ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 381 by tim, Tue Mar 1 14:45:45 2005 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #ifdef IS_MPI
61 < #include "io/mpiBASS.h"
62 < #include "math/randomSPRNG.hpp"
63 < #endif
64 <
65 < namespace oopse {
66 <
67 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
68 <
69 < #ifdef IS_MPI
70 <
71 <    if (worldRank == 0) {
72 < #endif // is_mpi
73 <
74 <        simParams->initalize();
75 <        set_interface_stamps(stamps, simParams);
76 <
77 < #ifdef IS_MPI
78 <
79 <        mpiEventInit();
80 <
81 < #endif
82 <
83 <        yacc_BASS(mdFileName.c_str());
84 <
85 < #ifdef IS_MPI
86 <
87 <        throwMPIEvent(NULL);
88 <    } else {
89 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
93 <    }
94 <
95 < #endif
96 <
97 < }
98 <
99 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
100 <    
101 <    MakeStamps * stamps = new MakeStamps();
102 <
103 <    Globals * simParams = new Globals();
104 <
105 <    //parse meta-data file
106 <    parseFile(mdFileName, stamps, simParams);
107 <
108 <    //create the force field
109 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
110 <                          simParams->getForceField());
111 <    
112 <    if (ff == NULL) {
113 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
114 <                simParams->getForceField());
115 <        painCave.isFatal = 1;
116 <        simError();
117 <    }
118 <
119 <    if (simParams->haveForceFieldFileName()) {
120 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
121 <    }
122 <    
123 <    std::string forcefieldFileName;
124 <    forcefieldFileName = ff->getForceFieldFileName();
125 <
126 <    if (simParams->haveForceFieldVariant()) {
127 <        //If the force field has variant, the variant force field name will be
128 <        //Base.variant.frc. For exampel EAM.u6.frc
129 <        
130 <        std::string variant = simParams->getForceFieldVariant();
131 <
132 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
133 <        variant = "." + variant;
134 <        if (pos != std::string::npos) {
135 <            forcefieldFileName.insert(pos, variant);
136 <        } else {
137 <            //If the default force field file name does not containt .frc suffix, just append the .variant
138 <            forcefieldFileName.append(variant);
139 <        }
140 <    }
141 <    
142 <    ff->parse(forcefieldFileName);
143 <    
144 <    //extract the molecule stamps
145 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146 <    compList(stamps, simParams, moleculeStampPairs);
147 <
148 <    //create SimInfo
149 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
150 <
151 <    //gather parameters (SimCreator only retrieves part of the parameters)
152 <    gatherParameters(info, mdFileName);
153 <
154 <    //divide the molecules and determine the global index of molecules
155 < #ifdef IS_MPI
156 <    divideMolecules(info);
157 < #endif
158 <
159 <    //create the molecules
160 <    createMolecules(info);
161 <
162 <
163 <    //allocate memory for DataStorage(circular reference, need to break it)
164 <    info->setSnapshotManager(new SimSnapshotManager(info));
165 <    
166 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
167 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
168 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
169 <    setGlobalIndex(info);
170 <
171 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
172 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
173 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
174 <    //we can determine the beginning global indices of atoms before they get created.
175 <    SimInfo::MoleculeIterator mi;
176 <    Molecule* mol;
177 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
178 <        info->addExcludePairs(mol);
179 <    }
180 <    
181 <
182 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183 <    //eta, chi for NPT integrator)
184 <    if (loadInitCoords)
185 <        loadCoordinates(info);    
186 <    
187 <    return info;
188 < }
189 <
190 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
191 <
192 <    //setup seed for random number generator
193 <    int seedValue;
194 <    Globals * simParams = info->getSimParams();
195 <
196 <    if (simParams->haveSeed()) {
197 <        seedValue = simParams->getSeed();
198 <
199 <        if (seedValue < 100000000 ) {
200 <            sprintf(painCave.errMsg,
201 <                    "Seed for sprng library should contain at least 9 digits\n"
202 <                        "OOPSE will generate a seed for user\n");
203 <
204 <            painCave.isFatal = 0;
205 <            simError();
206 <
207 <            //using seed generated by system instead of invalid seed set by user
208 <
209 < #ifndef IS_MPI
210 <
211 <            seedValue = make_sprng_seed();
212 <
213 < #else
214 <
215 <            if (worldRank == 0) {
216 <                seedValue = make_sprng_seed();
217 <            }
218 <
219 <            MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
220 <
221 < #endif
222 <
223 <        } //end if (seedValue /1000000000 == 0)
224 <    } else {
225 <
226 < #ifndef IS_MPI
227 <
228 <        seedValue = make_sprng_seed();
229 <
230 < #else
231 <
232 <        if (worldRank == 0) {
233 <            seedValue = make_sprng_seed();
234 <        }
235 <
236 <        MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
237 <
238 < #endif
239 <
240 <    } //end of simParams->haveSeed()
241 <
242 <    info->setSeed(seedValue);
243 <
244 <
245 <    //figure out the ouput file names
246 <    std::string prefix;
247 <
248 < #ifdef IS_MPI
249 <
250 <    if (worldRank == 0) {
251 < #endif // is_mpi
252 <
253 <        if (simParams->haveFinalConfig()) {
254 <            prefix = getPrefix(simParams->getFinalConfig());
255 <        } else {
256 <            prefix = getPrefix(mdfile);
257 <        }
258 <
259 <        info->setFinalConfigFileName(prefix + ".eor");
260 <        info->setDumpFileName(prefix + ".dump");
261 <        info->setStatFileName(prefix + ".stat");
262 <
263 < #ifdef IS_MPI
264 <
265 <    }
266 <
267 < #endif
268 <
269 < }
270 <
271 < #ifdef IS_MPI
272 < void SimCreator::divideMolecules(SimInfo *info) {
273 <    double numerator;
274 <    double denominator;
275 <    double precast;
276 <    double x;
277 <    double y;
278 <    double a;
279 <    int old_atoms;
280 <    int add_atoms;
281 <    int new_atoms;
282 <    int nTarget;
283 <    int done;
284 <    int i;
285 <    int j;
286 <    int loops;
287 <    int which_proc;
288 <    int nProcessors;
289 <    std::vector<int> atomsPerProc;
290 <    int nGlobalMols = info->getNGlobalMolecules();
291 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
292 <    
293 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
294 <
295 <    if (nProcessors > nGlobalMols) {
296 <        sprintf(painCave.errMsg,
297 <                "nProcessors (%d) > nMol (%d)\n"
298 <                    "\tThe number of processors is larger than\n"
299 <                    "\tthe number of molecules.  This will not result in a \n"
300 <                    "\tusable division of atoms for force decomposition.\n"
301 <                    "\tEither try a smaller number of processors, or run the\n"
302 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
303 <
304 <        painCave.isFatal = 1;
305 <        simError();
306 <    }
307 <
308 <    MTRand myRandom(info->getSeed(), nProcessors, worldRank);
309 <
310 <
311 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
312 <
313 <    //initialize atomsPerProc
314 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
315 <
316 <    if (worldRank == 0) {
317 <        numerator = info->getNGlobalAtoms();
318 <        denominator = nProcessors;
319 <        precast = numerator / denominator;
320 <        nTarget = (int)(precast + 0.5);
321 <
322 <        for(i = 0; i < nGlobalMols; i++) {
323 <            done = 0;
324 <            loops = 0;
325 <
326 <            while (!done) {
327 <                loops++;
328 <
329 <                // Pick a processor at random
330 <
331 <                which_proc = (int) (myRandom.rand() * nProcessors);
332 <
333 <                //get the molecule stamp first
334 <                int stampId = info->getMoleculeStampId(i);
335 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
336 <
337 <                // How many atoms does this processor have so far?
338 <                old_atoms = atomsPerProc[which_proc];
339 <                add_atoms = moleculeStamp->getNAtoms();
340 <                new_atoms = old_atoms + add_atoms;
341 <
342 <                // If we've been through this loop too many times, we need
343 <                // to just give up and assign the molecule to this processor
344 <                // and be done with it.
345 <
346 <                if (loops > 100) {
347 <                    sprintf(painCave.errMsg,
348 <                            "I've tried 100 times to assign molecule %d to a "
349 <                                " processor, but can't find a good spot.\n"
350 <                                "I'm assigning it at random to processor %d.\n",
351 <                            i, which_proc);
352 <
353 <                    painCave.isFatal = 0;
354 <                    simError();
355 <
356 <                    molToProcMap[i] = which_proc;
357 <                    atomsPerProc[which_proc] += add_atoms;
358 <
359 <                    done = 1;
360 <                    continue;
361 <                }
362 <
363 <                // If we can add this molecule to this processor without sending
364 <                // it above nTarget, then go ahead and do it:
365 <
366 <                if (new_atoms <= nTarget) {
367 <                    molToProcMap[i] = which_proc;
368 <                    atomsPerProc[which_proc] += add_atoms;
369 <
370 <                    done = 1;
371 <                    continue;
372 <                }
373 <
374 <                // The only situation left is when new_atoms > nTarget.  We
375 <                // want to accept this with some probability that dies off the
376 <                // farther we are from nTarget
377 <
378 <                // roughly:  x = new_atoms - nTarget
379 <                //           Pacc(x) = exp(- a * x)
380 <                // where a = penalty / (average atoms per molecule)
381 <
382 <                x = (double)(new_atoms - nTarget);
383 <                y = myRandom.getRandom();
384 <
385 <                if (y < exp(- a * x)) {
386 <                    molToProcMap[i] = which_proc;
387 <                    atomsPerProc[which_proc] += add_atoms;
388 <
389 <                    done = 1;
390 <                    continue;
391 <                } else {
392 <                    continue;
393 <                }
394 <            }
395 <        }
396 <
397 <        // Spray out this nonsense to all other processors:
398 <
399 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
400 <    } else {
401 <
402 <        // Listen to your marching orders from processor 0:
403 <
404 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
405 <    }
406 <
407 <    info->setMolToProcMap(molToProcMap);
408 <    sprintf(checkPointMsg,
409 <            "Successfully divided the molecules among the processors.\n");
410 <    MPIcheckPoint();
411 < }
412 <
413 < #endif
414 <
415 < void SimCreator::createMolecules(SimInfo *info) {
416 <    MoleculeCreator molCreator;
417 <    int stampId;
418 <
419 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
420 <
421 < #ifdef IS_MPI
422 <
423 <        if (info->getMolToProc(i) == worldRank) {
424 < #endif
425 <
426 <            stampId = info->getMoleculeStampId(i);
427 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
428 <                                                                                    stampId, i, info->getLocalIndexManager());
429 <
430 <            info->addMolecule(mol);
431 <
432 < #ifdef IS_MPI
433 <
434 <        }
435 <
436 < #endif
437 <
438 <    } //end for(int i=0)  
439 < }
440 <
441 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
442 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
443 <    int i;
444 <    char * id;
445 <    MoleculeStamp * currentStamp;
446 <    Component** the_components = simParams->getComponents();
447 <    int n_components = simParams->getNComponents();
448 <
449 <    if (!simParams->haveNMol()) {
450 <        // we don't have the total number of molecules, so we assume it is
451 <        // given in each component
452 <
453 <        for(i = 0; i < n_components; i++) {
454 <            if (!the_components[i]->haveNMol()) {
455 <                // we have a problem
456 <                sprintf(painCave.errMsg,
457 <                        "SimCreator Error. No global NMol or component NMol given.\n"
458 <                            "\tCannot calculate the number of atoms.\n");
459 <
460 <                painCave.isFatal = 1;
461 <                simError();
462 <            }
463 <
464 <            id = the_components[i]->getType();
465 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
466 <
467 <            if (currentStamp == NULL) {
468 <                sprintf(painCave.errMsg,
469 <                        "SimCreator error: Component \"%s\" was not found in the "
470 <                            "list of declared molecules\n", id);
471 <
472 <                painCave.isFatal = 1;
473 <                simError();
474 <            }
475 <
476 <            moleculeStampPairs.push_back(
477 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
478 <        } //end for (i = 0; i < n_components; i++)
479 <    } else {
480 <        sprintf(painCave.errMsg, "SimSetup error.\n"
481 <                                     "\tSorry, the ability to specify total"
482 <                                     " nMols and then give molfractions in the components\n"
483 <                                     "\tis not currently supported."
484 <                                     " Please give nMol in the components.\n");
485 <
486 <        painCave.isFatal = 1;
487 <        simError();
488 <    }
489 <
490 < #ifdef IS_MPI
491 <
492 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
493 <    MPIcheckPoint();
494 <
495 < #endif // is_mpi
496 <
497 < }
498 <
499 < void SimCreator::setGlobalIndex(SimInfo *info) {
500 <    SimInfo::MoleculeIterator mi;
501 <    Molecule::AtomIterator ai;
502 <    Molecule::RigidBodyIterator ri;
503 <    Molecule::CutoffGroupIterator ci;
504 <    Molecule * mol;
505 <    Atom * atom;
506 <    RigidBody * rb;
507 <    CutoffGroup * cg;
508 <    int beginAtomIndex;
509 <    int beginRigidBodyIndex;
510 <    int beginCutoffGroupIndex;
511 <    int nGlobalAtoms = info->getNGlobalAtoms();
512 <    
513 < #ifndef IS_MPI
514 <
515 <    beginAtomIndex = 0;
516 <    beginRigidBodyIndex = 0;
517 <    beginCutoffGroupIndex = 0;
518 <
519 < #else
520 <
521 <    int nproc;
522 <    int myNode;
523 <
524 <    myNode = worldRank;
525 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
526 <
527 <    std::vector < int > tmpAtomsInProc(nproc, 0);
528 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
529 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
530 <    std::vector < int > NumAtomsInProc(nproc, 0);
531 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
532 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
533 <
534 <    tmpAtomsInProc[myNode] = info->getNAtoms();
535 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
536 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
537 <
538 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
539 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
540 <                  MPI_SUM, MPI_COMM_WORLD);
541 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
542 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
543 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
544 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
545 <
546 <    beginAtomIndex = 0;
547 <    beginRigidBodyIndex = 0;
548 <    beginCutoffGroupIndex = 0;
549 <
550 <    for(int i = 0; i < myNode; i++) {
551 <        beginAtomIndex += NumAtomsInProc[i];
552 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
553 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
554 <    }
555 <
556 < #endif
557 <
558 <    //rigidbody's index begins right after atom's
559 <    beginRigidBodyIndex += info->getNGlobalAtoms();
560 <
561 <    for(mol = info->beginMolecule(mi); mol != NULL;
562 <        mol = info->nextMolecule(mi)) {
563 <
564 <        //local index(index in DataStorge) of atom is important
565 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
566 <            atom->setGlobalIndex(beginAtomIndex++);
567 <        }
568 <
569 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
570 <            rb = mol->nextRigidBody(ri)) {
571 <            rb->setGlobalIndex(beginRigidBodyIndex++);
572 <        }
573 <
574 <        //local index of cutoff group is trivial, it only depends on the order of travesing
575 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
576 <            cg = mol->nextCutoffGroup(ci)) {
577 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
578 <        }
579 <    }
580 <
581 <    //fill globalGroupMembership
582 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
583 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
584 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
585 <
586 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
587 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
588 <            }
589 <
590 <        }      
591 <    }
592 <
593 < #ifdef IS_MPI    
594 <    // Since the globalGroupMembership has been zero filled and we've only
595 <    // poked values into the atoms we know, we can do an Allreduce
596 <    // to get the full globalGroupMembership array (We think).
597 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
598 <    // docs said we could.
599 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
600 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
601 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
602 <     info->setGlobalGroupMembership(tmpGroupMembership);
603 < #else
604 <    info->setGlobalGroupMembership(globalGroupMembership);
605 < #endif
606 <
607 <    //fill molMembership
608 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
609 <    
610 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
611 <
612 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
613 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
614 <        }
615 <    }
616 <
617 < #ifdef IS_MPI
618 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
619 <
620 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
621 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
622 <    
623 <    info->setGlobalMolMembership(tmpMolMembership);
624 < #else
625 <    info->setGlobalMolMembership(globalMolMembership);
626 < #endif
627 <
628 < }
629 <
630 < void SimCreator::loadCoordinates(SimInfo* info) {
631 <    Globals* simParams;
632 <    simParams = info->getSimParams();
633 <    
634 <    if (!simParams->haveInitialConfig()) {
635 <        sprintf(painCave.errMsg,
636 <                "Cannot intialize a simulation without an initial configuration file.\n");
637 <        painCave.isFatal = 1;;
638 <        simError();
639 <    }
640 <        
641 <    DumpReader reader(info, simParams->getInitialConfig());
642 <    int nframes = reader.getNFrames();
643 <
644 <    if (nframes > 0) {
645 <        reader.readFrame(nframes - 1);
646 <    } else {
647 <        //invalid initial coordinate file
648 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
649 <                simParams->getInitialConfig());
650 <        painCave.isFatal = 1;
651 <        simError();
652 <    }
653 <
654 <    //copy the current snapshot to previous snapshot
655 <    info->getSnapshotManager()->advance();
656 < }
657 <
658 < } //end namespace oopse
659 <
660 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimCreator.cpp
45 > * @author tlin
46 > * @date 11/03/2004
47 > * @time 13:51am
48 > * @version 1.0
49 > */
50 > #include <exception>
51 > #include <iostream>
52 > #include <sstream>
53 > #include <string>
54 >
55 > #include "brains/MoleculeCreator.hpp"
56 > #include "brains/SimCreator.hpp"
57 > #include "brains/SimSnapshotManager.hpp"
58 > #include "io/DumpReader.hpp"
59 > #include "brains/ForceField.hpp"
60 > #include "utils/simError.h"
61 > #include "utils/StringUtils.hpp"
62 > #include "math/SeqRandNumGen.hpp"
63 > #include "mdParser/MDLexer.hpp"
64 > #include "mdParser/MDParser.hpp"
65 > #include "mdParser/MDTreeParser.hpp"
66 > #include "mdParser/SimplePreprocessor.hpp"
67 > #include "antlr/ANTLRException.hpp"
68 > #include "antlr/TokenStreamRecognitionException.hpp"
69 > #include "antlr/TokenStreamIOException.hpp"
70 > #include "antlr/TokenStreamException.hpp"
71 > #include "antlr/RecognitionException.hpp"
72 > #include "antlr/CharStreamException.hpp"
73 >
74 > #include "antlr/MismatchedCharException.hpp"
75 > #include "antlr/MismatchedTokenException.hpp"
76 > #include "antlr/NoViableAltForCharException.hpp"
77 > #include "antlr/NoViableAltException.hpp"
78 >
79 > #include "types/DirectionalAdapter.hpp"
80 > #include "types/MultipoleAdapter.hpp"
81 > #include "types/EAMAdapter.hpp"
82 > #include "types/SuttonChenAdapter.hpp"
83 > #include "types/PolarizableAdapter.hpp"
84 > #include "types/FixedChargeAdapter.hpp"
85 > #include "types/FluctuatingChargeAdapter.hpp"
86 >
87 > #ifdef IS_MPI
88 > #include "mpi.h"
89 > #include "math/ParallelRandNumGen.hpp"
90 > #endif
91 >
92 > namespace OpenMD {
93 >  
94 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
95 >    Globals* simParams = NULL;
96 >    try {
97 >
98 >      // Create a preprocessor that preprocesses md file into an ostringstream
99 >      std::stringstream ppStream;
100 > #ifdef IS_MPI            
101 >      int streamSize;
102 >      const int masterNode = 0;
103 >      int commStatus;
104 >      if (worldRank == masterNode) {
105 >        commStatus = MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
106 > #endif                
107 >        SimplePreprocessor preprocessor;
108 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
109 >                
110 > #ifdef IS_MPI            
111 >        //brocasting the stream size
112 >        streamSize = ppStream.str().size() +1;
113 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
114 >
115 >        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
116 >            
117 >                
118 >      } else {
119 >
120 >        commStatus = MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
121 >
122 >        //get stream size
123 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
124 >
125 >        char* buf = new char[streamSize];
126 >        assert(buf);
127 >                
128 >        //receive file content
129 >        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
130 >                
131 >        ppStream.str(buf);
132 >        delete [] buf;
133 >
134 >      }
135 > #endif            
136 >      // Create a scanner that reads from the input stream
137 >      MDLexer lexer(ppStream);
138 >      lexer.setFilename(filename);
139 >      lexer.initDeferredLineCount();
140 >    
141 >      // Create a parser that reads from the scanner
142 >      MDParser parser(lexer);
143 >      parser.setFilename(filename);
144 >
145 >      // Create an observer that synchorizes file name change
146 >      FilenameObserver observer;
147 >      observer.setLexer(&lexer);
148 >      observer.setParser(&parser);
149 >      lexer.setObserver(&observer);
150 >    
151 >      antlr::ASTFactory factory;
152 >      parser.initializeASTFactory(factory);
153 >      parser.setASTFactory(&factory);
154 >      parser.mdfile();
155 >
156 >      // Create a tree parser that reads information into Globals
157 >      MDTreeParser treeParser;
158 >      treeParser.initializeASTFactory(factory);
159 >      treeParser.setASTFactory(&factory);
160 >      simParams = treeParser.walkTree(parser.getAST());
161 >    }
162 >
163 >      
164 >    catch(antlr::MismatchedCharException& e) {
165 >      sprintf(painCave.errMsg,
166 >              "parser exception: %s %s:%d:%d\n",
167 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
168 >      painCave.isFatal = 1;
169 >      simError();          
170 >    }
171 >    catch(antlr::MismatchedTokenException &e) {
172 >      sprintf(painCave.errMsg,
173 >              "parser exception: %s %s:%d:%d\n",
174 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
175 >      painCave.isFatal = 1;
176 >      simError();  
177 >    }
178 >    catch(antlr::NoViableAltForCharException &e) {
179 >      sprintf(painCave.errMsg,
180 >              "parser exception: %s %s:%d:%d\n",
181 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
182 >      painCave.isFatal = 1;
183 >      simError();  
184 >    }
185 >    catch(antlr::NoViableAltException &e) {
186 >      sprintf(painCave.errMsg,
187 >              "parser exception: %s %s:%d:%d\n",
188 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
189 >      painCave.isFatal = 1;
190 >      simError();  
191 >    }
192 >      
193 >    catch(antlr::TokenStreamRecognitionException& e) {
194 >      sprintf(painCave.errMsg,
195 >              "parser exception: %s %s:%d:%d\n",
196 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
197 >      painCave.isFatal = 1;
198 >      simError();  
199 >    }
200 >        
201 >    catch(antlr::TokenStreamIOException& e) {
202 >      sprintf(painCave.errMsg,
203 >              "parser exception: %s\n",
204 >              e.getMessage().c_str());
205 >      painCave.isFatal = 1;
206 >      simError();
207 >    }
208 >        
209 >    catch(antlr::TokenStreamException& e) {
210 >      sprintf(painCave.errMsg,
211 >              "parser exception: %s\n",
212 >              e.getMessage().c_str());
213 >      painCave.isFatal = 1;
214 >      simError();
215 >    }        
216 >    catch (antlr::RecognitionException& e) {
217 >      sprintf(painCave.errMsg,
218 >              "parser exception: %s %s:%d:%d\n",
219 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
220 >      painCave.isFatal = 1;
221 >      simError();          
222 >    }
223 >    catch (antlr::CharStreamException& e) {
224 >      sprintf(painCave.errMsg,
225 >              "parser exception: %s\n",
226 >              e.getMessage().c_str());
227 >      painCave.isFatal = 1;
228 >      simError();        
229 >    }
230 >    catch (OpenMDException& e) {
231 >      sprintf(painCave.errMsg,
232 >              "%s\n",
233 >              e.getMessage().c_str());
234 >      painCave.isFatal = 1;
235 >      simError();
236 >    }
237 >    catch (std::exception& e) {
238 >      sprintf(painCave.errMsg,
239 >              "parser exception: %s\n",
240 >              e.what());
241 >      painCave.isFatal = 1;
242 >      simError();
243 >    }
244 >
245 >    simParams->setMDfileVersion(mdFileVersion);
246 >    return simParams;
247 >  }
248 >  
249 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
250 >                                  bool loadInitCoords) {
251 >    
252 >    const int bufferSize = 65535;
253 >    char buffer[bufferSize];
254 >    int lineNo = 0;
255 >    std::string mdRawData;
256 >    int metaDataBlockStart = -1;
257 >    int metaDataBlockEnd = -1;
258 >    int i;
259 >    streamoff mdOffset;
260 >    int mdFileVersion;
261 >
262 > #ifdef IS_MPI            
263 >    const int masterNode = 0;
264 >    if (worldRank == masterNode) {
265 > #endif
266 >
267 >      std::ifstream mdFile_(mdFileName.c_str());
268 >      
269 >      if (mdFile_.fail()) {
270 >        sprintf(painCave.errMsg,
271 >                "SimCreator: Cannot open file: %s\n",
272 >                mdFileName.c_str());
273 >        painCave.isFatal = 1;
274 >        simError();
275 >      }
276 >
277 >      mdFile_.getline(buffer, bufferSize);
278 >      ++lineNo;
279 >      std::string line = trimLeftCopy(buffer);
280 >      i = CaseInsensitiveFind(line, "<OpenMD");
281 >      if (static_cast<size_t>(i) == string::npos) {
282 >        // try the older file strings to see if that works:
283 >        i = CaseInsensitiveFind(line, "<OOPSE");
284 >      }
285 >      
286 >      if (static_cast<size_t>(i) == string::npos) {
287 >        // still no luck!
288 >        sprintf(painCave.errMsg,
289 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
290 >                mdFileName.c_str());
291 >        painCave.isFatal = 1;
292 >        simError();
293 >      }
294 >      
295 >      // found the correct opening string, now try to get the file
296 >      // format version number.
297 >
298 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
299 >      std::string fileType = tokenizer.nextToken();
300 >      toUpper(fileType);
301 >
302 >      mdFileVersion = 0;
303 >
304 >      if (fileType == "OPENMD") {
305 >        while (tokenizer.hasMoreTokens()) {
306 >          std::string token(tokenizer.nextToken());
307 >          toUpper(token);
308 >          if (token == "VERSION") {
309 >            mdFileVersion = tokenizer.nextTokenAsInt();
310 >            break;
311 >          }
312 >        }
313 >      }
314 >            
315 >      //scan through the input stream and find MetaData tag        
316 >      while(mdFile_.getline(buffer, bufferSize)) {
317 >        ++lineNo;
318 >        
319 >        std::string line = trimLeftCopy(buffer);
320 >        if (metaDataBlockStart == -1) {
321 >          i = CaseInsensitiveFind(line, "<MetaData>");
322 >          if (i != string::npos) {
323 >            metaDataBlockStart = lineNo;
324 >            mdOffset = mdFile_.tellg();
325 >          }
326 >        } else {
327 >          i = CaseInsensitiveFind(line, "</MetaData>");
328 >          if (i != string::npos) {
329 >            metaDataBlockEnd = lineNo;
330 >          }
331 >        }
332 >      }
333 >
334 >      if (metaDataBlockStart == -1) {
335 >        sprintf(painCave.errMsg,
336 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
337 >                mdFileName.c_str());
338 >        painCave.isFatal = 1;
339 >        simError();
340 >      }
341 >      if (metaDataBlockEnd == -1) {
342 >        sprintf(painCave.errMsg,
343 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
344 >                mdFileName.c_str());
345 >        painCave.isFatal = 1;
346 >        simError();
347 >      }
348 >        
349 >      mdFile_.clear();
350 >      mdFile_.seekg(0);
351 >      mdFile_.seekg(mdOffset);
352 >
353 >      mdRawData.clear();
354 >
355 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
356 >        mdFile_.getline(buffer, bufferSize);
357 >        mdRawData += buffer;
358 >        mdRawData += "\n";
359 >      }
360 >
361 >      mdFile_.close();
362 >
363 > #ifdef IS_MPI
364 >    }
365 > #endif
366 >
367 >    std::stringstream rawMetaDataStream(mdRawData);
368 >
369 >    //parse meta-data file
370 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
371 >                                   metaDataBlockStart + 1);
372 >    
373 >    //create the force field
374 >    ForceField * ff = new ForceField(simParams->getForceField());
375 >
376 >    if (ff == NULL) {
377 >      sprintf(painCave.errMsg,
378 >              "ForceField Factory can not create %s force field\n",
379 >              simParams->getForceField().c_str());
380 >      painCave.isFatal = 1;
381 >      simError();
382 >    }
383 >    
384 >    if (simParams->haveForceFieldFileName()) {
385 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
386 >    }
387 >    
388 >    std::string forcefieldFileName;
389 >    forcefieldFileName = ff->getForceFieldFileName();
390 >    
391 >    if (simParams->haveForceFieldVariant()) {
392 >      //If the force field has variant, the variant force field name will be
393 >      //Base.variant.frc. For exampel EAM.u6.frc
394 >      
395 >      std::string variant = simParams->getForceFieldVariant();
396 >      
397 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
398 >      variant = "." + variant;
399 >      if (pos != std::string::npos) {
400 >        forcefieldFileName.insert(pos, variant);
401 >      } else {
402 >        //If the default force field file name does not containt .frc suffix, just append the .variant
403 >        forcefieldFileName.append(variant);
404 >      }
405 >    }
406 >    
407 >    ff->parse(forcefieldFileName);
408 >    //create SimInfo
409 >    SimInfo * info = new SimInfo(ff, simParams);
410 >
411 >    info->setRawMetaData(mdRawData);
412 >    
413 >    //gather parameters (SimCreator only retrieves part of the
414 >    //parameters)
415 >    gatherParameters(info, mdFileName);
416 >    
417 >    //divide the molecules and determine the global index of molecules
418 > #ifdef IS_MPI
419 >    divideMolecules(info);
420 > #endif
421 >    
422 >    //create the molecules
423 >    createMolecules(info);
424 >    
425 >    //find the storage layout
426 >
427 >    int storageLayout = computeStorageLayout(info);
428 >
429 >    //allocate memory for DataStorage(circular reference, need to
430 >    //break it)
431 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
432 >    
433 >    //set the global index of atoms, rigidbodies and cutoffgroups
434 >    //(only need to be set once, the global index will never change
435 >    //again). Local indices of atoms and rigidbodies are already set
436 >    //by MoleculeCreator class which actually delegates the
437 >    //responsibility to LocalIndexManager.
438 >    setGlobalIndex(info);
439 >    
440 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
441 >    //method, at that point atoms don't have the global index yet
442 >    //(their global index are all initialized to -1).  Therefore we
443 >    //have to call addInteractionPairs explicitly here. A way to work
444 >    //around is that we can determine the beginning global indices of
445 >    //atoms before they get created.
446 >    SimInfo::MoleculeIterator mi;
447 >    Molecule* mol;
448 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
449 >      info->addInteractionPairs(mol);
450 >    }
451 >    
452 >    if (loadInitCoords)
453 >      loadCoordinates(info, mdFileName);    
454 >    return info;
455 >  }
456 >  
457 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
458 >    
459 >    //figure out the output file names
460 >    std::string prefix;
461 >    
462 > #ifdef IS_MPI
463 >    
464 >    if (worldRank == 0) {
465 > #endif // is_mpi
466 >      Globals * simParams = info->getSimParams();
467 >      if (simParams->haveFinalConfig()) {
468 >        prefix = getPrefix(simParams->getFinalConfig());
469 >      } else {
470 >        prefix = getPrefix(mdfile);
471 >      }
472 >      
473 >      info->setFinalConfigFileName(prefix + ".eor");
474 >      info->setDumpFileName(prefix + ".dump");
475 >      info->setStatFileName(prefix + ".stat");
476 >      info->setRestFileName(prefix + ".zang");
477 >      
478 > #ifdef IS_MPI
479 >      
480 >    }
481 >    
482 > #endif
483 >    
484 >  }
485 >  
486 > #ifdef IS_MPI
487 >  void SimCreator::divideMolecules(SimInfo *info) {
488 >    RealType numerator;
489 >    RealType denominator;
490 >    RealType precast;
491 >    RealType x;
492 >    RealType y;
493 >    RealType a;
494 >    int old_atoms;
495 >    int add_atoms;
496 >    int new_atoms;
497 >    int nTarget;
498 >    int done;
499 >    int i;
500 >    int j;
501 >    int loops;
502 >    int which_proc;
503 >    int nProcessors;
504 >    std::vector<int> atomsPerProc;
505 >    int nGlobalMols = info->getNGlobalMolecules();
506 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
507 >    
508 >    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
509 >    
510 >    if (nProcessors > nGlobalMols) {
511 >      sprintf(painCave.errMsg,
512 >              "nProcessors (%d) > nMol (%d)\n"
513 >              "\tThe number of processors is larger than\n"
514 >              "\tthe number of molecules.  This will not result in a \n"
515 >              "\tusable division of atoms for force decomposition.\n"
516 >              "\tEither try a smaller number of processors, or run the\n"
517 >              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
518 >      
519 >      painCave.isFatal = 1;
520 >      simError();
521 >    }
522 >    
523 >    int seedValue;
524 >    Globals * simParams = info->getSimParams();
525 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
526 >    if (simParams->haveSeed()) {
527 >      seedValue = simParams->getSeed();
528 >      myRandom = new SeqRandNumGen(seedValue);
529 >    }else {
530 >      myRandom = new SeqRandNumGen();
531 >    }  
532 >    
533 >    
534 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
535 >    
536 >    //initialize atomsPerProc
537 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
538 >    
539 >    if (worldRank == 0) {
540 >      numerator = info->getNGlobalAtoms();
541 >      denominator = nProcessors;
542 >      precast = numerator / denominator;
543 >      nTarget = (int)(precast + 0.5);
544 >      
545 >      for(i = 0; i < nGlobalMols; i++) {
546 >        done = 0;
547 >        loops = 0;
548 >        
549 >        while (!done) {
550 >          loops++;
551 >          
552 >          // Pick a processor at random
553 >          
554 >          which_proc = (int) (myRandom->rand() * nProcessors);
555 >          
556 >          //get the molecule stamp first
557 >          int stampId = info->getMoleculeStampId(i);
558 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
559 >          
560 >          // How many atoms does this processor have so far?
561 >          old_atoms = atomsPerProc[which_proc];
562 >          add_atoms = moleculeStamp->getNAtoms();
563 >          new_atoms = old_atoms + add_atoms;
564 >          
565 >          // If we've been through this loop too many times, we need
566 >          // to just give up and assign the molecule to this processor
567 >          // and be done with it.
568 >          
569 >          if (loops > 100) {
570 >            sprintf(painCave.errMsg,
571 >                    "I've tried 100 times to assign molecule %d to a "
572 >                    " processor, but can't find a good spot.\n"
573 >                    "I'm assigning it at random to processor %d.\n",
574 >                    i, which_proc);
575 >            
576 >            painCave.isFatal = 0;
577 >            simError();
578 >            
579 >            molToProcMap[i] = which_proc;
580 >            atomsPerProc[which_proc] += add_atoms;
581 >            
582 >            done = 1;
583 >            continue;
584 >          }
585 >          
586 >          // If we can add this molecule to this processor without sending
587 >          // it above nTarget, then go ahead and do it:
588 >          
589 >          if (new_atoms <= nTarget) {
590 >            molToProcMap[i] = which_proc;
591 >            atomsPerProc[which_proc] += add_atoms;
592 >            
593 >            done = 1;
594 >            continue;
595 >          }
596 >          
597 >          // The only situation left is when new_atoms > nTarget.  We
598 >          // want to accept this with some probability that dies off the
599 >          // farther we are from nTarget
600 >          
601 >          // roughly:  x = new_atoms - nTarget
602 >          //           Pacc(x) = exp(- a * x)
603 >          // where a = penalty / (average atoms per molecule)
604 >          
605 >          x = (RealType)(new_atoms - nTarget);
606 >          y = myRandom->rand();
607 >          
608 >          if (y < exp(- a * x)) {
609 >            molToProcMap[i] = which_proc;
610 >            atomsPerProc[which_proc] += add_atoms;
611 >            
612 >            done = 1;
613 >            continue;
614 >          } else {
615 >            continue;
616 >          }
617 >        }
618 >      }
619 >      
620 >      delete myRandom;
621 >      
622 >      // Spray out this nonsense to all other processors:
623 >      
624 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
625 >    } else {
626 >      
627 >      // Listen to your marching orders from processor 0:
628 >      
629 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
630 >    }
631 >    
632 >    info->setMolToProcMap(molToProcMap);
633 >    sprintf(checkPointMsg,
634 >            "Successfully divided the molecules among the processors.\n");
635 >    errorCheckPoint();
636 >  }
637 >  
638 > #endif
639 >  
640 >  void SimCreator::createMolecules(SimInfo *info) {
641 >    MoleculeCreator molCreator;
642 >    int stampId;
643 >    
644 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
645 >      
646 > #ifdef IS_MPI
647 >      
648 >      if (info->getMolToProc(i) == worldRank) {
649 > #endif
650 >        
651 >        stampId = info->getMoleculeStampId(i);
652 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
653 >                                                   info->getMoleculeStamp(stampId),
654 >                                                   stampId, i,
655 >                                                   info->getLocalIndexManager());
656 >        
657 >        info->addMolecule(mol);
658 >        
659 > #ifdef IS_MPI
660 >        
661 >      }
662 >      
663 > #endif
664 >      
665 >    } //end for(int i=0)  
666 >  }
667 >    
668 >  int SimCreator::computeStorageLayout(SimInfo* info) {
669 >
670 >    Globals* simParams = info->getSimParams();
671 >    int nRigidBodies = info->getNGlobalRigidBodies();
672 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
673 >    set<AtomType*>::iterator i;
674 >    bool hasDirectionalAtoms = false;
675 >    bool hasFixedCharge = false;
676 >    bool hasMultipoles = false;    
677 >    bool hasPolarizable = false;    
678 >    bool hasFluctuatingCharge = false;    
679 >    bool hasMetallic = false;
680 >    int storageLayout = 0;
681 >    storageLayout |= DataStorage::dslPosition;
682 >    storageLayout |= DataStorage::dslVelocity;
683 >    storageLayout |= DataStorage::dslForce;
684 >
685 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
686 >
687 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
688 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
689 >      EAMAdapter ea = EAMAdapter( (*i) );
690 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
691 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
692 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
693 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
694 >
695 >      if (da.isDirectional()){
696 >        hasDirectionalAtoms = true;
697 >      }
698 >      if (ma.isMultipole()){
699 >        hasMultipoles = true;
700 >      }
701 >      if (ea.isEAM() || sca.isSuttonChen()){
702 >        hasMetallic = true;
703 >      }
704 >      if ( fca.isFixedCharge() ){
705 >        hasFixedCharge = true;
706 >      }
707 >      if ( fqa.isFluctuatingCharge() ){
708 >        hasFluctuatingCharge = true;
709 >      }
710 >      if ( pa.isPolarizable() ){
711 >        hasPolarizable = true;
712 >      }
713 >    }
714 >    
715 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
716 >      storageLayout |= DataStorage::dslAmat;
717 >      if(storageLayout & DataStorage::dslVelocity) {
718 >        storageLayout |= DataStorage::dslAngularMomentum;
719 >      }
720 >      if (storageLayout & DataStorage::dslForce) {
721 >        storageLayout |= DataStorage::dslTorque;
722 >      }
723 >    }
724 >    if (hasMultipoles) {
725 >      storageLayout |= DataStorage::dslElectroFrame;
726 >    }
727 >    if (hasFixedCharge || hasFluctuatingCharge) {
728 >      storageLayout |= DataStorage::dslSkippedCharge;
729 >    }
730 >    if (hasMetallic) {
731 >      storageLayout |= DataStorage::dslDensity;
732 >      storageLayout |= DataStorage::dslFunctional;
733 >      storageLayout |= DataStorage::dslFunctionalDerivative;
734 >    }
735 >    if (hasPolarizable) {
736 >      storageLayout |= DataStorage::dslElectricField;
737 >    }
738 >    if (hasFluctuatingCharge){
739 >      storageLayout |= DataStorage::dslFlucQPosition;
740 >      if(storageLayout & DataStorage::dslVelocity) {
741 >        storageLayout |= DataStorage::dslFlucQVelocity;
742 >      }
743 >      if (storageLayout & DataStorage::dslForce) {
744 >        storageLayout |= DataStorage::dslFlucQForce;
745 >      }
746 >    }
747 >    
748 >    // if the user has asked for them, make sure we've got the memory for the
749 >    // objects defined.
750 >
751 >    if (simParams->getOutputParticlePotential()) {
752 >      storageLayout |= DataStorage::dslParticlePot;
753 >    }
754 >
755 >    if (simParams->havePrintHeatFlux()) {
756 >      if (simParams->getPrintHeatFlux()) {
757 >        storageLayout |= DataStorage::dslParticlePot;
758 >      }
759 >    }
760 >
761 >    if (simParams->getOutputElectricField()) {
762 >      storageLayout |= DataStorage::dslElectricField;
763 >    }
764 >    if (simParams->getOutputFluctuatingCharges()) {
765 >      storageLayout |= DataStorage::dslFlucQPosition;
766 >      storageLayout |= DataStorage::dslFlucQVelocity;
767 >      storageLayout |= DataStorage::dslFlucQForce;
768 >    }
769 >
770 >    return storageLayout;
771 >  }
772 >
773 >  void SimCreator::setGlobalIndex(SimInfo *info) {
774 >    SimInfo::MoleculeIterator mi;
775 >    Molecule::AtomIterator ai;
776 >    Molecule::RigidBodyIterator ri;
777 >    Molecule::CutoffGroupIterator ci;
778 >    Molecule::IntegrableObjectIterator  ioi;
779 >    Molecule * mol;
780 >    Atom * atom;
781 >    RigidBody * rb;
782 >    CutoffGroup * cg;
783 >    int beginAtomIndex;
784 >    int beginRigidBodyIndex;
785 >    int beginCutoffGroupIndex;
786 >    int nGlobalAtoms = info->getNGlobalAtoms();
787 >    
788 >    beginAtomIndex = 0;
789 >    //rigidbody's index begins right after atom's
790 >    beginRigidBodyIndex = info->getNGlobalAtoms();
791 >    beginCutoffGroupIndex = 0;
792 >
793 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
794 >      
795 > #ifdef IS_MPI      
796 >      if (info->getMolToProc(i) == worldRank) {
797 > #endif        
798 >        // stuff to do if I own this molecule
799 >        mol = info->getMoleculeByGlobalIndex(i);
800 >
801 >        //local index(index in DataStorge) of atom is important
802 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
803 >          atom->setGlobalIndex(beginAtomIndex++);
804 >        }
805 >        
806 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
807 >            rb = mol->nextRigidBody(ri)) {
808 >          rb->setGlobalIndex(beginRigidBodyIndex++);
809 >        }
810 >        
811 >        //local index of cutoff group is trivial, it only depends on
812 >        //the order of travesing
813 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
814 >            cg = mol->nextCutoffGroup(ci)) {
815 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
816 >        }        
817 >        
818 > #ifdef IS_MPI        
819 >      }  else {
820 >
821 >        // stuff to do if I don't own this molecule
822 >        
823 >        int stampId = info->getMoleculeStampId(i);
824 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
825 >
826 >        beginAtomIndex += stamp->getNAtoms();
827 >        beginRigidBodyIndex += stamp->getNRigidBodies();
828 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
829 >      }
830 > #endif          
831 >
832 >    } //end for(int i=0)  
833 >
834 >    //fill globalGroupMembership
835 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
836 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
837 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
838 >        
839 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
840 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
841 >        }
842 >        
843 >      }      
844 >    }
845 >  
846 > #ifdef IS_MPI    
847 >    // Since the globalGroupMembership has been zero filled and we've only
848 >    // poked values into the atoms we know, we can do an Allreduce
849 >    // to get the full globalGroupMembership array (We think).
850 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
851 >    // docs said we could.
852 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
853 >    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
854 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
855 >    info->setGlobalGroupMembership(tmpGroupMembership);
856 > #else
857 >    info->setGlobalGroupMembership(globalGroupMembership);
858 > #endif
859 >    
860 >    //fill molMembership
861 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
862 >    
863 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
864 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
865 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
866 >      }
867 >    }
868 >    
869 > #ifdef IS_MPI
870 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
871 >    
872 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
873 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
874 >    
875 >    info->setGlobalMolMembership(tmpMolMembership);
876 > #else
877 >    info->setGlobalMolMembership(globalMolMembership);
878 > #endif
879 >
880 >    // nIOPerMol holds the number of integrable objects per molecule
881 >    // here the molecules are listed by their global indices.
882 >
883 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
884 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
885 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
886 >    }
887 >    
888 > #ifdef IS_MPI
889 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
890 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
891 >                  info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
892 > #else
893 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
894 > #endif    
895 >
896 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
897 >    
898 >    int startingIndex = 0;
899 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
900 >      startingIOIndexForMol[i] = startingIndex;
901 >      startingIndex += numIntegrableObjectsPerMol[i];
902 >    }
903 >    
904 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
905 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
906 >      int myGlobalIndex = mol->getGlobalIndex();
907 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
908 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
909 >           sd = mol->nextIntegrableObject(ioi)) {
910 >        sd->setGlobalIntegrableObjectIndex(globalIO);
911 >        IOIndexToIntegrableObject[globalIO] = sd;
912 >        globalIO++;
913 >      }
914 >    }
915 >      
916 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
917 >    
918 >  }
919 >  
920 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
921 >    Globals* simParams;
922 >
923 >    simParams = info->getSimParams();
924 >    
925 >    DumpReader reader(info, mdFileName);
926 >    int nframes = reader.getNFrames();
927 >
928 >    if (nframes > 0) {
929 >      reader.readFrame(nframes - 1);
930 >    } else {
931 >      //invalid initial coordinate file
932 >      sprintf(painCave.errMsg,
933 >              "Initial configuration file %s should at least contain one frame\n",
934 >              mdFileName.c_str());
935 >      painCave.isFatal = 1;
936 >      simError();
937 >    }
938 >    //copy the current snapshot to previous snapshot
939 >    info->getSnapshotManager()->advance();
940 >  }
941 >  
942 > } //end namespace OpenMD
943 >
944 >

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 381 by tim, Tue Mar 1 14:45:45 2005 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines