ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 388 by tim, Tue Mar 1 23:02:33 2005 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #include "math/MersenneTwister.hpp"
61 < #ifdef IS_MPI
62 < #include "io/mpiBASS.h"
63 < #endif
64 <
65 < namespace oopse {
66 <
67 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
68 <
69 < #ifdef IS_MPI
70 <
71 <    if (worldRank == 0) {
72 < #endif // is_mpi
73 <
74 <        simParams->initalize();
75 <        set_interface_stamps(stamps, simParams);
76 <
77 < #ifdef IS_MPI
78 <
79 <        mpiEventInit();
80 <
81 < #endif
82 <
83 <        yacc_BASS(mdFileName.c_str());
84 <
85 < #ifdef IS_MPI
86 <
87 <        throwMPIEvent(NULL);
88 <    } else {
89 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
93 <    }
94 <
95 < #endif
96 <
97 < }
98 <
99 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
100 <    
101 <    MakeStamps * stamps = new MakeStamps();
102 <
103 <    Globals * simParams = new Globals();
104 <
105 <    //parse meta-data file
106 <    parseFile(mdFileName, stamps, simParams);
107 <
108 <    //create the force field
109 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
110 <                          simParams->getForceField());
111 <    
112 <    if (ff == NULL) {
113 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
114 <                simParams->getForceField());
115 <        painCave.isFatal = 1;
116 <        simError();
117 <    }
118 <
119 <    if (simParams->haveForceFieldFileName()) {
120 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
121 <    }
122 <    
123 <    std::string forcefieldFileName;
124 <    forcefieldFileName = ff->getForceFieldFileName();
125 <
126 <    if (simParams->haveForceFieldVariant()) {
127 <        //If the force field has variant, the variant force field name will be
128 <        //Base.variant.frc. For exampel EAM.u6.frc
129 <        
130 <        std::string variant = simParams->getForceFieldVariant();
131 <
132 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
133 <        variant = "." + variant;
134 <        if (pos != std::string::npos) {
135 <            forcefieldFileName.insert(pos, variant);
136 <        } else {
137 <            //If the default force field file name does not containt .frc suffix, just append the .variant
138 <            forcefieldFileName.append(variant);
139 <        }
140 <    }
141 <    
142 <    ff->parse(forcefieldFileName);
143 <    
144 <    //extract the molecule stamps
145 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146 <    compList(stamps, simParams, moleculeStampPairs);
147 <
148 <    //create SimInfo
149 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
150 <
151 <    //gather parameters (SimCreator only retrieves part of the parameters)
152 <    gatherParameters(info, mdFileName);
153 <
154 <    //divide the molecules and determine the global index of molecules
155 < #ifdef IS_MPI
156 <    divideMolecules(info);
157 < #endif
158 <
159 <    //create the molecules
160 <    createMolecules(info);
161 <
162 <
163 <    //allocate memory for DataStorage(circular reference, need to break it)
164 <    info->setSnapshotManager(new SimSnapshotManager(info));
165 <    
166 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
167 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
168 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
169 <    setGlobalIndex(info);
170 <
171 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
172 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
173 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
174 <    //we can determine the beginning global indices of atoms before they get created.
175 <    SimInfo::MoleculeIterator mi;
176 <    Molecule* mol;
177 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
178 <        info->addExcludePairs(mol);
179 <    }
180 <    
181 <
182 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183 <    //eta, chi for NPT integrator)
184 <    if (loadInitCoords)
185 <        loadCoordinates(info);    
186 <    
187 <    return info;
188 < }
189 <
190 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
191 <
192 <    //figure out the ouput file names
193 <    std::string prefix;
194 <
195 < #ifdef IS_MPI
196 <
197 <    if (worldRank == 0) {
198 < #endif // is_mpi
199 <        Globals * simParams = info->getSimParams();
200 <        if (simParams->haveFinalConfig()) {
201 <            prefix = getPrefix(simParams->getFinalConfig());
202 <        } else {
203 <            prefix = getPrefix(mdfile);
204 <        }
205 <
206 <        info->setFinalConfigFileName(prefix + ".eor");
207 <        info->setDumpFileName(prefix + ".dump");
208 <        info->setStatFileName(prefix + ".stat");
209 <
210 < #ifdef IS_MPI
211 <
212 <    }
213 <
214 < #endif
215 <
216 < }
217 <
218 < #ifdef IS_MPI
219 < void SimCreator::divideMolecules(SimInfo *info) {
220 <    double numerator;
221 <    double denominator;
222 <    double precast;
223 <    double x;
224 <    double y;
225 <    double a;
226 <    int old_atoms;
227 <    int add_atoms;
228 <    int new_atoms;
229 <    int nTarget;
230 <    int done;
231 <    int i;
232 <    int j;
233 <    int loops;
234 <    int which_proc;
235 <    int nProcessors;
236 <    std::vector<int> atomsPerProc;
237 <    int nGlobalMols = info->getNGlobalMolecules();
238 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
239 <    
240 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
241 <
242 <    if (nProcessors > nGlobalMols) {
243 <        sprintf(painCave.errMsg,
244 <                "nProcessors (%d) > nMol (%d)\n"
245 <                    "\tThe number of processors is larger than\n"
246 <                    "\tthe number of molecules.  This will not result in a \n"
247 <                    "\tusable division of atoms for force decomposition.\n"
248 <                    "\tEither try a smaller number of processors, or run the\n"
249 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
250 <
251 <        painCave.isFatal = 1;
252 <        simError();
253 <    }
254 <
255 <    int seedValue;
256 <    Globals * simParams = info->getSimParams();
257 <    MTRand* myRandom; //divide labor does not need Parallel random number generator
258 <    if (simParams->haveSeed()) {
259 <        seedValue = simParams->getSeed();
260 <        myRandom = new MTRand(seedValue);
261 <    }else {
262 <        myRandom = new MTRand();
263 <    }  
264 <
265 <
266 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
267 <
268 <    //initialize atomsPerProc
269 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
270 <
271 <    if (worldRank == 0) {
272 <        numerator = info->getNGlobalAtoms();
273 <        denominator = nProcessors;
274 <        precast = numerator / denominator;
275 <        nTarget = (int)(precast + 0.5);
276 <
277 <        for(i = 0; i < nGlobalMols; i++) {
278 <            done = 0;
279 <            loops = 0;
280 <
281 <            while (!done) {
282 <                loops++;
283 <
284 <                // Pick a processor at random
285 <
286 <                which_proc = (int) (myRandom->rand() * nProcessors);
287 <
288 <                //get the molecule stamp first
289 <                int stampId = info->getMoleculeStampId(i);
290 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
291 <
292 <                // How many atoms does this processor have so far?
293 <                old_atoms = atomsPerProc[which_proc];
294 <                add_atoms = moleculeStamp->getNAtoms();
295 <                new_atoms = old_atoms + add_atoms;
296 <
297 <                // If we've been through this loop too many times, we need
298 <                // to just give up and assign the molecule to this processor
299 <                // and be done with it.
300 <
301 <                if (loops > 100) {
302 <                    sprintf(painCave.errMsg,
303 <                            "I've tried 100 times to assign molecule %d to a "
304 <                                " processor, but can't find a good spot.\n"
305 <                                "I'm assigning it at random to processor %d.\n",
306 <                            i, which_proc);
307 <
308 <                    painCave.isFatal = 0;
309 <                    simError();
310 <
311 <                    molToProcMap[i] = which_proc;
312 <                    atomsPerProc[which_proc] += add_atoms;
313 <
314 <                    done = 1;
315 <                    continue;
316 <                }
317 <
318 <                // If we can add this molecule to this processor without sending
319 <                // it above nTarget, then go ahead and do it:
320 <
321 <                if (new_atoms <= nTarget) {
322 <                    molToProcMap[i] = which_proc;
323 <                    atomsPerProc[which_proc] += add_atoms;
324 <
325 <                    done = 1;
326 <                    continue;
327 <                }
328 <
329 <                // The only situation left is when new_atoms > nTarget.  We
330 <                // want to accept this with some probability that dies off the
331 <                // farther we are from nTarget
332 <
333 <                // roughly:  x = new_atoms - nTarget
334 <                //           Pacc(x) = exp(- a * x)
335 <                // where a = penalty / (average atoms per molecule)
336 <
337 <                x = (double)(new_atoms - nTarget);
338 <                y = myRandom->rand();
339 <
340 <                if (y < exp(- a * x)) {
341 <                    molToProcMap[i] = which_proc;
342 <                    atomsPerProc[which_proc] += add_atoms;
343 <
344 <                    done = 1;
345 <                    continue;
346 <                } else {
347 <                    continue;
348 <                }
349 <            }
350 <        }
351 <
352 <        delete myRandom;
353 <        
354 <        // Spray out this nonsense to all other processors:
355 <
356 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
357 <    } else {
358 <
359 <        // Listen to your marching orders from processor 0:
360 <
361 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
362 <    }
363 <
364 <    info->setMolToProcMap(molToProcMap);
365 <    sprintf(checkPointMsg,
366 <            "Successfully divided the molecules among the processors.\n");
367 <    MPIcheckPoint();
368 < }
369 <
370 < #endif
371 <
372 < void SimCreator::createMolecules(SimInfo *info) {
373 <    MoleculeCreator molCreator;
374 <    int stampId;
375 <
376 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
377 <
378 < #ifdef IS_MPI
379 <
380 <        if (info->getMolToProc(i) == worldRank) {
381 < #endif
382 <
383 <            stampId = info->getMoleculeStampId(i);
384 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
385 <                                                                                    stampId, i, info->getLocalIndexManager());
386 <
387 <            info->addMolecule(mol);
388 <
389 < #ifdef IS_MPI
390 <
391 <        }
392 <
393 < #endif
394 <
395 <    } //end for(int i=0)  
396 < }
397 <
398 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
399 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
400 <    int i;
401 <    char * id;
402 <    MoleculeStamp * currentStamp;
403 <    Component** the_components = simParams->getComponents();
404 <    int n_components = simParams->getNComponents();
405 <
406 <    if (!simParams->haveNMol()) {
407 <        // we don't have the total number of molecules, so we assume it is
408 <        // given in each component
409 <
410 <        for(i = 0; i < n_components; i++) {
411 <            if (!the_components[i]->haveNMol()) {
412 <                // we have a problem
413 <                sprintf(painCave.errMsg,
414 <                        "SimCreator Error. No global NMol or component NMol given.\n"
415 <                            "\tCannot calculate the number of atoms.\n");
416 <
417 <                painCave.isFatal = 1;
418 <                simError();
419 <            }
420 <
421 <            id = the_components[i]->getType();
422 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
423 <
424 <            if (currentStamp == NULL) {
425 <                sprintf(painCave.errMsg,
426 <                        "SimCreator error: Component \"%s\" was not found in the "
427 <                            "list of declared molecules\n", id);
428 <
429 <                painCave.isFatal = 1;
430 <                simError();
431 <            }
432 <
433 <            moleculeStampPairs.push_back(
434 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
435 <        } //end for (i = 0; i < n_components; i++)
436 <    } else {
437 <        sprintf(painCave.errMsg, "SimSetup error.\n"
438 <                                     "\tSorry, the ability to specify total"
439 <                                     " nMols and then give molfractions in the components\n"
440 <                                     "\tis not currently supported."
441 <                                     " Please give nMol in the components.\n");
442 <
443 <        painCave.isFatal = 1;
444 <        simError();
445 <    }
446 <
447 < #ifdef IS_MPI
448 <
449 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
450 <    MPIcheckPoint();
451 <
452 < #endif // is_mpi
453 <
454 < }
455 <
456 < void SimCreator::setGlobalIndex(SimInfo *info) {
457 <    SimInfo::MoleculeIterator mi;
458 <    Molecule::AtomIterator ai;
459 <    Molecule::RigidBodyIterator ri;
460 <    Molecule::CutoffGroupIterator ci;
461 <    Molecule * mol;
462 <    Atom * atom;
463 <    RigidBody * rb;
464 <    CutoffGroup * cg;
465 <    int beginAtomIndex;
466 <    int beginRigidBodyIndex;
467 <    int beginCutoffGroupIndex;
468 <    int nGlobalAtoms = info->getNGlobalAtoms();
469 <    
470 < #ifndef IS_MPI
471 <
472 <    beginAtomIndex = 0;
473 <    beginRigidBodyIndex = 0;
474 <    beginCutoffGroupIndex = 0;
475 <
476 < #else
477 <
478 <    int nproc;
479 <    int myNode;
480 <
481 <    myNode = worldRank;
482 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
483 <
484 <    std::vector < int > tmpAtomsInProc(nproc, 0);
485 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
486 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
487 <    std::vector < int > NumAtomsInProc(nproc, 0);
488 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
489 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
490 <
491 <    tmpAtomsInProc[myNode] = info->getNAtoms();
492 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
493 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
494 <
495 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
496 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
497 <                  MPI_SUM, MPI_COMM_WORLD);
498 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
499 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
500 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
501 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
502 <
503 <    beginAtomIndex = 0;
504 <    beginRigidBodyIndex = 0;
505 <    beginCutoffGroupIndex = 0;
506 <
507 <    for(int i = 0; i < myNode; i++) {
508 <        beginAtomIndex += NumAtomsInProc[i];
509 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
510 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
511 <    }
512 <
513 < #endif
514 <
515 <    //rigidbody's index begins right after atom's
516 <    beginRigidBodyIndex += info->getNGlobalAtoms();
517 <
518 <    for(mol = info->beginMolecule(mi); mol != NULL;
519 <        mol = info->nextMolecule(mi)) {
520 <
521 <        //local index(index in DataStorge) of atom is important
522 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
523 <            atom->setGlobalIndex(beginAtomIndex++);
524 <        }
525 <
526 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
527 <            rb = mol->nextRigidBody(ri)) {
528 <            rb->setGlobalIndex(beginRigidBodyIndex++);
529 <        }
530 <
531 <        //local index of cutoff group is trivial, it only depends on the order of travesing
532 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
533 <            cg = mol->nextCutoffGroup(ci)) {
534 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
535 <        }
536 <    }
537 <
538 <    //fill globalGroupMembership
539 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
540 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
541 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
542 <
543 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
544 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
545 <            }
546 <
547 <        }      
548 <    }
549 <
550 < #ifdef IS_MPI    
551 <    // Since the globalGroupMembership has been zero filled and we've only
552 <    // poked values into the atoms we know, we can do an Allreduce
553 <    // to get the full globalGroupMembership array (We think).
554 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
555 <    // docs said we could.
556 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
557 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
558 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
559 <     info->setGlobalGroupMembership(tmpGroupMembership);
560 < #else
561 <    info->setGlobalGroupMembership(globalGroupMembership);
562 < #endif
563 <
564 <    //fill molMembership
565 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
566 <    
567 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
568 <
569 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
570 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
571 <        }
572 <    }
573 <
574 < #ifdef IS_MPI
575 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
576 <
577 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
578 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
579 <    
580 <    info->setGlobalMolMembership(tmpMolMembership);
581 < #else
582 <    info->setGlobalMolMembership(globalMolMembership);
583 < #endif
584 <
585 < }
586 <
587 < void SimCreator::loadCoordinates(SimInfo* info) {
588 <    Globals* simParams;
589 <    simParams = info->getSimParams();
590 <    
591 <    if (!simParams->haveInitialConfig()) {
592 <        sprintf(painCave.errMsg,
593 <                "Cannot intialize a simulation without an initial configuration file.\n");
594 <        painCave.isFatal = 1;;
595 <        simError();
596 <    }
597 <        
598 <    DumpReader reader(info, simParams->getInitialConfig());
599 <    int nframes = reader.getNFrames();
600 <
601 <    if (nframes > 0) {
602 <        reader.readFrame(nframes - 1);
603 <    } else {
604 <        //invalid initial coordinate file
605 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
606 <                simParams->getInitialConfig());
607 <        painCave.isFatal = 1;
608 <        simError();
609 <    }
610 <
611 <    //copy the current snapshot to previous snapshot
612 <    info->getSnapshotManager()->advance();
613 < }
614 <
615 < } //end namespace oopse
616 <
617 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimCreator.cpp
45 > * @author tlin
46 > * @date 11/03/2004
47 > * @version 1.0
48 > */
49 >
50 > #ifdef IS_MPI
51 > #include "mpi.h"
52 > #include "math/ParallelRandNumGen.hpp"
53 > #endif
54 >
55 > #include <exception>
56 > #include <iostream>
57 > #include <sstream>
58 > #include <string>
59 >
60 > #include "brains/MoleculeCreator.hpp"
61 > #include "brains/SimCreator.hpp"
62 > #include "brains/SimSnapshotManager.hpp"
63 > #include "io/DumpReader.hpp"
64 > #include "brains/ForceField.hpp"
65 > #include "utils/simError.h"
66 > #include "utils/StringUtils.hpp"
67 > #include "utils/Revision.hpp"
68 > #include "math/SeqRandNumGen.hpp"
69 > #include "mdParser/MDLexer.hpp"
70 > #include "mdParser/MDParser.hpp"
71 > #include "mdParser/MDTreeParser.hpp"
72 > #include "mdParser/SimplePreprocessor.hpp"
73 > #include "antlr/ANTLRException.hpp"
74 > #include "antlr/TokenStreamRecognitionException.hpp"
75 > #include "antlr/TokenStreamIOException.hpp"
76 > #include "antlr/TokenStreamException.hpp"
77 > #include "antlr/RecognitionException.hpp"
78 > #include "antlr/CharStreamException.hpp"
79 >
80 > #include "antlr/MismatchedCharException.hpp"
81 > #include "antlr/MismatchedTokenException.hpp"
82 > #include "antlr/NoViableAltForCharException.hpp"
83 > #include "antlr/NoViableAltException.hpp"
84 >
85 > #include "types/DirectionalAdapter.hpp"
86 > #include "types/MultipoleAdapter.hpp"
87 > #include "types/EAMAdapter.hpp"
88 > #include "types/SuttonChenAdapter.hpp"
89 > #include "types/PolarizableAdapter.hpp"
90 > #include "types/FixedChargeAdapter.hpp"
91 > #include "types/FluctuatingChargeAdapter.hpp"
92 >
93 >
94 > namespace OpenMD {
95 >  
96 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
97 >    Globals* simParams = NULL;
98 >    try {
99 >
100 >      // Create a preprocessor that preprocesses md file into an ostringstream
101 >      std::stringstream ppStream;
102 > #ifdef IS_MPI            
103 >      int streamSize;
104 >      const int masterNode = 0;
105 >
106 >      if (worldRank == masterNode) {
107 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
108 > #endif                
109 >        SimplePreprocessor preprocessor;
110 >        preprocessor.preprocess(rawMetaDataStream, filename,
111 >                                startOfMetaDataBlock, ppStream);
112 >                
113 > #ifdef IS_MPI            
114 >        //broadcasting the stream size
115 >        streamSize = ppStream.str().size() +1;
116 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
117 >        MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 >                  streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
119 >      } else {
120 >
121 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
122 >
123 >        //get stream size
124 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
125 >        char* buf = new char[streamSize];
126 >        assert(buf);
127 >                
128 >        //receive file content
129 >        MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
130 >
131 >        ppStream.str(buf);
132 >        delete [] buf;
133 >      }
134 > #endif            
135 >      // Create a scanner that reads from the input stream
136 >      MDLexer lexer(ppStream);
137 >      lexer.setFilename(filename);
138 >      lexer.initDeferredLineCount();
139 >    
140 >      // Create a parser that reads from the scanner
141 >      MDParser parser(lexer);
142 >      parser.setFilename(filename);
143 >
144 >      // Create an observer that synchorizes file name change
145 >      FilenameObserver observer;
146 >      observer.setLexer(&lexer);
147 >      observer.setParser(&parser);
148 >      lexer.setObserver(&observer);
149 >    
150 >      antlr::ASTFactory factory;
151 >      parser.initializeASTFactory(factory);
152 >      parser.setASTFactory(&factory);
153 >      parser.mdfile();
154 >      // Create a tree parser that reads information into Globals
155 >      MDTreeParser treeParser;
156 >      treeParser.initializeASTFactory(factory);
157 >      treeParser.setASTFactory(&factory);
158 >      simParams = treeParser.walkTree(parser.getAST());
159 >    }
160 >
161 >      
162 >    catch(antlr::MismatchedCharException& e) {
163 >      sprintf(painCave.errMsg,
164 >              "parser exception: %s %s:%d:%d\n",
165 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
166 >      painCave.isFatal = 1;
167 >      simError();          
168 >    }
169 >    catch(antlr::MismatchedTokenException &e) {
170 >      sprintf(painCave.errMsg,
171 >              "parser exception: %s %s:%d:%d\n",
172 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
173 >      painCave.isFatal = 1;
174 >      simError();  
175 >    }
176 >    catch(antlr::NoViableAltForCharException &e) {
177 >      sprintf(painCave.errMsg,
178 >              "parser exception: %s %s:%d:%d\n",
179 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
180 >      painCave.isFatal = 1;
181 >      simError();  
182 >    }
183 >    catch(antlr::NoViableAltException &e) {
184 >      sprintf(painCave.errMsg,
185 >              "parser exception: %s %s:%d:%d\n",
186 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
187 >      painCave.isFatal = 1;
188 >      simError();  
189 >    }
190 >      
191 >    catch(antlr::TokenStreamRecognitionException& e) {
192 >      sprintf(painCave.errMsg,
193 >              "parser exception: %s %s:%d:%d\n",
194 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
195 >      painCave.isFatal = 1;
196 >      simError();  
197 >    }
198 >        
199 >    catch(antlr::TokenStreamIOException& e) {
200 >      sprintf(painCave.errMsg,
201 >              "parser exception: %s\n",
202 >              e.getMessage().c_str());
203 >      painCave.isFatal = 1;
204 >      simError();
205 >    }
206 >        
207 >    catch(antlr::TokenStreamException& e) {
208 >      sprintf(painCave.errMsg,
209 >              "parser exception: %s\n",
210 >              e.getMessage().c_str());
211 >      painCave.isFatal = 1;
212 >      simError();
213 >    }        
214 >    catch (antlr::RecognitionException& e) {
215 >      sprintf(painCave.errMsg,
216 >              "parser exception: %s %s:%d:%d\n",
217 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
218 >      painCave.isFatal = 1;
219 >      simError();          
220 >    }
221 >    catch (antlr::CharStreamException& e) {
222 >      sprintf(painCave.errMsg,
223 >              "parser exception: %s\n",
224 >              e.getMessage().c_str());
225 >      painCave.isFatal = 1;
226 >      simError();        
227 >    }
228 >    catch (OpenMDException& e) {
229 >      sprintf(painCave.errMsg,
230 >              "%s\n",
231 >              e.getMessage().c_str());
232 >      painCave.isFatal = 1;
233 >      simError();
234 >    }
235 >    catch (std::exception& e) {
236 >      sprintf(painCave.errMsg,
237 >              "parser exception: %s\n",
238 >              e.what());
239 >      painCave.isFatal = 1;
240 >      simError();
241 >    }
242 >
243 >    simParams->setMDfileVersion(mdFileVersion);
244 >    return simParams;
245 >  }
246 >  
247 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
248 >                                  bool loadInitCoords) {
249 >    
250 >    const int bufferSize = 65535;
251 >    char buffer[bufferSize];
252 >    int lineNo = 0;
253 >    std::string mdRawData;
254 >    int metaDataBlockStart = -1;
255 >    int metaDataBlockEnd = -1;
256 >    int i, j;
257 >    streamoff mdOffset;
258 >    int mdFileVersion;
259 >
260 >    // Create a string for embedding the version information in the MetaData
261 >    std::string version;
262 >    version.assign("## Last run using OpenMD Version: ");
263 >    version.append(OPENMD_VERSION_MAJOR);
264 >    version.append(".");
265 >    version.append(OPENMD_VERSION_MINOR);
266 >
267 >    std::string svnrev(g_REVISION, strnlen(g_REVISION, 20));
268 >    //convert a macro from compiler to a string in c++
269 >    // STR_DEFINE(svnrev, SVN_REV );
270 >    version.append(" Revision: ");
271 >    // If there's no SVN revision, just call this the RELEASE revision.
272 >    if (!svnrev.empty()) {
273 >      version.append(svnrev);
274 >    } else {
275 >      version.append("RELEASE");
276 >    }
277 >  
278 > #ifdef IS_MPI            
279 >    const int masterNode = 0;
280 >    if (worldRank == masterNode) {
281 > #endif
282 >
283 >      std::ifstream mdFile_;
284 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
285 >      
286 >      if (mdFile_.fail()) {
287 >        sprintf(painCave.errMsg,
288 >                "SimCreator: Cannot open file: %s\n",
289 >                mdFileName.c_str());
290 >        painCave.isFatal = 1;
291 >        simError();
292 >      }
293 >
294 >      mdFile_.getline(buffer, bufferSize);
295 >      ++lineNo;
296 >      std::string line = trimLeftCopy(buffer);
297 >      i = CaseInsensitiveFind(line, "<OpenMD");
298 >      if (static_cast<size_t>(i) == string::npos) {
299 >        // try the older file strings to see if that works:
300 >        i = CaseInsensitiveFind(line, "<OOPSE");
301 >      }
302 >      
303 >      if (static_cast<size_t>(i) == string::npos) {
304 >        // still no luck!
305 >        sprintf(painCave.errMsg,
306 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
307 >                mdFileName.c_str());
308 >        painCave.isFatal = 1;
309 >        simError();
310 >      }
311 >      
312 >      // found the correct opening string, now try to get the file
313 >      // format version number.
314 >
315 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
316 >      std::string fileType = tokenizer.nextToken();
317 >      toUpper(fileType);
318 >
319 >      mdFileVersion = 0;
320 >
321 >      if (fileType == "OPENMD") {
322 >        while (tokenizer.hasMoreTokens()) {
323 >          std::string token(tokenizer.nextToken());
324 >          toUpper(token);
325 >          if (token == "VERSION") {
326 >            mdFileVersion = tokenizer.nextTokenAsInt();
327 >            break;
328 >          }
329 >        }
330 >      }
331 >            
332 >      //scan through the input stream and find MetaData tag        
333 >      while(mdFile_.getline(buffer, bufferSize)) {
334 >        ++lineNo;
335 >        
336 >        std::string line = trimLeftCopy(buffer);
337 >        if (metaDataBlockStart == -1) {
338 >          i = CaseInsensitiveFind(line, "<MetaData>");
339 >          if (i != string::npos) {
340 >            metaDataBlockStart = lineNo;
341 >            mdOffset = mdFile_.tellg();
342 >          }
343 >        } else {
344 >          i = CaseInsensitiveFind(line, "</MetaData>");
345 >          if (i != string::npos) {
346 >            metaDataBlockEnd = lineNo;
347 >          }
348 >        }
349 >      }
350 >
351 >      if (metaDataBlockStart == -1) {
352 >        sprintf(painCave.errMsg,
353 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
354 >                mdFileName.c_str());
355 >        painCave.isFatal = 1;
356 >        simError();
357 >      }
358 >      if (metaDataBlockEnd == -1) {
359 >        sprintf(painCave.errMsg,
360 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
361 >                mdFileName.c_str());
362 >        painCave.isFatal = 1;
363 >        simError();
364 >      }
365 >        
366 >      mdFile_.clear();
367 >      mdFile_.seekg(0);
368 >      mdFile_.seekg(mdOffset);
369 >
370 >      mdRawData.clear();
371 >
372 >      bool foundVersion = false;
373 >
374 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
375 >        mdFile_.getline(buffer, bufferSize);
376 >        std::string line = trimLeftCopy(buffer);
377 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
378 >        if (static_cast<size_t>(j) != string::npos) {
379 >          foundVersion = true;
380 >          mdRawData += version;
381 >        } else {
382 >          mdRawData += buffer;
383 >        }
384 >        mdRawData += "\n";
385 >      }
386 >      
387 >      if (!foundVersion) mdRawData += version + "\n";
388 >      
389 >      mdFile_.close();
390 >
391 > #ifdef IS_MPI
392 >    }
393 > #endif
394 >
395 >    std::stringstream rawMetaDataStream(mdRawData);
396 >
397 >    //parse meta-data file
398 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
399 >                                   metaDataBlockStart + 1);
400 >    
401 >    //create the force field
402 >    ForceField * ff = new ForceField(simParams->getForceField());
403 >
404 >    if (ff == NULL) {
405 >      sprintf(painCave.errMsg,
406 >              "ForceField Factory can not create %s force field\n",
407 >              simParams->getForceField().c_str());
408 >      painCave.isFatal = 1;
409 >      simError();
410 >    }
411 >    
412 >    if (simParams->haveForceFieldFileName()) {
413 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
414 >    }
415 >    
416 >    std::string forcefieldFileName;
417 >    forcefieldFileName = ff->getForceFieldFileName();
418 >    
419 >    if (simParams->haveForceFieldVariant()) {
420 >      //If the force field has variant, the variant force field name will be
421 >      //Base.variant.frc. For exampel EAM.u6.frc
422 >      
423 >      std::string variant = simParams->getForceFieldVariant();
424 >      
425 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
426 >      variant = "." + variant;
427 >      if (pos != std::string::npos) {
428 >        forcefieldFileName.insert(pos, variant);
429 >      } else {
430 >        //If the default force field file name does not containt .frc suffix, just append the .variant
431 >        forcefieldFileName.append(variant);
432 >      }
433 >    }
434 >    
435 >    ff->parse(forcefieldFileName);
436 >    //create SimInfo
437 >    SimInfo * info = new SimInfo(ff, simParams);
438 >
439 >    info->setRawMetaData(mdRawData);
440 >    
441 >    //gather parameters (SimCreator only retrieves part of the
442 >    //parameters)
443 >    gatherParameters(info, mdFileName);
444 >    
445 >    //divide the molecules and determine the global index of molecules
446 > #ifdef IS_MPI
447 >    divideMolecules(info);
448 > #endif
449 >    
450 >    //create the molecules
451 >    createMolecules(info);
452 >    
453 >    //find the storage layout
454 >
455 >    int storageLayout = computeStorageLayout(info);
456 >
457 >    //allocate memory for DataStorage(circular reference, need to
458 >    //break it)
459 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
460 >    
461 >    //set the global index of atoms, rigidbodies and cutoffgroups
462 >    //(only need to be set once, the global index will never change
463 >    //again). Local indices of atoms and rigidbodies are already set
464 >    //by MoleculeCreator class which actually delegates the
465 >    //responsibility to LocalIndexManager.
466 >    setGlobalIndex(info);
467 >    
468 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
469 >    //method, at that point atoms don't have the global index yet
470 >    //(their global index are all initialized to -1).  Therefore we
471 >    //have to call addInteractionPairs explicitly here. A way to work
472 >    //around is that we can determine the beginning global indices of
473 >    //atoms before they get created.
474 >    SimInfo::MoleculeIterator mi;
475 >    Molecule* mol;
476 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
477 >      info->addInteractionPairs(mol);
478 >    }
479 >    
480 >    if (loadInitCoords)
481 >      loadCoordinates(info, mdFileName);    
482 >    return info;
483 >  }
484 >  
485 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
486 >    
487 >    //figure out the output file names
488 >    std::string prefix;
489 >    
490 > #ifdef IS_MPI
491 >    
492 >    if (worldRank == 0) {
493 > #endif // is_mpi
494 >      Globals * simParams = info->getSimParams();
495 >      if (simParams->haveFinalConfig()) {
496 >        prefix = getPrefix(simParams->getFinalConfig());
497 >      } else {
498 >        prefix = getPrefix(mdfile);
499 >      }
500 >      
501 >      info->setFinalConfigFileName(prefix + ".eor");
502 >      info->setDumpFileName(prefix + ".dump");
503 >      info->setStatFileName(prefix + ".stat");
504 >      info->setRestFileName(prefix + ".zang");
505 >      
506 > #ifdef IS_MPI
507 >      
508 >    }
509 >    
510 > #endif
511 >    
512 >  }
513 >  
514 > #ifdef IS_MPI
515 >  void SimCreator::divideMolecules(SimInfo *info) {
516 >    RealType a;
517 >    int nProcessors;
518 >    std::vector<int> atomsPerProc;
519 >    int nGlobalMols = info->getNGlobalMolecules();
520 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
521 >                                                    // error
522 >                                                    // condition:
523 >    
524 >    MPI_Comm_size( MPI_COMM_WORLD, &nProcessors);    
525 >    
526 >    if (nProcessors > nGlobalMols) {
527 >      sprintf(painCave.errMsg,
528 >              "nProcessors (%d) > nMol (%d)\n"
529 >              "\tThe number of processors is larger than\n"
530 >              "\tthe number of molecules.  This will not result in a \n"
531 >              "\tusable division of atoms for force decomposition.\n"
532 >              "\tEither try a smaller number of processors, or run the\n"
533 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
534 >              nGlobalMols);
535 >      
536 >      painCave.isFatal = 1;
537 >      simError();
538 >    }
539 >    
540 >    Globals * simParams = info->getSimParams();
541 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
542 >                             //random number generator
543 >    if (simParams->haveSeed()) {
544 >      int seedValue = simParams->getSeed();
545 >      myRandom = new SeqRandNumGen(seedValue);
546 >    }else {
547 >      myRandom = new SeqRandNumGen();
548 >    }  
549 >    
550 >    
551 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
552 >    
553 >    //initialize atomsPerProc
554 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
555 >    
556 >    if (worldRank == 0) {
557 >      RealType numerator = info->getNGlobalAtoms();
558 >      RealType denominator = nProcessors;
559 >      RealType precast = numerator / denominator;
560 >      int nTarget = (int)(precast + 0.5);
561 >      
562 >      for(int i = 0; i < nGlobalMols; i++) {
563 >
564 >        int done = 0;
565 >        int loops = 0;
566 >        
567 >        while (!done) {
568 >          loops++;
569 >          
570 >          // Pick a processor at random
571 >          
572 >          int which_proc = (int) (myRandom->rand() * nProcessors);
573 >          
574 >          //get the molecule stamp first
575 >          int stampId = info->getMoleculeStampId(i);
576 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
577 >          
578 >          // How many atoms does this processor have so far?
579 >          int old_atoms = atomsPerProc[which_proc];
580 >          int add_atoms = moleculeStamp->getNAtoms();
581 >          int new_atoms = old_atoms + add_atoms;
582 >          
583 >          // If we've been through this loop too many times, we need
584 >          // to just give up and assign the molecule to this processor
585 >          // and be done with it.
586 >          
587 >          if (loops > 100) {
588 >
589 >            sprintf(painCave.errMsg,
590 >                    "There have been 100 attempts to assign molecule %d to an\n"
591 >                    "\tunderworked processor, but there's no good place to\n"
592 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
593 >                    i, which_proc);
594 >          
595 >            painCave.isFatal = 0;
596 >            painCave.severity = OPENMD_INFO;
597 >            simError();
598 >            
599 >            molToProcMap[i] = which_proc;
600 >            atomsPerProc[which_proc] += add_atoms;
601 >            
602 >            done = 1;
603 >            continue;
604 >          }
605 >          
606 >          // If we can add this molecule to this processor without sending
607 >          // it above nTarget, then go ahead and do it:
608 >          
609 >          if (new_atoms <= nTarget) {
610 >            molToProcMap[i] = which_proc;
611 >            atomsPerProc[which_proc] += add_atoms;
612 >            
613 >            done = 1;
614 >            continue;
615 >          }
616 >          
617 >          // The only situation left is when new_atoms > nTarget.  We
618 >          // want to accept this with some probability that dies off the
619 >          // farther we are from nTarget
620 >          
621 >          // roughly:  x = new_atoms - nTarget
622 >          //           Pacc(x) = exp(- a * x)
623 >          // where a = penalty / (average atoms per molecule)
624 >          
625 >          RealType x = (RealType)(new_atoms - nTarget);
626 >          RealType y = myRandom->rand();
627 >          
628 >          if (y < exp(- a * x)) {
629 >            molToProcMap[i] = which_proc;
630 >            atomsPerProc[which_proc] += add_atoms;
631 >            
632 >            done = 1;
633 >            continue;
634 >          } else {
635 >            continue;
636 >          }
637 >        }
638 >      }
639 >      
640 >      delete myRandom;
641 >
642 >      // Spray out this nonsense to all other processors:
643 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
644 >
645 >    } else {
646 >      
647 >      // Listen to your marching orders from processor 0:
648 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
649 >
650 >    }
651 >    
652 >    info->setMolToProcMap(molToProcMap);
653 >    sprintf(checkPointMsg,
654 >            "Successfully divided the molecules among the processors.\n");
655 >    errorCheckPoint();
656 >  }
657 >  
658 > #endif
659 >  
660 >  void SimCreator::createMolecules(SimInfo *info) {
661 >    MoleculeCreator molCreator;
662 >    int stampId;
663 >    
664 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
665 >      
666 > #ifdef IS_MPI
667 >      
668 >      if (info->getMolToProc(i) == worldRank) {
669 > #endif
670 >        
671 >        stampId = info->getMoleculeStampId(i);
672 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
673 >                                                   info->getMoleculeStamp(stampId),
674 >                                                   stampId, i,
675 >                                                   info->getLocalIndexManager());
676 >        
677 >        info->addMolecule(mol);
678 >        
679 > #ifdef IS_MPI
680 >        
681 >      }
682 >      
683 > #endif
684 >      
685 >    } //end for(int i=0)  
686 >  }
687 >    
688 >  int SimCreator::computeStorageLayout(SimInfo* info) {
689 >
690 >    Globals* simParams = info->getSimParams();
691 >    int nRigidBodies = info->getNGlobalRigidBodies();
692 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
693 >    set<AtomType*>::iterator i;
694 >    bool hasDirectionalAtoms = false;
695 >    bool hasFixedCharge = false;
696 >    bool hasDipoles = false;    
697 >    bool hasQuadrupoles = false;    
698 >    bool hasPolarizable = false;    
699 >    bool hasFluctuatingCharge = false;    
700 >    bool hasMetallic = false;
701 >    int storageLayout = 0;
702 >    storageLayout |= DataStorage::dslPosition;
703 >    storageLayout |= DataStorage::dslVelocity;
704 >    storageLayout |= DataStorage::dslForce;
705 >
706 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
707 >
708 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
709 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
710 >      EAMAdapter ea = EAMAdapter( (*i) );
711 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
712 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
713 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
714 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
715 >
716 >      if (da.isDirectional()){
717 >        hasDirectionalAtoms = true;
718 >      }
719 >      if (ma.isDipole()){
720 >        hasDipoles = true;
721 >      }
722 >      if (ma.isQuadrupole()){
723 >        hasQuadrupoles = true;
724 >      }
725 >      if (ea.isEAM() || sca.isSuttonChen()){
726 >        hasMetallic = true;
727 >      }
728 >      if ( fca.isFixedCharge() ){
729 >        hasFixedCharge = true;
730 >      }
731 >      if ( fqa.isFluctuatingCharge() ){
732 >        hasFluctuatingCharge = true;
733 >      }
734 >      if ( pa.isPolarizable() ){
735 >        hasPolarizable = true;
736 >      }
737 >    }
738 >    
739 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
740 >      storageLayout |= DataStorage::dslAmat;
741 >      if(storageLayout & DataStorage::dslVelocity) {
742 >        storageLayout |= DataStorage::dslAngularMomentum;
743 >      }
744 >      if (storageLayout & DataStorage::dslForce) {
745 >        storageLayout |= DataStorage::dslTorque;
746 >      }
747 >    }
748 >    if (hasDipoles) {
749 >      storageLayout |= DataStorage::dslDipole;
750 >    }
751 >    if (hasQuadrupoles) {
752 >      storageLayout |= DataStorage::dslQuadrupole;
753 >    }
754 >    if (hasFixedCharge || hasFluctuatingCharge) {
755 >      storageLayout |= DataStorage::dslSkippedCharge;
756 >    }
757 >    if (hasMetallic) {
758 >      storageLayout |= DataStorage::dslDensity;
759 >      storageLayout |= DataStorage::dslFunctional;
760 >      storageLayout |= DataStorage::dslFunctionalDerivative;
761 >    }
762 >    if (hasPolarizable) {
763 >      storageLayout |= DataStorage::dslElectricField;
764 >    }
765 >    if (hasFluctuatingCharge){
766 >      storageLayout |= DataStorage::dslFlucQPosition;
767 >      if(storageLayout & DataStorage::dslVelocity) {
768 >        storageLayout |= DataStorage::dslFlucQVelocity;
769 >      }
770 >      if (storageLayout & DataStorage::dslForce) {
771 >        storageLayout |= DataStorage::dslFlucQForce;
772 >      }
773 >    }
774 >    
775 >    // if the user has asked for them, make sure we've got the memory for the
776 >    // objects defined.
777 >
778 >    if (simParams->getOutputParticlePotential()) {
779 >      storageLayout |= DataStorage::dslParticlePot;
780 >    }
781 >
782 >    if (simParams->havePrintHeatFlux()) {
783 >      if (simParams->getPrintHeatFlux()) {
784 >        storageLayout |= DataStorage::dslParticlePot;
785 >      }
786 >    }
787 >
788 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
789 >      storageLayout |= DataStorage::dslElectricField;
790 >    }
791 >
792 >    if (simParams->getOutputFluctuatingCharges()) {
793 >      storageLayout |= DataStorage::dslFlucQPosition;
794 >      storageLayout |= DataStorage::dslFlucQVelocity;
795 >      storageLayout |= DataStorage::dslFlucQForce;
796 >    }
797 >
798 >    info->setStorageLayout(storageLayout);
799 >
800 >    return storageLayout;
801 >  }
802 >
803 >  void SimCreator::setGlobalIndex(SimInfo *info) {
804 >    SimInfo::MoleculeIterator mi;
805 >    Molecule::AtomIterator ai;
806 >    Molecule::RigidBodyIterator ri;
807 >    Molecule::CutoffGroupIterator ci;
808 >    Molecule::BondIterator boi;
809 >    Molecule::BendIterator bei;
810 >    Molecule::TorsionIterator ti;
811 >    Molecule::InversionIterator ii;
812 >    Molecule::IntegrableObjectIterator  ioi;
813 >    Molecule* mol;
814 >    Atom* atom;
815 >    RigidBody* rb;
816 >    CutoffGroup* cg;
817 >    Bond* bond;
818 >    Bend* bend;
819 >    Torsion* torsion;
820 >    Inversion* inversion;
821 >    int beginAtomIndex;
822 >    int beginRigidBodyIndex;
823 >    int beginCutoffGroupIndex;
824 >    int beginBondIndex;
825 >    int beginBendIndex;
826 >    int beginTorsionIndex;
827 >    int beginInversionIndex;
828 >    int nGlobalAtoms = info->getNGlobalAtoms();
829 >    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
830 >    
831 >    beginAtomIndex = 0;
832 >    // The rigid body indices begin immediately after the atom indices:
833 >    beginRigidBodyIndex = info->getNGlobalAtoms();
834 >    beginCutoffGroupIndex = 0;
835 >    beginBondIndex = 0;
836 >    beginBendIndex = 0;
837 >    beginTorsionIndex = 0;
838 >    beginInversionIndex = 0;
839 >  
840 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
841 >      
842 > #ifdef IS_MPI      
843 >      if (info->getMolToProc(i) == worldRank) {
844 > #endif        
845 >        // stuff to do if I own this molecule
846 >        mol = info->getMoleculeByGlobalIndex(i);
847 >
848 >        // The local index(index in DataStorge) of the atom is important:
849 >        for(atom = mol->beginAtom(ai); atom != NULL;
850 >            atom = mol->nextAtom(ai)) {
851 >          atom->setGlobalIndex(beginAtomIndex++);
852 >        }
853 >        
854 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
855 >            rb = mol->nextRigidBody(ri)) {
856 >          rb->setGlobalIndex(beginRigidBodyIndex++);
857 >        }
858 >        
859 >        // The local index of other objects only depends on the order
860 >        // of traversal:
861 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
862 >            cg = mol->nextCutoffGroup(ci)) {
863 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
864 >        }        
865 >        for(bond = mol->beginBond(boi); bond != NULL;
866 >            bond = mol->nextBond(boi)) {
867 >          bond->setGlobalIndex(beginBondIndex++);
868 >        }        
869 >        for(bend = mol->beginBend(bei); bend != NULL;
870 >            bend = mol->nextBend(bei)) {
871 >          bend->setGlobalIndex(beginBendIndex++);
872 >        }        
873 >        for(torsion = mol->beginTorsion(ti); torsion != NULL;
874 >            torsion = mol->nextTorsion(ti)) {
875 >          torsion->setGlobalIndex(beginTorsionIndex++);
876 >        }        
877 >        for(inversion = mol->beginInversion(ii); inversion != NULL;
878 >            inversion = mol->nextInversion(ii)) {
879 >          inversion->setGlobalIndex(beginInversionIndex++);
880 >        }        
881 >        
882 > #ifdef IS_MPI        
883 >      }  else {
884 >
885 >        // stuff to do if I don't own this molecule
886 >        
887 >        int stampId = info->getMoleculeStampId(i);
888 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
889 >
890 >        beginAtomIndex += stamp->getNAtoms();
891 >        beginRigidBodyIndex += stamp->getNRigidBodies();
892 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
893 >        beginBondIndex += stamp->getNBonds();
894 >        beginBendIndex += stamp->getNBends();
895 >        beginTorsionIndex += stamp->getNTorsions();
896 >        beginInversionIndex += stamp->getNInversions();
897 >      }
898 > #endif          
899 >
900 >    } //end for(int i=0)  
901 >
902 >    //fill globalGroupMembership
903 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
904 >    for(mol = info->beginMolecule(mi); mol != NULL;
905 >        mol = info->nextMolecule(mi)) {        
906 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
907 >           cg = mol->nextCutoffGroup(ci)) {        
908 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
909 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
910 >        }
911 >        
912 >      }      
913 >    }
914 >  
915 > #ifdef IS_MPI    
916 >    // Since the globalGroupMembership has been zero filled and we've only
917 >    // poked values into the atoms we know, we can do an Allreduce
918 >    // to get the full globalGroupMembership array (We think).
919 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
920 >    // docs said we could.
921 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
922 >    MPI_Allreduce(&globalGroupMembership[0],
923 >                  &tmpGroupMembership[0], nGlobalAtoms,
924 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
925 >
926 >    info->setGlobalGroupMembership(tmpGroupMembership);
927 > #else
928 >    info->setGlobalGroupMembership(globalGroupMembership);
929 > #endif
930 >    
931 >    //fill molMembership
932 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
933 >                                         info->getNGlobalRigidBodies(), 0);
934 >    
935 >    for(mol = info->beginMolecule(mi); mol != NULL;
936 >        mol = info->nextMolecule(mi)) {
937 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
938 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
939 >      }
940 >      for (rb = mol->beginRigidBody(ri); rb != NULL;
941 >           rb = mol->nextRigidBody(ri)) {
942 >        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
943 >      }
944 >    }
945 >    
946 > #ifdef IS_MPI
947 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
948 >                                      info->getNGlobalRigidBodies(), 0);
949 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
950 >                  nGlobalAtoms + nGlobalRigidBodies,
951 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
952 >    
953 >    info->setGlobalMolMembership(tmpMolMembership);
954 > #else
955 >    info->setGlobalMolMembership(globalMolMembership);
956 > #endif
957 >
958 >    // nIOPerMol holds the number of integrable objects per molecule
959 >    // here the molecules are listed by their global indices.
960 >
961 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
962 >    for (mol = info->beginMolecule(mi); mol != NULL;
963 >         mol = info->nextMolecule(mi)) {
964 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
965 >    }
966 >    
967 > #ifdef IS_MPI
968 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
969 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
970 >      info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
971 > #else
972 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
973 > #endif    
974 >
975 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
976 >    
977 >    int startingIndex = 0;
978 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
979 >      startingIOIndexForMol[i] = startingIndex;
980 >      startingIndex += numIntegrableObjectsPerMol[i];
981 >    }
982 >    
983 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
984 >    for (mol = info->beginMolecule(mi); mol != NULL;
985 >         mol = info->nextMolecule(mi)) {
986 >      int myGlobalIndex = mol->getGlobalIndex();
987 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
988 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
989 >           sd = mol->nextIntegrableObject(ioi)) {
990 >        sd->setGlobalIntegrableObjectIndex(globalIO);
991 >        IOIndexToIntegrableObject[globalIO] = sd;
992 >        globalIO++;
993 >      }
994 >    }
995 >      
996 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
997 >    
998 >  }
999 >  
1000 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
1001 >    
1002 >    DumpReader reader(info, mdFileName);
1003 >    int nframes = reader.getNFrames();
1004 >    
1005 >    if (nframes > 0) {
1006 >      reader.readFrame(nframes - 1);
1007 >    } else {
1008 >      //invalid initial coordinate file
1009 >      sprintf(painCave.errMsg,
1010 >              "Initial configuration file %s should at least contain one frame\n",
1011 >              mdFileName.c_str());
1012 >      painCave.isFatal = 1;
1013 >      simError();
1014 >    }
1015 >    //copy the current snapshot to previous snapshot
1016 >    info->getSnapshotManager()->advance();
1017 >  }
1018 >  
1019 > } //end namespace OpenMD
1020 >
1021 >

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 388 by tim, Tue Mar 1 23:02:33 2005 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines