nGlobalMols) {
296 <        sprintf(painCave.errMsg,
297 <                "nProcessors (%d) > nMol (%d)\n"
298 <                    "\tThe number of processors is larger than\n"
299 <                    "\tthe number of molecules.  This will not result in a \n"
300 <                    "\tusable division of atoms for force decomposition.\n"
301 <                    "\tEither try a smaller number of processors, or run the\n"
302 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
303 <
304 <        painCave.isFatal = 1;
305 <        simError();
306 <    }
307 <
308 <    MTRand myRandom(info->getSeed(), nProcessors, worldRank);
309 <
310 <
311 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
312 <
313 <    //initialize atomsPerProc
314 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
315 <
316 <    if (worldRank == 0) {
317 <        numerator = info->getNGlobalAtoms();
318 <        denominator = nProcessors;
319 <        precast = numerator / denominator;
320 <        nTarget = (int)(precast + 0.5);
321 <
322 <        for(i = 0; i < nGlobalMols; i++) {
323 <            done = 0;
324 <            loops = 0;
325 <
326 <            while (!done) {
327 <                loops++;
328 <
329 <                // Pick a processor at random
330 <
331 <                which_proc = (int) (myRandom.rand() * nProcessors);
332 <
333 <                //get the molecule stamp first
334 <                int stampId = info->getMoleculeStampId(i);
335 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
336 <
337 <                // How many atoms does this processor have so far?
338 <                old_atoms = atomsPerProc[which_proc];
339 <                add_atoms = moleculeStamp->getNAtoms();
340 <                new_atoms = old_atoms + add_atoms;
341 <
342 <                // If we've been through this loop too many times, we need
343 <                // to just give up and assign the molecule to this processor
344 <                // and be done with it.
345 <
346 <                if (loops > 100) {
347 <                    sprintf(painCave.errMsg,
348 <                            "I've tried 100 times to assign molecule %d to a "
349 <                                " processor, but can't find a good spot.\n"
350 <                                "I'm assigning it at random to processor %d.\n",
351 <                            i, which_proc);
352 <
353 <                    painCave.isFatal = 0;
354 <                    simError();
355 <
356 <                    molToProcMap[i] = which_proc;
357 <                    atomsPerProc[which_proc] += add_atoms;
358 <
359 <                    done = 1;
360 <                    continue;
361 <                }
362 <
363 <                // If we can add this molecule to this processor without sending
364 <                // it above nTarget, then go ahead and do it:
365 <
366 <                if (new_atoms <= nTarget) {
367 <                    molToProcMap[i] = which_proc;
368 <                    atomsPerProc[which_proc] += add_atoms;
369 <
370 <                    done = 1;
371 <                    continue;
372 <                }
373 <
374 <                // The only situation left is when new_atoms > nTarget.  We
375 <                // want to accept this with some probability that dies off the
376 <                // farther we are from nTarget
377 <
378 <                // roughly:  x = new_atoms - nTarget
379 <                //           Pacc(x) = exp(- a * x)
380 <                // where a = penalty / (average atoms per molecule)
381 <
382 <                x = (double)(new_atoms - nTarget);
383 <                y = myRandom.getRandom();
384 <
385 <                if (y < exp(- a * x)) {
386 <                    molToProcMap[i] = which_proc;
387 <                    atomsPerProc[which_proc] += add_atoms;
388 <
389 <                    done = 1;
390 <                    continue;
391 <                } else {
392 <                    continue;
393 <                }
394 <            }
395 <        }
396 <
397 <        // Spray out this nonsense to all other processors:
398 <
399 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
400 <    } else {
401 <
402 <        // Listen to your marching orders from processor 0:
403 <
404 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
405 <    }
406 <
407 <    info->setMolToProcMap(molToProcMap);
408 <    sprintf(checkPointMsg,
409 <            "Successfully divided the molecules among the processors.\n");
410 <    MPIcheckPoint();
411 < }
412 <
413 < #endif
414 <
415 < void SimCreator::createMolecules(SimInfo *info) {
416 <    MoleculeCreator molCreator;
417 <    int stampId;
418 <
419 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
420 <
421 < #ifdef IS_MPI
422 <
423 <        if (info->getMolToProc(i) == worldRank) {
424 < #endif
425 <
426 <            stampId = info->getMoleculeStampId(i);
427 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
428 <                                                                                    stampId, i, info->getLocalIndexManager());
429 <
430 <            info->addMolecule(mol);
431 <
432 < #ifdef IS_MPI
433 <
434 <        }
435 <
436 < #endif
437 <
438 <    } //end for(int i=0)  
439 < }
440 <
441 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
442 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
443 <    int i;
444 <    char * id;
445 <    MoleculeStamp * currentStamp;
446 <    Component** the_components = simParams->getComponents();
447 <    int n_components = simParams->getNComponents();
448 <
449 <    if (!simParams->haveNMol()) {
450 <        // we don't have the total number of molecules, so we assume it is
451 <        // given in each component
452 <
453 <        for(i = 0; i < n_components; i++) {
454 <            if (!the_components[i]->haveNMol()) {
455 <                // we have a problem
456 <                sprintf(painCave.errMsg,
457 <                        "SimCreator Error. No global NMol or component NMol given.\n"
458 <                            "\tCannot calculate the number of atoms.\n");
459 <
460 <                painCave.isFatal = 1;
461 <                simError();
462 <            }
463 <
464 <            id = the_components[i]->getType();
465 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
466 <
467 <            if (currentStamp == NULL) {
468 <                sprintf(painCave.errMsg,
469 <                        "SimCreator error: Component \"%s\" was not found in the "
470 <                            "list of declared molecules\n", id);
471 <
472 <                painCave.isFatal = 1;
473 <                simError();
474 <            }
475 <
476 <            moleculeStampPairs.push_back(
477 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
478 <        } //end for (i = 0; i < n_components; i++)
479 <    } else {
480 <        sprintf(painCave.errMsg, "SimSetup error.\n"
481 <                                     "\tSorry, the ability to specify total"
482 <                                     " nMols and then give molfractions in the components\n"
483 <                                     "\tis not currently supported."
484 <                                     " Please give nMol in the components.\n");
485 <
486 <        painCave.isFatal = 1;
487 <        simError();
488 <    }
489 <
490 < #ifdef IS_MPI
491 <
492 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
493 <    MPIcheckPoint();
494 <
495 < #endif // is_mpi
496 <
497 < }
498 <
499 < void SimCreator::setGlobalIndex(SimInfo *info) {
500 <    SimInfo::MoleculeIterator mi;
501 <    Molecule::AtomIterator ai;
502 <    Molecule::RigidBodyIterator ri;
503 <    Molecule::CutoffGroupIterator ci;
504 <    Molecule * mol;
505 <    Atom * atom;
506 <    RigidBody * rb;
507 <    CutoffGroup * cg;
508 <    int beginAtomIndex;
509 <    int beginRigidBodyIndex;
510 <    int beginCutoffGroupIndex;
511 <    int nGlobalAtoms = info->getNGlobalAtoms();
512 <    
513 < #ifndef IS_MPI
514 <
515 <    beginAtomIndex = 0;
516 <    beginRigidBodyIndex = 0;
517 <    beginCutoffGroupIndex = 0;
518 <
519 < #else
520 <
521 <    int nproc;
522 <    int myNode;
523 <
524 <    myNode = worldRank;
525 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
526 <
527 <    std::vector < int > tmpAtomsInProc(nproc, 0);
528 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
529 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
530 <    std::vector < int > NumAtomsInProc(nproc, 0);
531 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
532 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
533 <
534 <    tmpAtomsInProc[myNode] = info->getNAtoms();
535 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
536 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
537 <
538 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
539 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
540 <                  MPI_SUM, MPI_COMM_WORLD);
541 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
542 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
543 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
544 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
545 <
546 <    beginAtomIndex = 0;
547 <    beginRigidBodyIndex = 0;
548 <    beginCutoffGroupIndex = 0;
549 <
550 <    for(int i = 0; i < myNode; i++) {
551 <        beginAtomIndex += NumAtomsInProc[i];
552 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
553 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
554 <    }
555 <
556 < #endif
557 <
558 <    //rigidbody's index begins right after atom's
559 <    beginRigidBodyIndex += info->getNGlobalAtoms();
560 <
561 <    for(mol = info->beginMolecule(mi); mol != NULL;
562 <        mol = info->nextMolecule(mi)) {
563 <
564 <        //local index(index in DataStorge) of atom is important
565 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
566 <            atom->setGlobalIndex(beginAtomIndex++);
567 <        }
568 <
569 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
570 <            rb = mol->nextRigidBody(ri)) {
571 <            rb->setGlobalIndex(beginRigidBodyIndex++);
572 <        }
573 <
574 <        //local index of cutoff group is trivial, it only depends on the order of travesing
575 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
576 <            cg = mol->nextCutoffGroup(ci)) {
577 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
578 <        }
579 <    }
580 <
581 <    //fill globalGroupMembership
582 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
583 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
584 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
585 <
586 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
587 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
588 <            }
589 <
590 <        }      
591 <    }
592 <
593 < #ifdef IS_MPI    
594 <    // Since the globalGroupMembership has been zero filled and we've only
595 <    // poked values into the atoms we know, we can do an Allreduce
596 <    // to get the full globalGroupMembership array (We think).
597 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
598 <    // docs said we could.
599 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
600 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
601 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
602 <     info->setGlobalGroupMembership(tmpGroupMembership);
603 < #else
604 <    info->setGlobalGroupMembership(globalGroupMembership);
605 < #endif
606 <
607 <    //fill molMembership
608 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
609 <    
610 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
611 <
612 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
613 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
614 <        }
615 <    }
616 <
617 < #ifdef IS_MPI
618 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
619 <
620 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
621 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
622 <    
623 <    info->setGlobalMolMembership(tmpMolMembership);
624 < #else
625 <    info->setGlobalMolMembership(globalMolMembership);
626 < #endif
627 <
628 < }
629 <
630 < void SimCreator::loadCoordinates(SimInfo* info) {
631 <    Globals* simParams;
632 <    simParams = info->getSimParams();
633 <    
634 <    if (!simParams->haveInitialConfig()) {
635 <        sprintf(painCave.errMsg,
636 <                "Cannot intialize a simulation without an initial configuration file.\n");
637 <        painCave.isFatal = 1;;
638 <        simError();
639 <    }
640 <        
641 <    DumpReader reader(info, simParams->getInitialConfig());
642 <    int nframes = reader.getNFrames();
643 <
644 <    if (nframes > 0) {
645 <        reader.readFrame(nframes - 1);
646 <    } else {
647 <        //invalid initial coordinate file
648 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
649 <                simParams->getInitialConfig());
650 <        painCave.isFatal = 1;
651 <        simError();
652 <    }
653 <
654 <    //copy the current snapshot to previous snapshot
655 <    info->getSnapshotManager()->advance();
656 < }
657 <
658 < } //end namespace oopse
659 <
660 <
1 > /*
2 > * copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimCreator.cpp
45 > * @author tlin
46 > * @date 11/03/2004
47 > * @version 1.0
48 > */
49 > #include <exception>
50 > #include <iostream>
51 > #include <sstream>
52 > #include <string>
53 >
54 > #include "brains/MoleculeCreator.hpp"
55 > #include "brains/SimCreator.hpp"
56 > #include "brains/SimSnapshotManager.hpp"
57 > #include "io/DumpReader.hpp"
58 > #include "brains/ForceField.hpp"
59 > #include "utils/simError.h"
60 > #include "utils/StringUtils.hpp"
61 > #include "math/SeqRandNumGen.hpp"
62 > #include "mdParser/MDLexer.hpp"
63 > #include "mdParser/MDParser.hpp"
64 > #include "mdParser/MDTreeParser.hpp"
65 > #include "mdParser/SimplePreprocessor.hpp"
66 > #include "antlr/ANTLRException.hpp"
67 > #include "antlr/TokenStreamRecognitionException.hpp"
68 > #include "antlr/TokenStreamIOException.hpp"
69 > #include "antlr/TokenStreamException.hpp"
70 > #include "antlr/RecognitionException.hpp"
71 > #include "antlr/CharStreamException.hpp"
72 >
73 > #include "antlr/MismatchedCharException.hpp"
74 > #include "antlr/MismatchedTokenException.hpp"
75 > #include "antlr/NoViableAltForCharException.hpp"
76 > #include "antlr/NoViableAltException.hpp"
77 >
78 > #include "types/DirectionalAdapter.hpp"
79 > #include "types/MultipoleAdapter.hpp"
80 > #include "types/EAMAdapter.hpp"
81 > #include "types/SuttonChenAdapter.hpp"
82 > #include "types/PolarizableAdapter.hpp"
83 > #include "types/FixedChargeAdapter.hpp"
84 > #include "types/FluctuatingChargeAdapter.hpp"
85 >
86 > #ifdef IS_MPI
87 > #include "mpi.h"
88 > #include "math/ParallelRandNumGen.hpp"
89 > #endif
90 >
91 > namespace OpenMD {
92 >  
93 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
94 >    Globals* simParams = NULL;
95 >    try {
96 >
97 >      // Create a preprocessor that preprocesses md file into an ostringstream
98 >      std::stringstream ppStream;
99 > #ifdef IS_MPI            
100 >      int streamSize;
101 >      const int masterNode = 0;
102 >
103 >      if (worldRank == masterNode) {
104 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
105 > #endif                
106 >        SimplePreprocessor preprocessor;
107 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock,
108 >                                ppStream);
109 >                
110 > #ifdef IS_MPI            
111 >        //brocasting the stream size
112 >        streamSize = ppStream.str().size() +1;
113 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
114 >        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI::CHAR, masterNode);
115 >                          
116 >      } else {
117 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
118 >
119 >        //get stream size
120 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
121 >
122 >        char* buf = new char[streamSize];
123 >        assert(buf);
124 >                
125 >        //receive file content
126 >        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
127 >                
128 >        ppStream.str(buf);
129 >        delete [] buf;
130 >      }
131 > #endif            
132 >      // Create a scanner that reads from the input stream
133 >      MDLexer lexer(ppStream);
134 >      lexer.setFilename(filename);
135 >      lexer.initDeferredLineCount();
136 >    
137 >      // Create a parser that reads from the scanner
138 >      MDParser parser(lexer);
139 >      parser.setFilename(filename);
140 >
141 >      // Create an observer that synchorizes file name change
142 >      FilenameObserver observer;
143 >      observer.setLexer(&lexer);
144 >      observer.setParser(&parser);
145 >      lexer.setObserver(&observer);
146 >    
147 >      antlr::ASTFactory factory;
148 >      parser.initializeASTFactory(factory);
149 >      parser.setASTFactory(&factory);
150 >      parser.mdfile();
151 >
152 >      // Create a tree parser that reads information into Globals
153 >      MDTreeParser treeParser;
154 >      treeParser.initializeASTFactory(factory);
155 >      treeParser.setASTFactory(&factory);
156 >      simParams = treeParser.walkTree(parser.getAST());
157 >    }
158 >
159 >      
160 >    catch(antlr::MismatchedCharException& e) {
161 >      sprintf(painCave.errMsg,
162 >              "parser exception: %s %s:%d:%d\n",
163 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
164 >      painCave.isFatal = 1;
165 >      simError();          
166 >    }
167 >    catch(antlr::MismatchedTokenException &e) {
168 >      sprintf(painCave.errMsg,
169 >              "parser exception: %s %s:%d:%d\n",
170 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
171 >      painCave.isFatal = 1;
172 >      simError();  
173 >    }
174 >    catch(antlr::NoViableAltForCharException &e) {
175 >      sprintf(painCave.errMsg,
176 >              "parser exception: %s %s:%d:%d\n",
177 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
178 >      painCave.isFatal = 1;
179 >      simError();  
180 >    }
181 >    catch(antlr::NoViableAltException &e) {
182 >      sprintf(painCave.errMsg,
183 >              "parser exception: %s %s:%d:%d\n",
184 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
185 >      painCave.isFatal = 1;
186 >      simError();  
187 >    }
188 >      
189 >    catch(antlr::TokenStreamRecognitionException& e) {
190 >      sprintf(painCave.errMsg,
191 >              "parser exception: %s %s:%d:%d\n",
192 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
193 >      painCave.isFatal = 1;
194 >      simError();  
195 >    }
196 >        
197 >    catch(antlr::TokenStreamIOException& e) {
198 >      sprintf(painCave.errMsg,
199 >              "parser exception: %s\n",
200 >              e.getMessage().c_str());
201 >      painCave.isFatal = 1;
202 >      simError();
203 >    }
204 >        
205 >    catch(antlr::TokenStreamException& e) {
206 >      sprintf(painCave.errMsg,
207 >              "parser exception: %s\n",
208 >              e.getMessage().c_str());
209 >      painCave.isFatal = 1;
210 >      simError();
211 >    }        
212 >    catch (antlr::RecognitionException& e) {
213 >      sprintf(painCave.errMsg,
214 >              "parser exception: %s %s:%d:%d\n",
215 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
216 >      painCave.isFatal = 1;
217 >      simError();          
218 >    }
219 >    catch (antlr::CharStreamException& e) {
220 >      sprintf(painCave.errMsg,
221 >              "parser exception: %s\n",
222 >              e.getMessage().c_str());
223 >      painCave.isFatal = 1;
224 >      simError();        
225 >    }
226 >    catch (OpenMDException& e) {
227 >      sprintf(painCave.errMsg,
228 >              "%s\n",
229 >              e.getMessage().c_str());
230 >      painCave.isFatal = 1;
231 >      simError();
232 >    }
233 >    catch (std::exception& e) {
234 >      sprintf(painCave.errMsg,
235 >              "parser exception: %s\n",
236 >              e.what());
237 >      painCave.isFatal = 1;
238 >      simError();
239 >    }
240 >
241 >    simParams->setMDfileVersion(mdFileVersion);
242 >    return simParams;
243 >  }
244 >  
245 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
246 >                                  bool loadInitCoords) {
247 >    
248 >    const int bufferSize = 65535;
249 >    char buffer[bufferSize];
250 >    int lineNo = 0;
251 >    std::string mdRawData;
252 >    int metaDataBlockStart = -1;
253 >    int metaDataBlockEnd = -1;
254 >    int i, j;
255 >    streamoff mdOffset;
256 >    int mdFileVersion;
257 >
258 >    // Create a string for embedding the version information in the MetaData
259 >    std::string version;
260 >    version.assign("## Last run using OpenMD Version: ");
261 >    version.append(OPENMD_VERSION_MAJOR);
262 >    version.append(".");
263 >    version.append(OPENMD_VERSION_MINOR);
264 >
265 >    std::string svnrev;
266 >    //convert a macro from compiler to a string in c++
267 >    STR_DEFINE(svnrev, SVN_REV );
268 >    version.append(" Revision: ");
269 >    // If there's no SVN revision, just call this the RELEASE revision.
270 >    if (!svnrev.empty()) {
271 >      version.append(svnrev);
272 >    } else {
273 >      version.append("RELEASE");
274 >    }
275 >  
276 > #ifdef IS_MPI            
277 >    const int masterNode = 0;
278 >    if (worldRank == masterNode) {
279 > #endif
280 >
281 >      std::ifstream mdFile_;
282 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
283 >      
284 >      if (mdFile_.fail()) {
285 >        sprintf(painCave.errMsg,
286 >                "SimCreator: Cannot open file: %s\n",
287 >                mdFileName.c_str());
288 >        painCave.isFatal = 1;
289 >        simError();
290 >      }
291 >
292 >      mdFile_.getline(buffer, bufferSize);
293 >      ++lineNo;
294 >      std::string line = trimLeftCopy(buffer);
295 >      i = CaseInsensitiveFind(line, "<OpenMD");
296 >      if (static_cast<size_t>(i) == string::npos) {
297 >        // try the older file strings to see if that works:
298 >        i = CaseInsensitiveFind(line, "<OOPSE");
299 >      }
300 >      
301 >      if (static_cast<size_t>(i) == string::npos) {
302 >        // still no luck!
303 >        sprintf(painCave.errMsg,
304 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
305 >                mdFileName.c_str());
306 >        painCave.isFatal = 1;
307 >        simError();
308 >      }
309 >      
310 >      // found the correct opening string, now try to get the file
311 >      // format version number.
312 >
313 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
314 >      std::string fileType = tokenizer.nextToken();
315 >      toUpper(fileType);
316 >
317 >      mdFileVersion = 0;
318 >
319 >      if (fileType == "OPENMD") {
320 >        while (tokenizer.hasMoreTokens()) {
321 >          std::string token(tokenizer.nextToken());
322 >          toUpper(token);
323 >          if (token == "VERSION") {
324 >            mdFileVersion = tokenizer.nextTokenAsInt();
325 >            break;
326 >          }
327 >        }
328 >      }
329 >            
330 >      //scan through the input stream and find MetaData tag        
331 >      while(mdFile_.getline(buffer, bufferSize)) {
332 >        ++lineNo;
333 >        
334 >        std::string line = trimLeftCopy(buffer);
335 >        if (metaDataBlockStart == -1) {
336 >          i = CaseInsensitiveFind(line, "<MetaData>");
337 >          if (i != string::npos) {
338 >            metaDataBlockStart = lineNo;
339 >            mdOffset = mdFile_.tellg();
340 >          }
341 >        } else {
342 >          i = CaseInsensitiveFind(line, "</MetaData>");
343 >          if (i != string::npos) {
344 >            metaDataBlockEnd = lineNo;
345 >          }
346 >        }
347 >      }
348 >
349 >      if (metaDataBlockStart == -1) {
350 >        sprintf(painCave.errMsg,
351 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
352 >                mdFileName.c_str());
353 >        painCave.isFatal = 1;
354 >        simError();
355 >      }
356 >      if (metaDataBlockEnd == -1) {
357 >        sprintf(painCave.errMsg,
358 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
359 >                mdFileName.c_str());
360 >        painCave.isFatal = 1;
361 >        simError();
362 >      }
363 >        
364 >      mdFile_.clear();
365 >      mdFile_.seekg(0);
366 >      mdFile_.seekg(mdOffset);
367 >
368 >      mdRawData.clear();
369 >
370 >      bool foundVersion = false;
371 >
372 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
373 >        mdFile_.getline(buffer, bufferSize);
374 >        std::string line = trimLeftCopy(buffer);
375 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
376 >        if (static_cast<size_t>(j) != string::npos) {
377 >          foundVersion = true;
378 >          mdRawData += version;
379 >        } else {
380 >          mdRawData += buffer;
381 >        }
382 >        mdRawData += "\n";
383 >      }
384 >      
385 >      if (!foundVersion) mdRawData += version + "\n";
386 >      
387 >      mdFile_.close();
388 >
389 > #ifdef IS_MPI
390 >    }
391 > #endif
392 >
393 >    std::stringstream rawMetaDataStream(mdRawData);
394 >
395 >    //parse meta-data file
396 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
397 >                                   metaDataBlockStart + 1);
398 >    
399 >    //create the force field
400 >    ForceField * ff = new ForceField(simParams->getForceField());
401 >
402 >    if (ff == NULL) {
403 >      sprintf(painCave.errMsg,
404 >              "ForceField Factory can not create %s force field\n",
405 >              simParams->getForceField().c_str());
406 >      painCave.isFatal = 1;
407 >      simError();
408 >    }
409 >    
410 >    if (simParams->haveForceFieldFileName()) {
411 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
412 >    }
413 >    
414 >    std::string forcefieldFileName;
415 >    forcefieldFileName = ff->getForceFieldFileName();
416 >    
417 >    if (simParams->haveForceFieldVariant()) {
418 >      //If the force field has variant, the variant force field name will be
419 >      //Base.variant.frc. For exampel EAM.u6.frc
420 >      
421 >      std::string variant = simParams->getForceFieldVariant();
422 >      
423 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
424 >      variant = "." + variant;
425 >      if (pos != std::string::npos) {
426 >        forcefieldFileName.insert(pos, variant);
427 >      } else {
428 >        //If the default force field file name does not containt .frc suffix, just append the .variant
429 >        forcefieldFileName.append(variant);
430 >      }
431 >    }
432 >    
433 >    ff->parse(forcefieldFileName);
434 >    //create SimInfo
435 >    SimInfo * info = new SimInfo(ff, simParams);
436 >
437 >    info->setRawMetaData(mdRawData);
438 >    
439 >    //gather parameters (SimCreator only retrieves part of the
440 >    //parameters)
441 >    gatherParameters(info, mdFileName);
442 >    
443 >    //divide the molecules and determine the global index of molecules
444 > #ifdef IS_MPI
445 >    divideMolecules(info);
446 > #endif
447 >    
448 >    //create the molecules
449 >    createMolecules(info);
450 >    
451 >    //find the storage layout
452 >
453 >    int storageLayout = computeStorageLayout(info);
454 >
455 >    //allocate memory for DataStorage(circular reference, need to
456 >    //break it)
457 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
458 >    
459 >    //set the global index of atoms, rigidbodies and cutoffgroups
460 >    //(only need to be set once, the global index will never change
461 >    //again). Local indices of atoms and rigidbodies are already set
462 >    //by MoleculeCreator class which actually delegates the
463 >    //responsibility to LocalIndexManager.
464 >    setGlobalIndex(info);
465 >    
466 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
467 >    //method, at that point atoms don't have the global index yet
468 >    //(their global index are all initialized to -1).  Therefore we
469 >    //have to call addInteractionPairs explicitly here. A way to work
470 >    //around is that we can determine the beginning global indices of
471 >    //atoms before they get created.
472 >    SimInfo::MoleculeIterator mi;
473 >    Molecule* mol;
474 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
475 >      info->addInteractionPairs(mol);
476 >    }
477 >    
478 >    if (loadInitCoords)
479 >      loadCoordinates(info, mdFileName);    
480 >    return info;
481 >  }
482 >  
483 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
484 >    
485 >    //figure out the output file names
486 >    std::string prefix;
487 >    
488 > #ifdef IS_MPI
489 >    
490 >    if (worldRank == 0) {
491 > #endif // is_mpi
492 >      Globals * simParams = info->getSimParams();
493 >      if (simParams->haveFinalConfig()) {
494 >        prefix = getPrefix(simParams->getFinalConfig());
495 >      } else {
496 >        prefix = getPrefix(mdfile);
497 >      }
498 >      
499 >      info->setFinalConfigFileName(prefix + ".eor");
500 >      info->setDumpFileName(prefix + ".dump");
501 >      info->setStatFileName(prefix + ".stat");
502 >      info->setRestFileName(prefix + ".zang");
503 >      
504 > #ifdef IS_MPI
505 >      
506 >    }
507 >    
508 > #endif
509 >    
510 >  }
511 >  
512 > #ifdef IS_MPI
513 >  void SimCreator::divideMolecules(SimInfo *info) {
514 >    RealType a;
515 >    int nProcessors;
516 >    std::vector<int> atomsPerProc;
517 >    int nGlobalMols = info->getNGlobalMolecules();
518 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
519 >                                                    // error
520 >                                                    // condition:
521 >    
522 >    nProcessors = MPI::COMM_WORLD.Get_size();
523 >    
524 >    if (nProcessors > nGlobalMols) {
525 >      sprintf(painCave.errMsg,
526 >              "nProcessors (%d) > nMol (%d)\n"
527 >              "\tThe number of processors is larger than\n"
528 >              "\tthe number of molecules.  This will not result in a \n"
529 >              "\tusable division of atoms for force decomposition.\n"
530 >              "\tEither try a smaller number of processors, or run the\n"
531 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
532 >              nGlobalMols);
533 >      
534 >      painCave.isFatal = 1;
535 >      simError();
536 >    }
537 >    
538 >    Globals * simParams = info->getSimParams();
539 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
540 >                             //random number generator
541 >    if (simParams->haveSeed()) {
542 >      int seedValue = simParams->getSeed();
543 >      myRandom = new SeqRandNumGen(seedValue);
544 >    }else {
545 >      myRandom = new SeqRandNumGen();
546 >    }  
547 >    
548 >    
549 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
550 >    
551 >    //initialize atomsPerProc
552 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
553 >    
554 >    if (worldRank == 0) {
555 >      RealType numerator = info->getNGlobalAtoms();
556 >      RealType denominator = nProcessors;
557 >      RealType precast = numerator / denominator;
558 >      int nTarget = (int)(precast + 0.5);
559 >      
560 >      for(int i = 0; i < nGlobalMols; i++) {
561 >
562 >        int done = 0;
563 >        int loops = 0;
564 >        
565 >        while (!done) {
566 >          loops++;
567 >          
568 >          // Pick a processor at random
569 >          
570 >          int which_proc = (int) (myRandom->rand() * nProcessors);
571 >          
572 >          //get the molecule stamp first
573 >          int stampId = info->getMoleculeStampId(i);
574 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
575 >          
576 >          // How many atoms does this processor have so far?
577 >          int old_atoms = atomsPerProc[which_proc];
578 >          int add_atoms = moleculeStamp->getNAtoms();
579 >          int new_atoms = old_atoms + add_atoms;
580 >          
581 >          // If we've been through this loop too many times, we need
582 >          // to just give up and assign the molecule to this processor
583 >          // and be done with it.
584 >          
585 >          if (loops > 100) {
586 >
587 >            sprintf(painCave.errMsg,
588 >                    "There have been 100 attempts to assign molecule %d to an\n"
589 >                    "\tunderworked processor, but there's no good place to\n"
590 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
591 >                    i, which_proc);
592 >          
593 >            painCave.isFatal = 0;
594 >            painCave.severity = OPENMD_INFO;
595 >            simError();
596 >            
597 >            molToProcMap[i] = which_proc;
598 >            atomsPerProc[which_proc] += add_atoms;
599 >            
600 >            done = 1;
601 >            continue;
602 >          }
603 >          
604 >          // If we can add this molecule to this processor without sending
605 >          // it above nTarget, then go ahead and do it:
606 >          
607 >          if (new_atoms <= nTarget) {
608 >            molToProcMap[i] = which_proc;
609 >            atomsPerProc[which_proc] += add_atoms;
610 >            
611 >            done = 1;
612 >            continue;
613 >          }
614 >          
615 >          // The only situation left is when new_atoms > nTarget.  We
616 >          // want to accept this with some probability that dies off the
617 >          // farther we are from nTarget
618 >          
619 >          // roughly:  x = new_atoms - nTarget
620 >          //           Pacc(x) = exp(- a * x)
621 >          // where a = penalty / (average atoms per molecule)
622 >          
623 >          RealType x = (RealType)(new_atoms - nTarget);
624 >          RealType y = myRandom->rand();
625 >          
626 >          if (y < exp(- a * x)) {
627 >            molToProcMap[i] = which_proc;
628 >            atomsPerProc[which_proc] += add_atoms;
629 >            
630 >            done = 1;
631 >            continue;
632 >          } else {
633 >            continue;
634 >          }
635 >        }
636 >      }
637 >      
638 >      delete myRandom;
639 >
640 >      // Spray out this nonsense to all other processors:
641 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
642 >    } else {
643 >      
644 >      // Listen to your marching orders from processor 0:
645 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
646 >
647 >    }
648 >    
649 >    info->setMolToProcMap(molToProcMap);
650 >    sprintf(checkPointMsg,
651 >            "Successfully divided the molecules among the processors.\n");
652 >    errorCheckPoint();
653 >  }
654 >  
655 > #endif
656 >  
657 >  void SimCreator::createMolecules(SimInfo *info) {
658 >    MoleculeCreator molCreator;
659 >    int stampId;
660 >    
661 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
662 >      
663 > #ifdef IS_MPI
664 >      
665 >      if (info->getMolToProc(i) == worldRank) {
666 > #endif
667 >        
668 >        stampId = info->getMoleculeStampId(i);
669 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
670 >                                                   info->getMoleculeStamp(stampId),
671 >                                                   stampId, i,
672 >                                                   info->getLocalIndexManager());
673 >        
674 >        info->addMolecule(mol);
675 >        
676 > #ifdef IS_MPI
677 >        
678 >      }
679 >      
680 > #endif
681 >      
682 >    } //end for(int i=0)  
683 >  }
684 >    
685 >  int SimCreator::computeStorageLayout(SimInfo* info) {
686 >
687 >    Globals* simParams = info->getSimParams();
688 >    int nRigidBodies = info->getNGlobalRigidBodies();
689 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
690 >    set<AtomType*>::iterator i;
691 >    bool hasDirectionalAtoms = false;
692 >    bool hasFixedCharge = false;
693 >    bool hasDipoles = false;    
694 >    bool hasQuadrupoles = false;    
695 >    bool hasPolarizable = false;    
696 >    bool hasFluctuatingCharge = false;    
697 >    bool hasMetallic = false;
698 >    int storageLayout = 0;
699 >    storageLayout |= DataStorage::dslPosition;
700 >    storageLayout |= DataStorage::dslVelocity;
701 >    storageLayout |= DataStorage::dslForce;
702 >
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
704 >
705 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
706 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
707 >      EAMAdapter ea = EAMAdapter( (*i) );
708 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
709 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
710 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
711 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
712 >
713 >      if (da.isDirectional()){
714 >        hasDirectionalAtoms = true;
715 >      }
716 >      if (ma.isDipole()){
717 >        hasDipoles = true;
718 >      }
719 >      if (ma.isQuadrupole()){
720 >        hasQuadrupoles = true;
721 >      }
722 >      if (ea.isEAM() || sca.isSuttonChen()){
723 >        hasMetallic = true;
724 >      }
725 >      if ( fca.isFixedCharge() ){
726 >        hasFixedCharge = true;
727 >      }
728 >      if ( fqa.isFluctuatingCharge() ){
729 >        hasFluctuatingCharge = true;
730 >      }
731 >      if ( pa.isPolarizable() ){
732 >        hasPolarizable = true;
733 >      }
734 >    }
735 >    
736 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
737 >      storageLayout |= DataStorage::dslAmat;
738 >      if(storageLayout & DataStorage::dslVelocity) {
739 >        storageLayout |= DataStorage::dslAngularMomentum;
740 >      }
741 >      if (storageLayout & DataStorage::dslForce) {
742 >        storageLayout |= DataStorage::dslTorque;
743 >      }
744 >    }
745 >    if (hasDipoles) {
746 >      storageLayout |= DataStorage::dslDipole;
747 >    }
748 >    if (hasQuadrupoles) {
749 >      storageLayout |= DataStorage::dslQuadrupole;
750 >    }
751 >    if (hasFixedCharge || hasFluctuatingCharge) {
752 >      storageLayout |= DataStorage::dslSkippedCharge;
753 >    }
754 >    if (hasMetallic) {
755 >      storageLayout |= DataStorage::dslDensity;
756 >      storageLayout |= DataStorage::dslFunctional;
757 >      storageLayout |= DataStorage::dslFunctionalDerivative;
758 >    }
759 >    if (hasPolarizable) {
760 >      storageLayout |= DataStorage::dslElectricField;
761 >    }
762 >    if (hasFluctuatingCharge){
763 >      storageLayout |= DataStorage::dslFlucQPosition;
764 >      if(storageLayout & DataStorage::dslVelocity) {
765 >        storageLayout |= DataStorage::dslFlucQVelocity;
766 >      }
767 >      if (storageLayout & DataStorage::dslForce) {
768 >        storageLayout |= DataStorage::dslFlucQForce;
769 >      }
770 >    }
771 >    
772 >    // if the user has asked for them, make sure we've got the memory for the
773 >    // objects defined.
774 >
775 >    if (simParams->getOutputParticlePotential()) {
776 >      storageLayout |= DataStorage::dslParticlePot;
777 >    }
778 >
779 >    if (simParams->havePrintHeatFlux()) {
780 >      if (simParams->getPrintHeatFlux()) {
781 >        storageLayout |= DataStorage::dslParticlePot;
782 >      }
783 >    }
784 >
785 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
786 >      storageLayout |= DataStorage::dslElectricField;
787 >    }
788 >
789 >    if (simParams->getOutputFluctuatingCharges()) {
790 >      storageLayout |= DataStorage::dslFlucQPosition;
791 >      storageLayout |= DataStorage::dslFlucQVelocity;
792 >      storageLayout |= DataStorage::dslFlucQForce;
793 >    }
794 >
795 >    info->setStorageLayout(storageLayout);
796 >
797 >    return storageLayout;
798 >  }
799 >
800 >  void SimCreator::setGlobalIndex(SimInfo *info) {
801 >    SimInfo::MoleculeIterator mi;
802 >    Molecule::AtomIterator ai;
803 >    Molecule::RigidBodyIterator ri;
804 >    Molecule::CutoffGroupIterator ci;
805 >    Molecule::IntegrableObjectIterator  ioi;
806 >    Molecule * mol;
807 >    Atom * atom;
808 >    RigidBody * rb;
809 >    CutoffGroup * cg;
810 >    int beginAtomIndex;
811 >    int beginRigidBodyIndex;
812 >    int beginCutoffGroupIndex;
813 >    int nGlobalAtoms = info->getNGlobalAtoms();
814 >    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
815 >    
816 >    beginAtomIndex = 0;
817 >    //rigidbody's index begins right after atom's
818 >    beginRigidBodyIndex = info->getNGlobalAtoms();
819 >    beginCutoffGroupIndex = 0;
820 >
821 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
822 >      
823 > #ifdef IS_MPI      
824 >      if (info->getMolToProc(i) == worldRank) {
825 > #endif        
826 >        // stuff to do if I own this molecule
827 >        mol = info->getMoleculeByGlobalIndex(i);
828 >
829 >        //local index(index in DataStorge) of atom is important
830 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
831 >          atom->setGlobalIndex(beginAtomIndex++);
832 >        }
833 >        
834 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
835 >            rb = mol->nextRigidBody(ri)) {
836 >          rb->setGlobalIndex(beginRigidBodyIndex++);
837 >        }
838 >        
839 >        //local index of cutoff group is trivial, it only depends on
840 >        //the order of travesing
841 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
842 >            cg = mol->nextCutoffGroup(ci)) {
843 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
844 >        }        
845 >        
846 > #ifdef IS_MPI        
847 >      }  else {
848 >
849 >        // stuff to do if I don't own this molecule
850 >        
851 >        int stampId = info->getMoleculeStampId(i);
852 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
853 >
854 >        beginAtomIndex += stamp->getNAtoms();
855 >        beginRigidBodyIndex += stamp->getNRigidBodies();
856 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
857 >      }
858 > #endif          
859 >
860 >    } //end for(int i=0)  
861 >
862 >    //fill globalGroupMembership
863 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
864 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
865 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
866 >        
867 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
868 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
869 >        }
870 >        
871 >      }      
872 >    }
873 >  
874 > #ifdef IS_MPI    
875 >    // Since the globalGroupMembership has been zero filled and we've only
876 >    // poked values into the atoms we know, we can do an Allreduce
877 >    // to get the full globalGroupMembership array (We think).
878 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
879 >    // docs said we could.
880 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
881 >    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
882 >                              &tmpGroupMembership[0], nGlobalAtoms,
883 >                              MPI::INT, MPI::SUM);
884 >    info->setGlobalGroupMembership(tmpGroupMembership);
885 > #else
886 >    info->setGlobalGroupMembership(globalGroupMembership);
887 > #endif
888 >    
889 >    //fill molMembership
890 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
891 >                                         info->getNGlobalRigidBodies(), 0);
892 >    
893 >    for(mol = info->beginMolecule(mi); mol != NULL;
894 >        mol = info->nextMolecule(mi)) {
895 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
897 >      }
898 >      for (rb = mol->beginRigidBody(ri); rb != NULL;
899 >           rb = mol->nextRigidBody(ri)) {
900 >        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
901 >      }
902 >    }
903 >    
904 > #ifdef IS_MPI
905 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
906 >                                      info->getNGlobalRigidBodies(), 0);
907 >    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
908 >                              nGlobalAtoms + nGlobalRigidBodies,
909 >                              MPI::INT, MPI::SUM);
910 >    
911 >    info->setGlobalMolMembership(tmpMolMembership);
912 > #else
913 >    info->setGlobalMolMembership(globalMolMembership);
914 > #endif
915 >
916 >    // nIOPerMol holds the number of integrable objects per molecule
917 >    // here the molecules are listed by their global indices.
918 >
919 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
920 >    for (mol = info->beginMolecule(mi); mol != NULL;
921 >         mol = info->nextMolecule(mi)) {
922 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
923 >    }
924 >    
925 > #ifdef IS_MPI
926 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
927 >    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
928 >                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
929 > #else
930 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
931 > #endif    
932 >
933 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
934 >    
935 >    int startingIndex = 0;
936 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
937 >      startingIOIndexForMol[i] = startingIndex;
938 >      startingIndex += numIntegrableObjectsPerMol[i];
939 >    }
940 >    
941 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
942 >    for (mol = info->beginMolecule(mi); mol != NULL;
943 >         mol = info->nextMolecule(mi)) {
944 >      int myGlobalIndex = mol->getGlobalIndex();
945 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
946 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
947 >           sd = mol->nextIntegrableObject(ioi)) {
948 >        sd->setGlobalIntegrableObjectIndex(globalIO);
949 >        IOIndexToIntegrableObject[globalIO] = sd;
950 >        globalIO++;
951 >      }
952 >    }
953 >      
954 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
955 >    
956 >  }
957 >  
958 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
959 >    
960 >    DumpReader reader(info, mdFileName);
961 >    int nframes = reader.getNFrames();
962 >    
963 >    if (nframes > 0) {
964 >      reader.readFrame(nframes - 1);
965 >    } else {
966 >      //invalid initial coordinate file
967 >      sprintf(painCave.errMsg,
968 >              "Initial configuration file %s should at least contain one frame\n",
969 >              mdFileName.c_str());
970 >      painCave.isFatal = 1;
971 >      simError();
972 >    }
973 >    //copy the current snapshot to previous snapshot
974 >    info->getSnapshotManager()->advance();
975 >  }
976 >  
977 > } //end namespace OpenMD
978 >
979 >

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 381 by tim, Tue Mar 1 14:45:45 2005 UTC vs.
Revision 1879 by gezelter, Sun Jun 16 15:15:42 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines