ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 273 by tim, Tue Jan 25 17:45:23 2005 UTC vs.
Revision 1976 by gezelter, Wed Mar 12 20:01:15 2014 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file SimCreator.cpp
45   * @author tlin
46   * @date 11/03/2004
46 * @time 13:51am
47   * @version 1.0
48   */
49  
50 < #include <sprng.h>
50 > #ifdef IS_MPI
51 > #include "mpi.h"
52 > #include "math/ParallelRandNumGen.hpp"
53 > #endif
54  
55 + #include <exception>
56 + #include <iostream>
57 + #include <sstream>
58 + #include <string>
59 +
60   #include "brains/MoleculeCreator.hpp"
61   #include "brains/SimCreator.hpp"
62   #include "brains/SimSnapshotManager.hpp"
63   #include "io/DumpReader.hpp"
64 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
64 > #include "brains/ForceField.hpp"
65   #include "utils/simError.h"
66   #include "utils/StringUtils.hpp"
67 < #ifdef IS_MPI
68 < #include "io/mpiBASS.h"
69 < #include "math/randomSPRNG.hpp"
70 < #endif
67 > #include "utils/Revision.hpp"
68 > #include "math/SeqRandNumGen.hpp"
69 > #include "mdParser/MDLexer.hpp"
70 > #include "mdParser/MDParser.hpp"
71 > #include "mdParser/MDTreeParser.hpp"
72 > #include "mdParser/SimplePreprocessor.hpp"
73 > #include "antlr/ANTLRException.hpp"
74 > #include "antlr/TokenStreamRecognitionException.hpp"
75 > #include "antlr/TokenStreamIOException.hpp"
76 > #include "antlr/TokenStreamException.hpp"
77 > #include "antlr/RecognitionException.hpp"
78 > #include "antlr/CharStreamException.hpp"
79  
80 < namespace oopse {
80 > #include "antlr/MismatchedCharException.hpp"
81 > #include "antlr/MismatchedTokenException.hpp"
82 > #include "antlr/NoViableAltForCharException.hpp"
83 > #include "antlr/NoViableAltException.hpp"
84  
85 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
85 > #include "types/DirectionalAdapter.hpp"
86 > #include "types/MultipoleAdapter.hpp"
87 > #include "types/EAMAdapter.hpp"
88 > #include "types/SuttonChenAdapter.hpp"
89 > #include "types/PolarizableAdapter.hpp"
90 > #include "types/FixedChargeAdapter.hpp"
91 > #include "types/FluctuatingChargeAdapter.hpp"
92  
69 #ifdef IS_MPI
93  
94 <    if (worldRank == 0) {
95 < #endif // is_mpi
94 > namespace OpenMD {
95 >  
96 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
97 >    Globals* simParams = NULL;
98 >    try {
99  
100 <        simParams->initalize();
101 <        set_interface_stamps(stamps, simParams);
100 >      // Create a preprocessor that preprocesses md file into an ostringstream
101 >      std::stringstream ppStream;
102 > #ifdef IS_MPI            
103 >      int streamSize;
104 >      const int masterNode = 0;
105  
106 < #ifdef IS_MPI
106 >      if (worldRank == masterNode) {
107 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
108 >        // MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
109 > #endif                
110 >        SimplePreprocessor preprocessor;
111 >        preprocessor.preprocess(rawMetaDataStream, filename,
112 >                                startOfMetaDataBlock, ppStream);
113 >                
114 > #ifdef IS_MPI            
115 >        //broadcasting the stream size
116 >        streamSize = ppStream.str().size() +1;
117 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
118 >        MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
119 >                  streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
120  
121 <        mpiEventInit();
121 >        // MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
122 >        // MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
123 >        //                       streamSize, MPI::CHAR, masterNode);
124 >                          
125 >      } else {
126  
127 < #endif
127 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
128 >        // MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
129  
130 <        yacc_BASS(mdFileName.c_str());
130 >        //get stream size
131 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
132 >        // MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
133 >        char* buf = new char[streamSize];
134 >        assert(buf);
135 >                
136 >        //receive file content
137 >        MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
138 >        // MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
139  
140 < #ifdef IS_MPI
140 >        ppStream.str(buf);
141 >        delete [] buf;
142 >      }
143 > #endif            
144 >      // Create a scanner that reads from the input stream
145 >      MDLexer lexer(ppStream);
146 >      lexer.setFilename(filename);
147 >      lexer.initDeferredLineCount();
148 >    
149 >      // Create a parser that reads from the scanner
150 >      MDParser parser(lexer);
151 >      parser.setFilename(filename);
152  
153 <        throwMPIEvent(NULL);
153 >      // Create an observer that synchorizes file name change
154 >      FilenameObserver observer;
155 >      observer.setLexer(&lexer);
156 >      observer.setParser(&parser);
157 >      lexer.setObserver(&observer);
158 >    
159 >      antlr::ASTFactory factory;
160 >      parser.initializeASTFactory(factory);
161 >      parser.setASTFactory(&factory);
162 >      parser.mdfile();
163 >      // Create a tree parser that reads information into Globals
164 >      MDTreeParser treeParser;
165 >      treeParser.initializeASTFactory(factory);
166 >      treeParser.setASTFactory(&factory);
167 >      simParams = treeParser.walkTree(parser.getAST());
168 >    }
169 >
170 >      
171 >    catch(antlr::MismatchedCharException& e) {
172 >      sprintf(painCave.errMsg,
173 >              "parser exception: %s %s:%d:%d\n",
174 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
175 >      painCave.isFatal = 1;
176 >      simError();          
177 >    }
178 >    catch(antlr::MismatchedTokenException &e) {
179 >      sprintf(painCave.errMsg,
180 >              "parser exception: %s %s:%d:%d\n",
181 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
182 >      painCave.isFatal = 1;
183 >      simError();  
184 >    }
185 >    catch(antlr::NoViableAltForCharException &e) {
186 >      sprintf(painCave.errMsg,
187 >              "parser exception: %s %s:%d:%d\n",
188 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
189 >      painCave.isFatal = 1;
190 >      simError();  
191 >    }
192 >    catch(antlr::NoViableAltException &e) {
193 >      sprintf(painCave.errMsg,
194 >              "parser exception: %s %s:%d:%d\n",
195 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
196 >      painCave.isFatal = 1;
197 >      simError();  
198 >    }
199 >      
200 >    catch(antlr::TokenStreamRecognitionException& e) {
201 >      sprintf(painCave.errMsg,
202 >              "parser exception: %s %s:%d:%d\n",
203 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
204 >      painCave.isFatal = 1;
205 >      simError();  
206 >    }
207 >        
208 >    catch(antlr::TokenStreamIOException& e) {
209 >      sprintf(painCave.errMsg,
210 >              "parser exception: %s\n",
211 >              e.getMessage().c_str());
212 >      painCave.isFatal = 1;
213 >      simError();
214 >    }
215 >        
216 >    catch(antlr::TokenStreamException& e) {
217 >      sprintf(painCave.errMsg,
218 >              "parser exception: %s\n",
219 >              e.getMessage().c_str());
220 >      painCave.isFatal = 1;
221 >      simError();
222 >    }        
223 >    catch (antlr::RecognitionException& e) {
224 >      sprintf(painCave.errMsg,
225 >              "parser exception: %s %s:%d:%d\n",
226 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
227 >      painCave.isFatal = 1;
228 >      simError();          
229 >    }
230 >    catch (antlr::CharStreamException& e) {
231 >      sprintf(painCave.errMsg,
232 >              "parser exception: %s\n",
233 >              e.getMessage().c_str());
234 >      painCave.isFatal = 1;
235 >      simError();        
236 >    }
237 >    catch (OpenMDException& e) {
238 >      sprintf(painCave.errMsg,
239 >              "%s\n",
240 >              e.getMessage().c_str());
241 >      painCave.isFatal = 1;
242 >      simError();
243 >    }
244 >    catch (std::exception& e) {
245 >      sprintf(painCave.errMsg,
246 >              "parser exception: %s\n",
247 >              e.what());
248 >      painCave.isFatal = 1;
249 >      simError();
250 >    }
251 >
252 >    simParams->setMDfileVersion(mdFileVersion);
253 >    return simParams;
254 >  }
255 >  
256 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
257 >                                  bool loadInitCoords) {
258 >    
259 >    const int bufferSize = 65535;
260 >    char buffer[bufferSize];
261 >    int lineNo = 0;
262 >    std::string mdRawData;
263 >    int metaDataBlockStart = -1;
264 >    int metaDataBlockEnd = -1;
265 >    int i, j;
266 >    streamoff mdOffset;
267 >    int mdFileVersion;
268 >
269 >    // Create a string for embedding the version information in the MetaData
270 >    std::string version;
271 >    version.assign("## Last run using OpenMD Version: ");
272 >    version.append(OPENMD_VERSION_MAJOR);
273 >    version.append(".");
274 >    version.append(OPENMD_VERSION_MINOR);
275 >
276 >    std::string svnrev(g_REVISION, strnlen(g_REVISION, 20));
277 >    //convert a macro from compiler to a string in c++
278 >    // STR_DEFINE(svnrev, SVN_REV );
279 >    version.append(" Revision: ");
280 >    // If there's no SVN revision, just call this the RELEASE revision.
281 >    if (!svnrev.empty()) {
282 >      version.append(svnrev);
283      } else {
284 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
284 >      version.append("RELEASE");
285      }
286 +  
287 + #ifdef IS_MPI            
288 +    const int masterNode = 0;
289 +    if (worldRank == masterNode) {
290 + #endif
291  
292 < #endif
292 >      std::ifstream mdFile_;
293 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
294 >      
295 >      if (mdFile_.fail()) {
296 >        sprintf(painCave.errMsg,
297 >                "SimCreator: Cannot open file: %s\n",
298 >                mdFileName.c_str());
299 >        painCave.isFatal = 1;
300 >        simError();
301 >      }
302  
303 < }
303 >      mdFile_.getline(buffer, bufferSize);
304 >      ++lineNo;
305 >      std::string line = trimLeftCopy(buffer);
306 >      i = CaseInsensitiveFind(line, "<OpenMD");
307 >      if (static_cast<size_t>(i) == string::npos) {
308 >        // try the older file strings to see if that works:
309 >        i = CaseInsensitiveFind(line, "<OOPSE");
310 >      }
311 >      
312 >      if (static_cast<size_t>(i) == string::npos) {
313 >        // still no luck!
314 >        sprintf(painCave.errMsg,
315 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
316 >                mdFileName.c_str());
317 >        painCave.isFatal = 1;
318 >        simError();
319 >      }
320 >      
321 >      // found the correct opening string, now try to get the file
322 >      // format version number.
323  
324 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
325 <    
326 <    MakeStamps * stamps = new MakeStamps();
324 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
325 >      std::string fileType = tokenizer.nextToken();
326 >      toUpper(fileType);
327  
328 <    Globals * simParams = new Globals();
328 >      mdFileVersion = 0;
329  
330 <    //parse meta-data file
331 <    parseFile(mdFileName, stamps, simParams);
330 >      if (fileType == "OPENMD") {
331 >        while (tokenizer.hasMoreTokens()) {
332 >          std::string token(tokenizer.nextToken());
333 >          toUpper(token);
334 >          if (token == "VERSION") {
335 >            mdFileVersion = tokenizer.nextTokenAsInt();
336 >            break;
337 >          }
338 >        }
339 >      }
340 >            
341 >      //scan through the input stream and find MetaData tag        
342 >      while(mdFile_.getline(buffer, bufferSize)) {
343 >        ++lineNo;
344 >        
345 >        std::string line = trimLeftCopy(buffer);
346 >        if (metaDataBlockStart == -1) {
347 >          i = CaseInsensitiveFind(line, "<MetaData>");
348 >          if (i != string::npos) {
349 >            metaDataBlockStart = lineNo;
350 >            mdOffset = mdFile_.tellg();
351 >          }
352 >        } else {
353 >          i = CaseInsensitiveFind(line, "</MetaData>");
354 >          if (i != string::npos) {
355 >            metaDataBlockEnd = lineNo;
356 >          }
357 >        }
358 >      }
359  
360 <    //create the force field
361 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
362 <                          simParams->getForceField());
363 <    
364 <    if (ff == NULL) {
365 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
366 <                simParams->getForceField());
367 <        painCave.isFatal = 1;
368 <        simError();
360 >      if (metaDataBlockStart == -1) {
361 >        sprintf(painCave.errMsg,
362 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
363 >                mdFileName.c_str());
364 >        painCave.isFatal = 1;
365 >        simError();
366 >      }
367 >      if (metaDataBlockEnd == -1) {
368 >        sprintf(painCave.errMsg,
369 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
370 >                mdFileName.c_str());
371 >        painCave.isFatal = 1;
372 >        simError();
373 >      }
374 >        
375 >      mdFile_.clear();
376 >      mdFile_.seekg(0);
377 >      mdFile_.seekg(mdOffset);
378 >
379 >      mdRawData.clear();
380 >
381 >      bool foundVersion = false;
382 >
383 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
384 >        mdFile_.getline(buffer, bufferSize);
385 >        std::string line = trimLeftCopy(buffer);
386 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
387 >        if (static_cast<size_t>(j) != string::npos) {
388 >          foundVersion = true;
389 >          mdRawData += version;
390 >        } else {
391 >          mdRawData += buffer;
392 >        }
393 >        mdRawData += "\n";
394 >      }
395 >      
396 >      if (!foundVersion) mdRawData += version + "\n";
397 >      
398 >      mdFile_.close();
399 >
400 > #ifdef IS_MPI
401      }
402 + #endif
403  
404 +    std::stringstream rawMetaDataStream(mdRawData);
405 +
406 +    //parse meta-data file
407 +    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
408 +                                   metaDataBlockStart + 1);
409 +    
410 +    //create the force field
411 +    ForceField * ff = new ForceField(simParams->getForceField());
412 +
413 +    if (ff == NULL) {
414 +      sprintf(painCave.errMsg,
415 +              "ForceField Factory can not create %s force field\n",
416 +              simParams->getForceField().c_str());
417 +      painCave.isFatal = 1;
418 +      simError();
419 +    }
420 +    
421      if (simParams->haveForceFieldFileName()) {
422 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
422 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
423      }
424      
425      std::string forcefieldFileName;
426      forcefieldFileName = ff->getForceFieldFileName();
427 <
427 >    
428      if (simParams->haveForceFieldVariant()) {
429 <        //If the force field has variant, the variant force field name will be
430 <        //Base.variant.frc. For exampel EAM.u6.frc
431 <        
432 <        std::string variant = simParams->getForceFieldVariant();
433 <
434 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
435 <        variant = "." + variant;
436 <        if (pos != std::string::npos) {
437 <            forcefieldFileName.insert(pos, variant);
438 <        } else {
439 <            //If the default force field file name does not containt .frc suffix, just append the .variant
440 <            forcefieldFileName.append(variant);
441 <        }
429 >      //If the force field has variant, the variant force field name will be
430 >      //Base.variant.frc. For exampel EAM.u6.frc
431 >      
432 >      std::string variant = simParams->getForceFieldVariant();
433 >      
434 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
435 >      variant = "." + variant;
436 >      if (pos != std::string::npos) {
437 >        forcefieldFileName.insert(pos, variant);
438 >      } else {
439 >        //If the default force field file name does not containt .frc suffix, just append the .variant
440 >        forcefieldFileName.append(variant);
441 >      }
442      }
443      
444      ff->parse(forcefieldFileName);
143    
144    //extract the molecule stamps
145    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146    compList(stamps, simParams, moleculeStampPairs);
147
445      //create SimInfo
446 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
446 >    SimInfo * info = new SimInfo(ff, simParams);
447  
448 <    //gather parameters (SimCreator only retrieves part of the parameters)
448 >    info->setRawMetaData(mdRawData);
449 >    
450 >    //gather parameters (SimCreator only retrieves part of the
451 >    //parameters)
452      gatherParameters(info, mdFileName);
453 <
453 >    
454      //divide the molecules and determine the global index of molecules
455   #ifdef IS_MPI
456      divideMolecules(info);
457   #endif
458 <
458 >    
459      //create the molecules
460      createMolecules(info);
461 +    
462 +    //find the storage layout
463  
464 +    int storageLayout = computeStorageLayout(info);
465  
466 <    //allocate memory for DataStorage(circular reference, need to break it)
467 <    info->setSnapshotManager(new SimSnapshotManager(info));
466 >    //allocate memory for DataStorage(circular reference, need to
467 >    //break it)
468 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
469      
470 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
471 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
472 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
470 >    //set the global index of atoms, rigidbodies and cutoffgroups
471 >    //(only need to be set once, the global index will never change
472 >    //again). Local indices of atoms and rigidbodies are already set
473 >    //by MoleculeCreator class which actually delegates the
474 >    //responsibility to LocalIndexManager.
475      setGlobalIndex(info);
476 <
477 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
478 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
479 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
480 <    //we can determine the beginning global indices of atoms before they get created.
476 >    
477 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
478 >    //method, at that point atoms don't have the global index yet
479 >    //(their global index are all initialized to -1).  Therefore we
480 >    //have to call addInteractionPairs explicitly here. A way to work
481 >    //around is that we can determine the beginning global indices of
482 >    //atoms before they get created.
483      SimInfo::MoleculeIterator mi;
484      Molecule* mol;
485      for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
486 <        info->addExcludePairs(mol);
486 >      info->addInteractionPairs(mol);
487      }
488      
181
182    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183    //eta, chi for NPT integrator)
489      if (loadInitCoords)
490 <        loadCoordinates(info);    
186 <    
490 >      loadCoordinates(info, mdFileName);    
491      return info;
492 < }
493 <
494 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
495 <
496 <    //setup seed for random number generator
193 <    int seedValue;
194 <    Globals * simParams = info->getSimParams();
195 <
196 <    if (simParams->haveSeed()) {
197 <        seedValue = simParams->getSeed();
198 <
199 <        if (seedValue < 100000000 ) {
200 <            sprintf(painCave.errMsg,
201 <                    "Seed for sprng library should contain at least 9 digits\n"
202 <                        "OOPSE will generate a seed for user\n");
203 <
204 <            painCave.isFatal = 0;
205 <            simError();
206 <
207 <            //using seed generated by system instead of invalid seed set by user
208 <
209 < #ifndef IS_MPI
210 <
211 <            seedValue = make_sprng_seed();
212 <
213 < #else
214 <
215 <            if (worldRank == 0) {
216 <                seedValue = make_sprng_seed();
217 <            }
218 <
219 <            MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
220 <
221 < #endif
222 <
223 <        } //end if (seedValue /1000000000 == 0)
224 <    } else {
225 <
226 < #ifndef IS_MPI
227 <
228 <        seedValue = make_sprng_seed();
229 <
230 < #else
231 <
232 <        if (worldRank == 0) {
233 <            seedValue = make_sprng_seed();
234 <        }
235 <
236 <        MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
237 <
238 < #endif
239 <
240 <    } //end of simParams->haveSeed()
241 <
242 <    info->setSeed(seedValue);
243 <
244 <
245 <    //figure out the ouput file names
492 >  }
493 >  
494 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
495 >    
496 >    //figure out the output file names
497      std::string prefix;
498 <
498 >    
499   #ifdef IS_MPI
500 <
500 >    
501      if (worldRank == 0) {
502   #endif // is_mpi
503 <
504 <        if (simParams->haveFinalConfig()) {
505 <            prefix = getPrefix(simParams->getFinalConfig());
506 <        } else {
507 <            prefix = getPrefix(mdfile);
508 <        }
509 <
510 <        info->setFinalConfigFileName(prefix + ".eor");
511 <        info->setDumpFileName(prefix + ".dump");
512 <        info->setStatFileName(prefix + ".stat");
513 <
503 >      Globals * simParams = info->getSimParams();
504 >      if (simParams->haveFinalConfig()) {
505 >        prefix = getPrefix(simParams->getFinalConfig());
506 >      } else {
507 >        prefix = getPrefix(mdfile);
508 >      }
509 >      
510 >      info->setFinalConfigFileName(prefix + ".eor");
511 >      info->setDumpFileName(prefix + ".dump");
512 >      info->setStatFileName(prefix + ".stat");
513 >      info->setRestFileName(prefix + ".zang");
514 >      
515   #ifdef IS_MPI
516 <
516 >      
517      }
518 <
518 >    
519   #endif
520 <
521 < }
522 <
520 >    
521 >  }
522 >  
523   #ifdef IS_MPI
524 < void SimCreator::divideMolecules(SimInfo *info) {
525 <    double numerator;
274 <    double denominator;
275 <    double precast;
276 <    double x;
277 <    double y;
278 <    double a;
279 <    int old_atoms;
280 <    int add_atoms;
281 <    int new_atoms;
282 <    int nTarget;
283 <    int done;
284 <    int i;
285 <    int j;
286 <    int loops;
287 <    int which_proc;
524 >  void SimCreator::divideMolecules(SimInfo *info) {
525 >    RealType a;
526      int nProcessors;
527      std::vector<int> atomsPerProc;
290    randomSPRNG myRandom(info->getSeed());
528      int nGlobalMols = info->getNGlobalMolecules();
529 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
529 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
530 >                                                    // error
531 >                                                    // condition:
532      
533 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
534 <
533 >    MPI_Comm_size( MPI_COMM_WORLD, &nProcessors);    
534 >    //nProcessors = MPI::COMM_WORLD.Get_size();
535 >    
536      if (nProcessors > nGlobalMols) {
537 <        sprintf(painCave.errMsg,
538 <                "nProcessors (%d) > nMol (%d)\n"
539 <                    "\tThe number of processors is larger than\n"
540 <                    "\tthe number of molecules.  This will not result in a \n"
541 <                    "\tusable division of atoms for force decomposition.\n"
542 <                    "\tEither try a smaller number of processors, or run the\n"
543 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
544 <
545 <        painCave.isFatal = 1;
546 <        simError();
537 >      sprintf(painCave.errMsg,
538 >              "nProcessors (%d) > nMol (%d)\n"
539 >              "\tThe number of processors is larger than\n"
540 >              "\tthe number of molecules.  This will not result in a \n"
541 >              "\tusable division of atoms for force decomposition.\n"
542 >              "\tEither try a smaller number of processors, or run the\n"
543 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
544 >              nGlobalMols);
545 >      
546 >      painCave.isFatal = 1;
547 >      simError();
548      }
549 <
549 >    
550 >    Globals * simParams = info->getSimParams();
551 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
552 >                             //random number generator
553 >    if (simParams->haveSeed()) {
554 >      int seedValue = simParams->getSeed();
555 >      myRandom = new SeqRandNumGen(seedValue);
556 >    }else {
557 >      myRandom = new SeqRandNumGen();
558 >    }  
559 >    
560 >    
561      a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
562 <
562 >    
563      //initialize atomsPerProc
564      atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
565 <
565 >    
566      if (worldRank == 0) {
567 <        numerator = info->getNGlobalAtoms();
568 <        denominator = nProcessors;
569 <        precast = numerator / denominator;
570 <        nTarget = (int)(precast + 0.5);
567 >      RealType numerator = info->getNGlobalAtoms();
568 >      RealType denominator = nProcessors;
569 >      RealType precast = numerator / denominator;
570 >      int nTarget = (int)(precast + 0.5);
571 >      
572 >      for(int i = 0; i < nGlobalMols; i++) {
573  
574 <        for(i = 0; i < nGlobalMols; i++) {
575 <            done = 0;
576 <            loops = 0;
577 <
578 <            while (!done) {
579 <                loops++;
580 <
581 <                // Pick a processor at random
582 <
583 <                which_proc = (int) (myRandom.getRandom() * nProcessors);
584 <
585 <                //get the molecule stamp first
586 <                int stampId = info->getMoleculeStampId(i);
587 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
588 <
589 <                // How many atoms does this processor have so far?
590 <                old_atoms = atomsPerProc[which_proc];
591 <                add_atoms = moleculeStamp->getNAtoms();
592 <                new_atoms = old_atoms + add_atoms;
593 <
594 <                // If we've been through this loop too many times, we need
595 <                // to just give up and assign the molecule to this processor
596 <                // and be done with it.
574 >        int done = 0;
575 >        int loops = 0;
576 >        
577 >        while (!done) {
578 >          loops++;
579 >          
580 >          // Pick a processor at random
581 >          
582 >          int which_proc = (int) (myRandom->rand() * nProcessors);
583 >          
584 >          //get the molecule stamp first
585 >          int stampId = info->getMoleculeStampId(i);
586 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
587 >          
588 >          // How many atoms does this processor have so far?
589 >          int old_atoms = atomsPerProc[which_proc];
590 >          int add_atoms = moleculeStamp->getNAtoms();
591 >          int new_atoms = old_atoms + add_atoms;
592 >          
593 >          // If we've been through this loop too many times, we need
594 >          // to just give up and assign the molecule to this processor
595 >          // and be done with it.
596 >          
597 >          if (loops > 100) {
598  
599 <                if (loops > 100) {
600 <                    sprintf(painCave.errMsg,
601 <                            "I've tried 100 times to assign molecule %d to a "
602 <                                " processor, but can't find a good spot.\n"
603 <                                "I'm assigning it at random to processor %d.\n",
604 <                            i, which_proc);
605 <
606 <                    painCave.isFatal = 0;
607 <                    simError();
608 <
609 <                    molToProcMap[i] = which_proc;
610 <                    atomsPerProc[which_proc] += add_atoms;
611 <
612 <                    done = 1;
613 <                    continue;
614 <                }
615 <
616 <                // If we can add this molecule to this processor without sending
617 <                // it above nTarget, then go ahead and do it:
618 <
619 <                if (new_atoms <= nTarget) {
620 <                    molToProcMap[i] = which_proc;
621 <                    atomsPerProc[which_proc] += add_atoms;
622 <
623 <                    done = 1;
624 <                    continue;
625 <                }
626 <
627 <                // The only situation left is when new_atoms > nTarget.  We
628 <                // want to accept this with some probability that dies off the
629 <                // farther we are from nTarget
630 <
631 <                // roughly:  x = new_atoms - nTarget
632 <                //           Pacc(x) = exp(- a * x)
633 <                // where a = penalty / (average atoms per molecule)
634 <
635 <                x = (double)(new_atoms - nTarget);
636 <                y = myRandom.getRandom();
637 <
638 <                if (y < exp(- a * x)) {
639 <                    molToProcMap[i] = which_proc;
640 <                    atomsPerProc[which_proc] += add_atoms;
641 <
642 <                    done = 1;
643 <                    continue;
644 <                } else {
645 <                    continue;
646 <                }
392 <            }
599 >            sprintf(painCave.errMsg,
600 >                    "There have been 100 attempts to assign molecule %d to an\n"
601 >                    "\tunderworked processor, but there's no good place to\n"
602 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
603 >                    i, which_proc);
604 >          
605 >            painCave.isFatal = 0;
606 >            painCave.severity = OPENMD_INFO;
607 >            simError();
608 >            
609 >            molToProcMap[i] = which_proc;
610 >            atomsPerProc[which_proc] += add_atoms;
611 >            
612 >            done = 1;
613 >            continue;
614 >          }
615 >          
616 >          // If we can add this molecule to this processor without sending
617 >          // it above nTarget, then go ahead and do it:
618 >          
619 >          if (new_atoms <= nTarget) {
620 >            molToProcMap[i] = which_proc;
621 >            atomsPerProc[which_proc] += add_atoms;
622 >            
623 >            done = 1;
624 >            continue;
625 >          }
626 >          
627 >          // The only situation left is when new_atoms > nTarget.  We
628 >          // want to accept this with some probability that dies off the
629 >          // farther we are from nTarget
630 >          
631 >          // roughly:  x = new_atoms - nTarget
632 >          //           Pacc(x) = exp(- a * x)
633 >          // where a = penalty / (average atoms per molecule)
634 >          
635 >          RealType x = (RealType)(new_atoms - nTarget);
636 >          RealType y = myRandom->rand();
637 >          
638 >          if (y < exp(- a * x)) {
639 >            molToProcMap[i] = which_proc;
640 >            atomsPerProc[which_proc] += add_atoms;
641 >            
642 >            done = 1;
643 >            continue;
644 >          } else {
645 >            continue;
646 >          }
647          }
648 +      }
649 +      
650 +      delete myRandom;
651  
652 <        // Spray out this nonsense to all other processors:
653 <
654 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
652 >      // Spray out this nonsense to all other processors:
653 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
654 >      // MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
655      } else {
656 +      
657 +      // Listen to your marching orders from processor 0:
658 +      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
659 +      // MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
660  
400        // Listen to your marching orders from processor 0:
401
402        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
661      }
662 <
662 >    
663      info->setMolToProcMap(molToProcMap);
664      sprintf(checkPointMsg,
665              "Successfully divided the molecules among the processors.\n");
666 <    MPIcheckPoint();
667 < }
668 <
666 >    errorCheckPoint();
667 >  }
668 >  
669   #endif
670 <
671 < void SimCreator::createMolecules(SimInfo *info) {
670 >  
671 >  void SimCreator::createMolecules(SimInfo *info) {
672      MoleculeCreator molCreator;
673      int stampId;
674 <
674 >    
675      for(int i = 0; i < info->getNGlobalMolecules(); i++) {
676 <
676 >      
677   #ifdef IS_MPI
678 <
679 <        if (info->getMolToProc(i) == worldRank) {
678 >      
679 >      if (info->getMolToProc(i) == worldRank) {
680   #endif
681 <
682 <            stampId = info->getMoleculeStampId(i);
683 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
684 <                                                                                    stampId, i, info->getLocalIndexManager());
685 <
686 <            info->addMolecule(mol);
687 <
681 >        
682 >        stampId = info->getMoleculeStampId(i);
683 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
684 >                                                   info->getMoleculeStamp(stampId),
685 >                                                   stampId, i,
686 >                                                   info->getLocalIndexManager());
687 >        
688 >        info->addMolecule(mol);
689 >        
690   #ifdef IS_MPI
691 <
692 <        }
693 <
691 >        
692 >      }
693 >      
694   #endif
695 <
695 >      
696      } //end for(int i=0)  
697 < }
697 >  }
698 >    
699 >  int SimCreator::computeStorageLayout(SimInfo* info) {
700  
701 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
702 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
703 <    int i;
704 <    char * id;
705 <    MoleculeStamp * currentStamp;
706 <    Component** the_components = simParams->getComponents();
707 <    int n_components = simParams->getNComponents();
701 >    Globals* simParams = info->getSimParams();
702 >    int nRigidBodies = info->getNGlobalRigidBodies();
703 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
704 >    set<AtomType*>::iterator i;
705 >    bool hasDirectionalAtoms = false;
706 >    bool hasFixedCharge = false;
707 >    bool hasDipoles = false;    
708 >    bool hasQuadrupoles = false;    
709 >    bool hasPolarizable = false;    
710 >    bool hasFluctuatingCharge = false;    
711 >    bool hasMetallic = false;
712 >    int storageLayout = 0;
713 >    storageLayout |= DataStorage::dslPosition;
714 >    storageLayout |= DataStorage::dslVelocity;
715 >    storageLayout |= DataStorage::dslForce;
716  
717 <    if (!simParams->haveNMol()) {
448 <        // we don't have the total number of molecules, so we assume it is
449 <        // given in each component
717 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
718  
719 <        for(i = 0; i < n_components; i++) {
720 <            if (!the_components[i]->haveNMol()) {
721 <                // we have a problem
722 <                sprintf(painCave.errMsg,
723 <                        "SimCreator Error. No global NMol or component NMol given.\n"
724 <                            "\tCannot calculate the number of atoms.\n");
719 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
720 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
721 >      EAMAdapter ea = EAMAdapter( (*i) );
722 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
723 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
724 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
725 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
726  
727 <                painCave.isFatal = 1;
728 <                simError();
729 <            }
727 >      if (da.isDirectional()){
728 >        hasDirectionalAtoms = true;
729 >      }
730 >      if (ma.isDipole()){
731 >        hasDipoles = true;
732 >      }
733 >      if (ma.isQuadrupole()){
734 >        hasQuadrupoles = true;
735 >      }
736 >      if (ea.isEAM() || sca.isSuttonChen()){
737 >        hasMetallic = true;
738 >      }
739 >      if ( fca.isFixedCharge() ){
740 >        hasFixedCharge = true;
741 >      }
742 >      if ( fqa.isFluctuatingCharge() ){
743 >        hasFluctuatingCharge = true;
744 >      }
745 >      if ( pa.isPolarizable() ){
746 >        hasPolarizable = true;
747 >      }
748 >    }
749 >    
750 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
751 >      storageLayout |= DataStorage::dslAmat;
752 >      if(storageLayout & DataStorage::dslVelocity) {
753 >        storageLayout |= DataStorage::dslAngularMomentum;
754 >      }
755 >      if (storageLayout & DataStorage::dslForce) {
756 >        storageLayout |= DataStorage::dslTorque;
757 >      }
758 >    }
759 >    if (hasDipoles) {
760 >      storageLayout |= DataStorage::dslDipole;
761 >    }
762 >    if (hasQuadrupoles) {
763 >      storageLayout |= DataStorage::dslQuadrupole;
764 >    }
765 >    if (hasFixedCharge || hasFluctuatingCharge) {
766 >      storageLayout |= DataStorage::dslSkippedCharge;
767 >    }
768 >    if (hasMetallic) {
769 >      storageLayout |= DataStorage::dslDensity;
770 >      storageLayout |= DataStorage::dslFunctional;
771 >      storageLayout |= DataStorage::dslFunctionalDerivative;
772 >    }
773 >    if (hasPolarizable) {
774 >      storageLayout |= DataStorage::dslElectricField;
775 >    }
776 >    if (hasFluctuatingCharge){
777 >      storageLayout |= DataStorage::dslFlucQPosition;
778 >      if(storageLayout & DataStorage::dslVelocity) {
779 >        storageLayout |= DataStorage::dslFlucQVelocity;
780 >      }
781 >      if (storageLayout & DataStorage::dslForce) {
782 >        storageLayout |= DataStorage::dslFlucQForce;
783 >      }
784 >    }
785 >    
786 >    // if the user has asked for them, make sure we've got the memory for the
787 >    // objects defined.
788  
789 <            id = the_components[i]->getType();
790 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
789 >    if (simParams->getOutputParticlePotential()) {
790 >      storageLayout |= DataStorage::dslParticlePot;
791 >    }
792  
793 <            if (currentStamp == NULL) {
794 <                sprintf(painCave.errMsg,
795 <                        "SimCreator error: Component \"%s\" was not found in the "
796 <                            "list of declared molecules\n", id);
793 >    if (simParams->havePrintHeatFlux()) {
794 >      if (simParams->getPrintHeatFlux()) {
795 >        storageLayout |= DataStorage::dslParticlePot;
796 >      }
797 >    }
798  
799 <                painCave.isFatal = 1;
800 <                simError();
801 <            }
799 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
800 >      storageLayout |= DataStorage::dslElectricField;
801 >    }
802  
803 <            moleculeStampPairs.push_back(
804 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
805 <        } //end for (i = 0; i < n_components; i++)
806 <    } else {
478 <        sprintf(painCave.errMsg, "SimSetup error.\n"
479 <                                     "\tSorry, the ability to specify total"
480 <                                     " nMols and then give molfractions in the components\n"
481 <                                     "\tis not currently supported."
482 <                                     " Please give nMol in the components.\n");
483 <
484 <        painCave.isFatal = 1;
485 <        simError();
803 >    if (simParams->getOutputFluctuatingCharges()) {
804 >      storageLayout |= DataStorage::dslFlucQPosition;
805 >      storageLayout |= DataStorage::dslFlucQVelocity;
806 >      storageLayout |= DataStorage::dslFlucQForce;
807      }
808  
809 < #ifdef IS_MPI
809 >    info->setStorageLayout(storageLayout);
810  
811 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
812 <    MPIcheckPoint();
811 >    return storageLayout;
812 >  }
813  
814 < #endif // is_mpi
494 <
495 < }
496 <
497 < void SimCreator::setGlobalIndex(SimInfo *info) {
814 >  void SimCreator::setGlobalIndex(SimInfo *info) {
815      SimInfo::MoleculeIterator mi;
816      Molecule::AtomIterator ai;
817      Molecule::RigidBodyIterator ri;
818      Molecule::CutoffGroupIterator ci;
819 <    Molecule * mol;
820 <    Atom * atom;
821 <    RigidBody * rb;
822 <    CutoffGroup * cg;
819 >    Molecule::BondIterator boi;
820 >    Molecule::BendIterator bei;
821 >    Molecule::TorsionIterator ti;
822 >    Molecule::InversionIterator ii;
823 >    Molecule::IntegrableObjectIterator  ioi;
824 >    Molecule* mol;
825 >    Atom* atom;
826 >    RigidBody* rb;
827 >    CutoffGroup* cg;
828 >    Bond* bond;
829 >    Bend* bend;
830 >    Torsion* torsion;
831 >    Inversion* inversion;
832      int beginAtomIndex;
833      int beginRigidBodyIndex;
834      int beginCutoffGroupIndex;
835 +    int beginBondIndex;
836 +    int beginBendIndex;
837 +    int beginTorsionIndex;
838 +    int beginInversionIndex;
839      int nGlobalAtoms = info->getNGlobalAtoms();
840 +    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
841      
511 #ifndef IS_MPI
512
842      beginAtomIndex = 0;
843 <    beginRigidBodyIndex = 0;
843 >    // The rigid body indices begin immediately after the atom indices:
844 >    beginRigidBodyIndex = info->getNGlobalAtoms();
845      beginCutoffGroupIndex = 0;
846 +    beginBondIndex = 0;
847 +    beginBendIndex = 0;
848 +    beginTorsionIndex = 0;
849 +    beginInversionIndex = 0;
850 +  
851 +    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
852 +      
853 + #ifdef IS_MPI      
854 +      if (info->getMolToProc(i) == worldRank) {
855 + #endif        
856 +        // stuff to do if I own this molecule
857 +        mol = info->getMoleculeByGlobalIndex(i);
858  
859 < #else
860 <
861 <    int nproc;
862 <    int myNode;
521 <
522 <    myNode = worldRank;
523 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
524 <
525 <    std::vector < int > tmpAtomsInProc(nproc, 0);
526 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
527 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
528 <    std::vector < int > NumAtomsInProc(nproc, 0);
529 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
530 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
531 <
532 <    tmpAtomsInProc[myNode] = info->getNAtoms();
533 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
534 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
535 <
536 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
537 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
538 <                  MPI_SUM, MPI_COMM_WORLD);
539 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
540 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
541 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
542 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
543 <
544 <    beginAtomIndex = 0;
545 <    beginRigidBodyIndex = 0;
546 <    beginCutoffGroupIndex = 0;
547 <
548 <    for(int i = 0; i < myNode; i++) {
549 <        beginAtomIndex += NumAtomsInProc[i];
550 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
551 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
552 <    }
553 <
554 < #endif
555 <
556 <    for(mol = info->beginMolecule(mi); mol != NULL;
557 <        mol = info->nextMolecule(mi)) {
558 <
559 <        //local index(index in DataStorge) of atom is important
560 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
561 <            atom->setGlobalIndex(beginAtomIndex++);
859 >        // The local index(index in DataStorge) of the atom is important:
860 >        for(atom = mol->beginAtom(ai); atom != NULL;
861 >            atom = mol->nextAtom(ai)) {
862 >          atom->setGlobalIndex(beginAtomIndex++);
863          }
864 <
864 >        
865          for(rb = mol->beginRigidBody(ri); rb != NULL;
866              rb = mol->nextRigidBody(ri)) {
867 <            rb->setGlobalIndex(beginRigidBodyIndex++);
867 >          rb->setGlobalIndex(beginRigidBodyIndex++);
868          }
869 <
870 <        //local index of cutoff group is trivial, it only depends on the order of travesing
869 >        
870 >        // The local index of other objects only depends on the order
871 >        // of traversal:
872          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
873              cg = mol->nextCutoffGroup(ci)) {
874 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
875 <        }
876 <    }
874 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
875 >        }        
876 >        for(bond = mol->beginBond(boi); bond != NULL;
877 >            bond = mol->nextBond(boi)) {
878 >          bond->setGlobalIndex(beginBondIndex++);
879 >        }        
880 >        for(bend = mol->beginBend(bei); bend != NULL;
881 >            bend = mol->nextBend(bei)) {
882 >          bend->setGlobalIndex(beginBendIndex++);
883 >        }        
884 >        for(torsion = mol->beginTorsion(ti); torsion != NULL;
885 >            torsion = mol->nextTorsion(ti)) {
886 >          torsion->setGlobalIndex(beginTorsionIndex++);
887 >        }        
888 >        for(inversion = mol->beginInversion(ii); inversion != NULL;
889 >            inversion = mol->nextInversion(ii)) {
890 >          inversion->setGlobalIndex(beginInversionIndex++);
891 >        }        
892 >        
893 > #ifdef IS_MPI        
894 >      }  else {
895  
896 <    //fill globalGroupMembership
897 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
898 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
899 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
896 >        // stuff to do if I don't own this molecule
897 >        
898 >        int stampId = info->getMoleculeStampId(i);
899 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
900  
901 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
903 <            }
901 >        beginAtomIndex += stamp->getNAtoms();
902 >        beginRigidBodyIndex += stamp->getNRigidBodies();
903 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
904 >        beginBondIndex += stamp->getNBonds();
905 >        beginBendIndex += stamp->getNBends();
906 >        beginTorsionIndex += stamp->getNTorsions();
907 >        beginInversionIndex += stamp->getNInversions();
908 >      }
909 > #endif          
910  
911 <        }      
586 <    }
911 >    } //end for(int i=0)  
912  
913 +    //fill globalGroupMembership
914 +    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
915 +    for(mol = info->beginMolecule(mi); mol != NULL;
916 +        mol = info->nextMolecule(mi)) {        
917 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
918 +           cg = mol->nextCutoffGroup(ci)) {        
919 +        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
920 +          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
921 +        }
922 +        
923 +      }      
924 +    }
925 +  
926   #ifdef IS_MPI    
927      // Since the globalGroupMembership has been zero filled and we've only
928      // poked values into the atoms we know, we can do an Allreduce
929      // to get the full globalGroupMembership array (We think).
930      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
931      // docs said we could.
932 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
933 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
932 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
933 >    MPI_Allreduce(&globalGroupMembership[0],
934 >                  &tmpGroupMembership[0], nGlobalAtoms,
935                    MPI_INT, MPI_SUM, MPI_COMM_WORLD);
936 <     info->setGlobalGroupMembership(tmpGroupMembership);
936 >    // MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
937 >    //                           &tmpGroupMembership[0], nGlobalAtoms,
938 >    //                           MPI::INT, MPI::SUM);
939 >    info->setGlobalGroupMembership(tmpGroupMembership);
940   #else
941      info->setGlobalGroupMembership(globalGroupMembership);
942   #endif
943 <
943 >    
944      //fill molMembership
945 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
945 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
946 >                                         info->getNGlobalRigidBodies(), 0);
947      
948 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
949 <
950 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
951 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
952 <        }
948 >    for(mol = info->beginMolecule(mi); mol != NULL;
949 >        mol = info->nextMolecule(mi)) {
950 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
951 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
952 >      }
953 >      for (rb = mol->beginRigidBody(ri); rb != NULL;
954 >           rb = mol->nextRigidBody(ri)) {
955 >        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
956 >      }
957      }
958 <
958 >    
959   #ifdef IS_MPI
960 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
961 <
962 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
960 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
961 >                                      info->getNGlobalRigidBodies(), 0);
962 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
963 >                  nGlobalAtoms + nGlobalRigidBodies,
964                    MPI_INT, MPI_SUM, MPI_COMM_WORLD);
965 +    // MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
966 +    //                           nGlobalAtoms + nGlobalRigidBodies,
967 +    //                           MPI::INT, MPI::SUM);
968      
969      info->setGlobalMolMembership(tmpMolMembership);
970   #else
971      info->setGlobalMolMembership(globalMolMembership);
972   #endif
973  
974 < }
974 >    // nIOPerMol holds the number of integrable objects per molecule
975 >    // here the molecules are listed by their global indices.
976  
977 < void SimCreator::loadCoordinates(SimInfo* info) {
978 <    Globals* simParams;
979 <    simParams = info->getSimParams();
977 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
978 >    for (mol = info->beginMolecule(mi); mol != NULL;
979 >         mol = info->nextMolecule(mi)) {
980 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
981 >    }
982      
983 <    if (!simParams->haveInitialConfig()) {
984 <        sprintf(painCave.errMsg,
985 <                "Cannot intialize a simulation without an initial configuration file.\n");
986 <        painCave.isFatal = 1;;
987 <        simError();
983 > #ifdef IS_MPI
984 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
985 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
986 >      info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
987 >    // MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
988 >    //                           info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
989 > #else
990 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
991 > #endif    
992 >
993 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
994 >    
995 >    int startingIndex = 0;
996 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
997 >      startingIOIndexForMol[i] = startingIndex;
998 >      startingIndex += numIntegrableObjectsPerMol[i];
999      }
1000 <        
1001 <    DumpReader reader(info, simParams->getInitialConfig());
1000 >    
1001 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
1002 >    for (mol = info->beginMolecule(mi); mol != NULL;
1003 >         mol = info->nextMolecule(mi)) {
1004 >      int myGlobalIndex = mol->getGlobalIndex();
1005 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
1006 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
1007 >           sd = mol->nextIntegrableObject(ioi)) {
1008 >        sd->setGlobalIntegrableObjectIndex(globalIO);
1009 >        IOIndexToIntegrableObject[globalIO] = sd;
1010 >        globalIO++;
1011 >      }
1012 >    }
1013 >      
1014 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
1015 >    
1016 >  }
1017 >  
1018 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
1019 >    
1020 >    DumpReader reader(info, mdFileName);
1021      int nframes = reader.getNFrames();
1022 <
1022 >    
1023      if (nframes > 0) {
1024 <        reader.readFrame(nframes - 1);
1024 >      reader.readFrame(nframes - 1);
1025      } else {
1026 <        //invalid initial coordinate file
1027 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
1028 <                simParams->getInitialConfig());
1029 <        painCave.isFatal = 1;
1030 <        simError();
1026 >      //invalid initial coordinate file
1027 >      sprintf(painCave.errMsg,
1028 >              "Initial configuration file %s should at least contain one frame\n",
1029 >              mdFileName.c_str());
1030 >      painCave.isFatal = 1;
1031 >      simError();
1032      }
648
1033      //copy the current snapshot to previous snapshot
1034      info->getSnapshotManager()->advance();
1035 < }
1035 >  }
1036 >  
1037 > } //end namespace OpenMD
1038  
653 } //end namespace oopse
1039  
655

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 273 by tim, Tue Jan 25 17:45:23 2005 UTC vs.
Revision 1976 by gezelter, Wed Mar 12 20:01:15 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines