ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 297 by tim, Mon Feb 7 19:14:26 2005 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file SimCreator.cpp
45   * @author tlin
46   * @date 11/03/2004
46 * @time 13:51am
47   * @version 1.0
48   */
49  
50 < #include <sprng.h>
50 > #ifdef IS_MPI
51 > #include "mpi.h"
52 > #include "math/ParallelRandNumGen.hpp"
53 > #endif
54  
55 + #include <exception>
56 + #include <iostream>
57 + #include <sstream>
58 + #include <string>
59 +
60   #include "brains/MoleculeCreator.hpp"
61   #include "brains/SimCreator.hpp"
62   #include "brains/SimSnapshotManager.hpp"
63   #include "io/DumpReader.hpp"
64 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
64 > #include "brains/ForceField.hpp"
65   #include "utils/simError.h"
66   #include "utils/StringUtils.hpp"
67 < #ifdef IS_MPI
68 < #include "io/mpiBASS.h"
69 < #include "math/randomSPRNG.hpp"
70 < #endif
67 > #include "math/SeqRandNumGen.hpp"
68 > #include "mdParser/MDLexer.hpp"
69 > #include "mdParser/MDParser.hpp"
70 > #include "mdParser/MDTreeParser.hpp"
71 > #include "mdParser/SimplePreprocessor.hpp"
72 > #include "antlr/ANTLRException.hpp"
73 > #include "antlr/TokenStreamRecognitionException.hpp"
74 > #include "antlr/TokenStreamIOException.hpp"
75 > #include "antlr/TokenStreamException.hpp"
76 > #include "antlr/RecognitionException.hpp"
77 > #include "antlr/CharStreamException.hpp"
78  
79 < namespace oopse {
79 > #include "antlr/MismatchedCharException.hpp"
80 > #include "antlr/MismatchedTokenException.hpp"
81 > #include "antlr/NoViableAltForCharException.hpp"
82 > #include "antlr/NoViableAltException.hpp"
83  
84 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
84 > #include "types/DirectionalAdapter.hpp"
85 > #include "types/MultipoleAdapter.hpp"
86 > #include "types/EAMAdapter.hpp"
87 > #include "types/SuttonChenAdapter.hpp"
88 > #include "types/PolarizableAdapter.hpp"
89 > #include "types/FixedChargeAdapter.hpp"
90 > #include "types/FluctuatingChargeAdapter.hpp"
91  
69 #ifdef IS_MPI
92  
93 <    if (worldRank == 0) {
94 < #endif // is_mpi
93 > namespace OpenMD {
94 >  
95 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
96 >    Globals* simParams = NULL;
97 >    try {
98  
99 <        simParams->initalize();
100 <        set_interface_stamps(stamps, simParams);
99 >      // Create a preprocessor that preprocesses md file into an ostringstream
100 >      std::stringstream ppStream;
101 > #ifdef IS_MPI            
102 >      int streamSize;
103 >      const int masterNode = 0;
104  
105 < #ifdef IS_MPI
105 >      if (worldRank == masterNode) {
106 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
107 >        // MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
108 > #endif                
109 >        SimplePreprocessor preprocessor;
110 >        preprocessor.preprocess(rawMetaDataStream, filename,
111 >                                startOfMetaDataBlock, ppStream);
112 >                
113 > #ifdef IS_MPI            
114 >        //broadcasting the stream size
115 >        streamSize = ppStream.str().size() +1;
116 >        MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);
117 >        MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 >                  streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
119  
120 <        mpiEventInit();
120 >        // MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
121 >        // MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
122 >        //                       streamSize, MPI::CHAR, masterNode);
123 >                          
124 >      } else {
125  
126 < #endif
126 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
127 >        // MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
128  
129 <        yacc_BASS(mdFileName.c_str());
129 >        //get stream size
130 >        MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);
131 >        // MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
132 >        char* buf = new char[streamSize];
133 >        assert(buf);
134 >                
135 >        //receive file content
136 >        MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
137 >        // MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
138  
139 < #ifdef IS_MPI
139 >        ppStream.str(buf);
140 >        delete [] buf;
141 >      }
142 > #endif            
143 >      // Create a scanner that reads from the input stream
144 >      MDLexer lexer(ppStream);
145 >      lexer.setFilename(filename);
146 >      lexer.initDeferredLineCount();
147 >    
148 >      // Create a parser that reads from the scanner
149 >      MDParser parser(lexer);
150 >      parser.setFilename(filename);
151  
152 <        throwMPIEvent(NULL);
152 >      // Create an observer that synchorizes file name change
153 >      FilenameObserver observer;
154 >      observer.setLexer(&lexer);
155 >      observer.setParser(&parser);
156 >      lexer.setObserver(&observer);
157 >    
158 >      antlr::ASTFactory factory;
159 >      parser.initializeASTFactory(factory);
160 >      parser.setASTFactory(&factory);
161 >      parser.mdfile();
162 >      // Create a tree parser that reads information into Globals
163 >      MDTreeParser treeParser;
164 >      treeParser.initializeASTFactory(factory);
165 >      treeParser.setASTFactory(&factory);
166 >      simParams = treeParser.walkTree(parser.getAST());
167 >    }
168 >
169 >      
170 >    catch(antlr::MismatchedCharException& e) {
171 >      sprintf(painCave.errMsg,
172 >              "parser exception: %s %s:%d:%d\n",
173 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
174 >      painCave.isFatal = 1;
175 >      simError();          
176 >    }
177 >    catch(antlr::MismatchedTokenException &e) {
178 >      sprintf(painCave.errMsg,
179 >              "parser exception: %s %s:%d:%d\n",
180 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
181 >      painCave.isFatal = 1;
182 >      simError();  
183 >    }
184 >    catch(antlr::NoViableAltForCharException &e) {
185 >      sprintf(painCave.errMsg,
186 >              "parser exception: %s %s:%d:%d\n",
187 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
188 >      painCave.isFatal = 1;
189 >      simError();  
190 >    }
191 >    catch(antlr::NoViableAltException &e) {
192 >      sprintf(painCave.errMsg,
193 >              "parser exception: %s %s:%d:%d\n",
194 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
195 >      painCave.isFatal = 1;
196 >      simError();  
197 >    }
198 >      
199 >    catch(antlr::TokenStreamRecognitionException& e) {
200 >      sprintf(painCave.errMsg,
201 >              "parser exception: %s %s:%d:%d\n",
202 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
203 >      painCave.isFatal = 1;
204 >      simError();  
205 >    }
206 >        
207 >    catch(antlr::TokenStreamIOException& e) {
208 >      sprintf(painCave.errMsg,
209 >              "parser exception: %s\n",
210 >              e.getMessage().c_str());
211 >      painCave.isFatal = 1;
212 >      simError();
213 >    }
214 >        
215 >    catch(antlr::TokenStreamException& e) {
216 >      sprintf(painCave.errMsg,
217 >              "parser exception: %s\n",
218 >              e.getMessage().c_str());
219 >      painCave.isFatal = 1;
220 >      simError();
221 >    }        
222 >    catch (antlr::RecognitionException& e) {
223 >      sprintf(painCave.errMsg,
224 >              "parser exception: %s %s:%d:%d\n",
225 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
226 >      painCave.isFatal = 1;
227 >      simError();          
228 >    }
229 >    catch (antlr::CharStreamException& e) {
230 >      sprintf(painCave.errMsg,
231 >              "parser exception: %s\n",
232 >              e.getMessage().c_str());
233 >      painCave.isFatal = 1;
234 >      simError();        
235 >    }
236 >    catch (OpenMDException& e) {
237 >      sprintf(painCave.errMsg,
238 >              "%s\n",
239 >              e.getMessage().c_str());
240 >      painCave.isFatal = 1;
241 >      simError();
242 >    }
243 >    catch (std::exception& e) {
244 >      sprintf(painCave.errMsg,
245 >              "parser exception: %s\n",
246 >              e.what());
247 >      painCave.isFatal = 1;
248 >      simError();
249 >    }
250 >
251 >    simParams->setMDfileVersion(mdFileVersion);
252 >    return simParams;
253 >  }
254 >  
255 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
256 >                                  bool loadInitCoords) {
257 >    
258 >    const int bufferSize = 65535;
259 >    char buffer[bufferSize];
260 >    int lineNo = 0;
261 >    std::string mdRawData;
262 >    int metaDataBlockStart = -1;
263 >    int metaDataBlockEnd = -1;
264 >    int i, j;
265 >    streamoff mdOffset;
266 >    int mdFileVersion;
267 >
268 >    // Create a string for embedding the version information in the MetaData
269 >    std::string version;
270 >    version.assign("## Last run using OpenMD Version: ");
271 >    version.append(OPENMD_VERSION_MAJOR);
272 >    version.append(".");
273 >    version.append(OPENMD_VERSION_MINOR);
274 >
275 >    std::string svnrev;
276 >    //convert a macro from compiler to a string in c++
277 >    STR_DEFINE(svnrev, SVN_REV );
278 >    version.append(" Revision: ");
279 >    // If there's no SVN revision, just call this the RELEASE revision.
280 >    if (!svnrev.empty()) {
281 >      version.append(svnrev);
282      } else {
283 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
283 >      version.append("RELEASE");
284      }
285 +  
286 + #ifdef IS_MPI            
287 +    const int masterNode = 0;
288 +    if (worldRank == masterNode) {
289 + #endif
290  
291 < #endif
291 >      std::ifstream mdFile_;
292 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
293 >      
294 >      if (mdFile_.fail()) {
295 >        sprintf(painCave.errMsg,
296 >                "SimCreator: Cannot open file: %s\n",
297 >                mdFileName.c_str());
298 >        painCave.isFatal = 1;
299 >        simError();
300 >      }
301  
302 < }
302 >      mdFile_.getline(buffer, bufferSize);
303 >      ++lineNo;
304 >      std::string line = trimLeftCopy(buffer);
305 >      i = CaseInsensitiveFind(line, "<OpenMD");
306 >      if (static_cast<size_t>(i) == string::npos) {
307 >        // try the older file strings to see if that works:
308 >        i = CaseInsensitiveFind(line, "<OOPSE");
309 >      }
310 >      
311 >      if (static_cast<size_t>(i) == string::npos) {
312 >        // still no luck!
313 >        sprintf(painCave.errMsg,
314 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
315 >                mdFileName.c_str());
316 >        painCave.isFatal = 1;
317 >        simError();
318 >      }
319 >      
320 >      // found the correct opening string, now try to get the file
321 >      // format version number.
322  
323 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
324 <    
325 <    MakeStamps * stamps = new MakeStamps();
323 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
324 >      std::string fileType = tokenizer.nextToken();
325 >      toUpper(fileType);
326  
327 <    Globals * simParams = new Globals();
327 >      mdFileVersion = 0;
328  
329 <    //parse meta-data file
330 <    parseFile(mdFileName, stamps, simParams);
329 >      if (fileType == "OPENMD") {
330 >        while (tokenizer.hasMoreTokens()) {
331 >          std::string token(tokenizer.nextToken());
332 >          toUpper(token);
333 >          if (token == "VERSION") {
334 >            mdFileVersion = tokenizer.nextTokenAsInt();
335 >            break;
336 >          }
337 >        }
338 >      }
339 >            
340 >      //scan through the input stream and find MetaData tag        
341 >      while(mdFile_.getline(buffer, bufferSize)) {
342 >        ++lineNo;
343 >        
344 >        std::string line = trimLeftCopy(buffer);
345 >        if (metaDataBlockStart == -1) {
346 >          i = CaseInsensitiveFind(line, "<MetaData>");
347 >          if (i != string::npos) {
348 >            metaDataBlockStart = lineNo;
349 >            mdOffset = mdFile_.tellg();
350 >          }
351 >        } else {
352 >          i = CaseInsensitiveFind(line, "</MetaData>");
353 >          if (i != string::npos) {
354 >            metaDataBlockEnd = lineNo;
355 >          }
356 >        }
357 >      }
358  
359 <    //create the force field
360 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
361 <                          simParams->getForceField());
362 <    
363 <    if (ff == NULL) {
364 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
365 <                simParams->getForceField());
366 <        painCave.isFatal = 1;
367 <        simError();
359 >      if (metaDataBlockStart == -1) {
360 >        sprintf(painCave.errMsg,
361 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
362 >                mdFileName.c_str());
363 >        painCave.isFatal = 1;
364 >        simError();
365 >      }
366 >      if (metaDataBlockEnd == -1) {
367 >        sprintf(painCave.errMsg,
368 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
369 >                mdFileName.c_str());
370 >        painCave.isFatal = 1;
371 >        simError();
372 >      }
373 >        
374 >      mdFile_.clear();
375 >      mdFile_.seekg(0);
376 >      mdFile_.seekg(mdOffset);
377 >
378 >      mdRawData.clear();
379 >
380 >      bool foundVersion = false;
381 >
382 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
383 >        mdFile_.getline(buffer, bufferSize);
384 >        std::string line = trimLeftCopy(buffer);
385 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
386 >        if (static_cast<size_t>(j) != string::npos) {
387 >          foundVersion = true;
388 >          mdRawData += version;
389 >        } else {
390 >          mdRawData += buffer;
391 >        }
392 >        mdRawData += "\n";
393 >      }
394 >      
395 >      if (!foundVersion) mdRawData += version + "\n";
396 >      
397 >      mdFile_.close();
398 >
399 > #ifdef IS_MPI
400      }
401 + #endif
402  
403 +    std::stringstream rawMetaDataStream(mdRawData);
404 +
405 +    //parse meta-data file
406 +    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
407 +                                   metaDataBlockStart + 1);
408 +    
409 +    //create the force field
410 +    ForceField * ff = new ForceField(simParams->getForceField());
411 +
412 +    if (ff == NULL) {
413 +      sprintf(painCave.errMsg,
414 +              "ForceField Factory can not create %s force field\n",
415 +              simParams->getForceField().c_str());
416 +      painCave.isFatal = 1;
417 +      simError();
418 +    }
419 +    
420      if (simParams->haveForceFieldFileName()) {
421 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
421 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
422      }
423      
424      std::string forcefieldFileName;
425      forcefieldFileName = ff->getForceFieldFileName();
426 <
426 >    
427      if (simParams->haveForceFieldVariant()) {
428 <        //If the force field has variant, the variant force field name will be
429 <        //Base.variant.frc. For exampel EAM.u6.frc
430 <        
431 <        std::string variant = simParams->getForceFieldVariant();
432 <
433 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
434 <        variant = "." + variant;
435 <        if (pos != std::string::npos) {
436 <            forcefieldFileName.insert(pos, variant);
437 <        } else {
438 <            //If the default force field file name does not containt .frc suffix, just append the .variant
439 <            forcefieldFileName.append(variant);
440 <        }
428 >      //If the force field has variant, the variant force field name will be
429 >      //Base.variant.frc. For exampel EAM.u6.frc
430 >      
431 >      std::string variant = simParams->getForceFieldVariant();
432 >      
433 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
434 >      variant = "." + variant;
435 >      if (pos != std::string::npos) {
436 >        forcefieldFileName.insert(pos, variant);
437 >      } else {
438 >        //If the default force field file name does not containt .frc suffix, just append the .variant
439 >        forcefieldFileName.append(variant);
440 >      }
441      }
442      
443      ff->parse(forcefieldFileName);
143    
144    //extract the molecule stamps
145    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146    compList(stamps, simParams, moleculeStampPairs);
147
444      //create SimInfo
445 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
445 >    SimInfo * info = new SimInfo(ff, simParams);
446  
447 <    //gather parameters (SimCreator only retrieves part of the parameters)
447 >    info->setRawMetaData(mdRawData);
448 >    
449 >    //gather parameters (SimCreator only retrieves part of the
450 >    //parameters)
451      gatherParameters(info, mdFileName);
452 <
452 >    
453      //divide the molecules and determine the global index of molecules
454   #ifdef IS_MPI
455      divideMolecules(info);
456   #endif
457 <
457 >    
458      //create the molecules
459      createMolecules(info);
460 +    
461 +    //find the storage layout
462  
463 +    int storageLayout = computeStorageLayout(info);
464  
465 <    //allocate memory for DataStorage(circular reference, need to break it)
466 <    info->setSnapshotManager(new SimSnapshotManager(info));
465 >    //allocate memory for DataStorage(circular reference, need to
466 >    //break it)
467 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
468      
469 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
470 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
471 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
469 >    //set the global index of atoms, rigidbodies and cutoffgroups
470 >    //(only need to be set once, the global index will never change
471 >    //again). Local indices of atoms and rigidbodies are already set
472 >    //by MoleculeCreator class which actually delegates the
473 >    //responsibility to LocalIndexManager.
474      setGlobalIndex(info);
475 <
476 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
477 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
478 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
479 <    //we can determine the beginning global indices of atoms before they get created.
475 >    
476 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
477 >    //method, at that point atoms don't have the global index yet
478 >    //(their global index are all initialized to -1).  Therefore we
479 >    //have to call addInteractionPairs explicitly here. A way to work
480 >    //around is that we can determine the beginning global indices of
481 >    //atoms before they get created.
482      SimInfo::MoleculeIterator mi;
483      Molecule* mol;
484      for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
485 <        info->addExcludePairs(mol);
485 >      info->addInteractionPairs(mol);
486      }
487      
181
182    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183    //eta, chi for NPT integrator)
488      if (loadInitCoords)
489 <        loadCoordinates(info);    
186 <    
489 >      loadCoordinates(info, mdFileName);    
490      return info;
491 < }
492 <
493 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
494 <
495 <    //setup seed for random number generator
193 <    int seedValue;
194 <    Globals * simParams = info->getSimParams();
195 <
196 <    if (simParams->haveSeed()) {
197 <        seedValue = simParams->getSeed();
198 <
199 <        if (seedValue < 100000000 ) {
200 <            sprintf(painCave.errMsg,
201 <                    "Seed for sprng library should contain at least 9 digits\n"
202 <                        "OOPSE will generate a seed for user\n");
203 <
204 <            painCave.isFatal = 0;
205 <            simError();
206 <
207 <            //using seed generated by system instead of invalid seed set by user
208 <
209 < #ifndef IS_MPI
210 <
211 <            seedValue = make_sprng_seed();
212 <
213 < #else
214 <
215 <            if (worldRank == 0) {
216 <                seedValue = make_sprng_seed();
217 <            }
218 <
219 <            MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
220 <
221 < #endif
222 <
223 <        } //end if (seedValue /1000000000 == 0)
224 <    } else {
225 <
226 < #ifndef IS_MPI
227 <
228 <        seedValue = make_sprng_seed();
229 <
230 < #else
231 <
232 <        if (worldRank == 0) {
233 <            seedValue = make_sprng_seed();
234 <        }
235 <
236 <        MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
237 <
238 < #endif
239 <
240 <    } //end of simParams->haveSeed()
241 <
242 <    info->setSeed(seedValue);
243 <
244 <
245 <    //figure out the ouput file names
491 >  }
492 >  
493 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
494 >    
495 >    //figure out the output file names
496      std::string prefix;
497 <
497 >    
498   #ifdef IS_MPI
499 <
499 >    
500      if (worldRank == 0) {
501   #endif // is_mpi
502 <
503 <        if (simParams->haveFinalConfig()) {
504 <            prefix = getPrefix(simParams->getFinalConfig());
505 <        } else {
506 <            prefix = getPrefix(mdfile);
507 <        }
508 <
509 <        info->setFinalConfigFileName(prefix + ".eor");
510 <        info->setDumpFileName(prefix + ".dump");
511 <        info->setStatFileName(prefix + ".stat");
512 <
502 >      Globals * simParams = info->getSimParams();
503 >      if (simParams->haveFinalConfig()) {
504 >        prefix = getPrefix(simParams->getFinalConfig());
505 >      } else {
506 >        prefix = getPrefix(mdfile);
507 >      }
508 >      
509 >      info->setFinalConfigFileName(prefix + ".eor");
510 >      info->setDumpFileName(prefix + ".dump");
511 >      info->setStatFileName(prefix + ".stat");
512 >      info->setRestFileName(prefix + ".zang");
513 >      
514   #ifdef IS_MPI
515 <
515 >      
516      }
517 <
517 >    
518   #endif
519 <
520 < }
521 <
519 >    
520 >  }
521 >  
522   #ifdef IS_MPI
523 < void SimCreator::divideMolecules(SimInfo *info) {
524 <    double numerator;
274 <    double denominator;
275 <    double precast;
276 <    double x;
277 <    double y;
278 <    double a;
279 <    int old_atoms;
280 <    int add_atoms;
281 <    int new_atoms;
282 <    int nTarget;
283 <    int done;
284 <    int i;
285 <    int j;
286 <    int loops;
287 <    int which_proc;
523 >  void SimCreator::divideMolecules(SimInfo *info) {
524 >    RealType a;
525      int nProcessors;
526      std::vector<int> atomsPerProc;
290    randomSPRNG myRandom(info->getSeed());
527      int nGlobalMols = info->getNGlobalMolecules();
528 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
528 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
529 >                                                    // error
530 >                                                    // condition:
531      
532 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
533 <
532 >    MPI_Comm_size( MPI_COMM_WORLD, &nProcessors);    
533 >    //nProcessors = MPI::COMM_WORLD.Get_size();
534 >    
535      if (nProcessors > nGlobalMols) {
536 <        sprintf(painCave.errMsg,
537 <                "nProcessors (%d) > nMol (%d)\n"
538 <                    "\tThe number of processors is larger than\n"
539 <                    "\tthe number of molecules.  This will not result in a \n"
540 <                    "\tusable division of atoms for force decomposition.\n"
541 <                    "\tEither try a smaller number of processors, or run the\n"
542 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
543 <
544 <        painCave.isFatal = 1;
545 <        simError();
536 >      sprintf(painCave.errMsg,
537 >              "nProcessors (%d) > nMol (%d)\n"
538 >              "\tThe number of processors is larger than\n"
539 >              "\tthe number of molecules.  This will not result in a \n"
540 >              "\tusable division of atoms for force decomposition.\n"
541 >              "\tEither try a smaller number of processors, or run the\n"
542 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
543 >              nGlobalMols);
544 >      
545 >      painCave.isFatal = 1;
546 >      simError();
547      }
548 <
548 >    
549 >    Globals * simParams = info->getSimParams();
550 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
551 >                             //random number generator
552 >    if (simParams->haveSeed()) {
553 >      int seedValue = simParams->getSeed();
554 >      myRandom = new SeqRandNumGen(seedValue);
555 >    }else {
556 >      myRandom = new SeqRandNumGen();
557 >    }  
558 >    
559 >    
560      a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
561 <
561 >    
562      //initialize atomsPerProc
563      atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
564 <
564 >    
565      if (worldRank == 0) {
566 <        numerator = info->getNGlobalAtoms();
567 <        denominator = nProcessors;
568 <        precast = numerator / denominator;
569 <        nTarget = (int)(precast + 0.5);
566 >      RealType numerator = info->getNGlobalAtoms();
567 >      RealType denominator = nProcessors;
568 >      RealType precast = numerator / denominator;
569 >      int nTarget = (int)(precast + 0.5);
570 >      
571 >      for(int i = 0; i < nGlobalMols; i++) {
572  
573 <        for(i = 0; i < nGlobalMols; i++) {
574 <            done = 0;
575 <            loops = 0;
576 <
577 <            while (!done) {
578 <                loops++;
579 <
580 <                // Pick a processor at random
581 <
582 <                which_proc = (int) (myRandom.getRandom() * nProcessors);
583 <
584 <                //get the molecule stamp first
585 <                int stampId = info->getMoleculeStampId(i);
586 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
587 <
588 <                // How many atoms does this processor have so far?
589 <                old_atoms = atomsPerProc[which_proc];
590 <                add_atoms = moleculeStamp->getNAtoms();
591 <                new_atoms = old_atoms + add_atoms;
592 <
593 <                // If we've been through this loop too many times, we need
594 <                // to just give up and assign the molecule to this processor
595 <                // and be done with it.
573 >        int done = 0;
574 >        int loops = 0;
575 >        
576 >        while (!done) {
577 >          loops++;
578 >          
579 >          // Pick a processor at random
580 >          
581 >          int which_proc = (int) (myRandom->rand() * nProcessors);
582 >          
583 >          //get the molecule stamp first
584 >          int stampId = info->getMoleculeStampId(i);
585 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
586 >          
587 >          // How many atoms does this processor have so far?
588 >          int old_atoms = atomsPerProc[which_proc];
589 >          int add_atoms = moleculeStamp->getNAtoms();
590 >          int new_atoms = old_atoms + add_atoms;
591 >          
592 >          // If we've been through this loop too many times, we need
593 >          // to just give up and assign the molecule to this processor
594 >          // and be done with it.
595 >          
596 >          if (loops > 100) {
597  
598 <                if (loops > 100) {
599 <                    sprintf(painCave.errMsg,
600 <                            "I've tried 100 times to assign molecule %d to a "
601 <                                " processor, but can't find a good spot.\n"
602 <                                "I'm assigning it at random to processor %d.\n",
603 <                            i, which_proc);
604 <
605 <                    painCave.isFatal = 0;
606 <                    simError();
607 <
608 <                    molToProcMap[i] = which_proc;
609 <                    atomsPerProc[which_proc] += add_atoms;
610 <
611 <                    done = 1;
612 <                    continue;
613 <                }
614 <
615 <                // If we can add this molecule to this processor without sending
616 <                // it above nTarget, then go ahead and do it:
617 <
618 <                if (new_atoms <= nTarget) {
619 <                    molToProcMap[i] = which_proc;
620 <                    atomsPerProc[which_proc] += add_atoms;
621 <
622 <                    done = 1;
623 <                    continue;
624 <                }
625 <
626 <                // The only situation left is when new_atoms > nTarget.  We
627 <                // want to accept this with some probability that dies off the
628 <                // farther we are from nTarget
629 <
630 <                // roughly:  x = new_atoms - nTarget
631 <                //           Pacc(x) = exp(- a * x)
632 <                // where a = penalty / (average atoms per molecule)
633 <
634 <                x = (double)(new_atoms - nTarget);
635 <                y = myRandom.getRandom();
636 <
637 <                if (y < exp(- a * x)) {
638 <                    molToProcMap[i] = which_proc;
639 <                    atomsPerProc[which_proc] += add_atoms;
640 <
641 <                    done = 1;
642 <                    continue;
643 <                } else {
644 <                    continue;
645 <                }
392 <            }
598 >            sprintf(painCave.errMsg,
599 >                    "There have been 100 attempts to assign molecule %d to an\n"
600 >                    "\tunderworked processor, but there's no good place to\n"
601 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
602 >                    i, which_proc);
603 >          
604 >            painCave.isFatal = 0;
605 >            painCave.severity = OPENMD_INFO;
606 >            simError();
607 >            
608 >            molToProcMap[i] = which_proc;
609 >            atomsPerProc[which_proc] += add_atoms;
610 >            
611 >            done = 1;
612 >            continue;
613 >          }
614 >          
615 >          // If we can add this molecule to this processor without sending
616 >          // it above nTarget, then go ahead and do it:
617 >          
618 >          if (new_atoms <= nTarget) {
619 >            molToProcMap[i] = which_proc;
620 >            atomsPerProc[which_proc] += add_atoms;
621 >            
622 >            done = 1;
623 >            continue;
624 >          }
625 >          
626 >          // The only situation left is when new_atoms > nTarget.  We
627 >          // want to accept this with some probability that dies off the
628 >          // farther we are from nTarget
629 >          
630 >          // roughly:  x = new_atoms - nTarget
631 >          //           Pacc(x) = exp(- a * x)
632 >          // where a = penalty / (average atoms per molecule)
633 >          
634 >          RealType x = (RealType)(new_atoms - nTarget);
635 >          RealType y = myRandom->rand();
636 >          
637 >          if (y < exp(- a * x)) {
638 >            molToProcMap[i] = which_proc;
639 >            atomsPerProc[which_proc] += add_atoms;
640 >            
641 >            done = 1;
642 >            continue;
643 >          } else {
644 >            continue;
645 >          }
646          }
647 +      }
648 +      
649 +      delete myRandom;
650  
651 <        // Spray out this nonsense to all other processors:
652 <
653 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
651 >      // Spray out this nonsense to all other processors:
652 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
653 >      // MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
654      } else {
655 +      
656 +      // Listen to your marching orders from processor 0:
657 +      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
658 +      // MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
659  
400        // Listen to your marching orders from processor 0:
401
402        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
660      }
661 <
661 >    
662      info->setMolToProcMap(molToProcMap);
663      sprintf(checkPointMsg,
664              "Successfully divided the molecules among the processors.\n");
665 <    MPIcheckPoint();
666 < }
667 <
665 >    errorCheckPoint();
666 >  }
667 >  
668   #endif
669 <
670 < void SimCreator::createMolecules(SimInfo *info) {
669 >  
670 >  void SimCreator::createMolecules(SimInfo *info) {
671      MoleculeCreator molCreator;
672      int stampId;
673 <
673 >    
674      for(int i = 0; i < info->getNGlobalMolecules(); i++) {
675 <
675 >      
676   #ifdef IS_MPI
677 <
678 <        if (info->getMolToProc(i) == worldRank) {
677 >      
678 >      if (info->getMolToProc(i) == worldRank) {
679   #endif
680 <
681 <            stampId = info->getMoleculeStampId(i);
682 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
683 <                                                                                    stampId, i, info->getLocalIndexManager());
684 <
685 <            info->addMolecule(mol);
686 <
680 >        
681 >        stampId = info->getMoleculeStampId(i);
682 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
683 >                                                   info->getMoleculeStamp(stampId),
684 >                                                   stampId, i,
685 >                                                   info->getLocalIndexManager());
686 >        
687 >        info->addMolecule(mol);
688 >        
689   #ifdef IS_MPI
690 <
691 <        }
692 <
690 >        
691 >      }
692 >      
693   #endif
694 <
694 >      
695      } //end for(int i=0)  
696 < }
696 >  }
697 >    
698 >  int SimCreator::computeStorageLayout(SimInfo* info) {
699  
700 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
701 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
702 <    int i;
703 <    char * id;
704 <    MoleculeStamp * currentStamp;
705 <    Component** the_components = simParams->getComponents();
706 <    int n_components = simParams->getNComponents();
700 >    Globals* simParams = info->getSimParams();
701 >    int nRigidBodies = info->getNGlobalRigidBodies();
702 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
703 >    set<AtomType*>::iterator i;
704 >    bool hasDirectionalAtoms = false;
705 >    bool hasFixedCharge = false;
706 >    bool hasDipoles = false;    
707 >    bool hasQuadrupoles = false;    
708 >    bool hasPolarizable = false;    
709 >    bool hasFluctuatingCharge = false;    
710 >    bool hasMetallic = false;
711 >    int storageLayout = 0;
712 >    storageLayout |= DataStorage::dslPosition;
713 >    storageLayout |= DataStorage::dslVelocity;
714 >    storageLayout |= DataStorage::dslForce;
715  
716 <    if (!simParams->haveNMol()) {
448 <        // we don't have the total number of molecules, so we assume it is
449 <        // given in each component
716 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
717  
718 <        for(i = 0; i < n_components; i++) {
719 <            if (!the_components[i]->haveNMol()) {
720 <                // we have a problem
721 <                sprintf(painCave.errMsg,
722 <                        "SimCreator Error. No global NMol or component NMol given.\n"
723 <                            "\tCannot calculate the number of atoms.\n");
718 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
719 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
720 >      EAMAdapter ea = EAMAdapter( (*i) );
721 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
722 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
723 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
724 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
725  
726 <                painCave.isFatal = 1;
727 <                simError();
728 <            }
726 >      if (da.isDirectional()){
727 >        hasDirectionalAtoms = true;
728 >      }
729 >      if (ma.isDipole()){
730 >        hasDipoles = true;
731 >      }
732 >      if (ma.isQuadrupole()){
733 >        hasQuadrupoles = true;
734 >      }
735 >      if (ea.isEAM() || sca.isSuttonChen()){
736 >        hasMetallic = true;
737 >      }
738 >      if ( fca.isFixedCharge() ){
739 >        hasFixedCharge = true;
740 >      }
741 >      if ( fqa.isFluctuatingCharge() ){
742 >        hasFluctuatingCharge = true;
743 >      }
744 >      if ( pa.isPolarizable() ){
745 >        hasPolarizable = true;
746 >      }
747 >    }
748 >    
749 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
750 >      storageLayout |= DataStorage::dslAmat;
751 >      if(storageLayout & DataStorage::dslVelocity) {
752 >        storageLayout |= DataStorage::dslAngularMomentum;
753 >      }
754 >      if (storageLayout & DataStorage::dslForce) {
755 >        storageLayout |= DataStorage::dslTorque;
756 >      }
757 >    }
758 >    if (hasDipoles) {
759 >      storageLayout |= DataStorage::dslDipole;
760 >    }
761 >    if (hasQuadrupoles) {
762 >      storageLayout |= DataStorage::dslQuadrupole;
763 >    }
764 >    if (hasFixedCharge || hasFluctuatingCharge) {
765 >      storageLayout |= DataStorage::dslSkippedCharge;
766 >    }
767 >    if (hasMetallic) {
768 >      storageLayout |= DataStorage::dslDensity;
769 >      storageLayout |= DataStorage::dslFunctional;
770 >      storageLayout |= DataStorage::dslFunctionalDerivative;
771 >    }
772 >    if (hasPolarizable) {
773 >      storageLayout |= DataStorage::dslElectricField;
774 >    }
775 >    if (hasFluctuatingCharge){
776 >      storageLayout |= DataStorage::dslFlucQPosition;
777 >      if(storageLayout & DataStorage::dslVelocity) {
778 >        storageLayout |= DataStorage::dslFlucQVelocity;
779 >      }
780 >      if (storageLayout & DataStorage::dslForce) {
781 >        storageLayout |= DataStorage::dslFlucQForce;
782 >      }
783 >    }
784 >    
785 >    // if the user has asked for them, make sure we've got the memory for the
786 >    // objects defined.
787  
788 <            id = the_components[i]->getType();
789 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
788 >    if (simParams->getOutputParticlePotential()) {
789 >      storageLayout |= DataStorage::dslParticlePot;
790 >    }
791  
792 <            if (currentStamp == NULL) {
793 <                sprintf(painCave.errMsg,
794 <                        "SimCreator error: Component \"%s\" was not found in the "
795 <                            "list of declared molecules\n", id);
792 >    if (simParams->havePrintHeatFlux()) {
793 >      if (simParams->getPrintHeatFlux()) {
794 >        storageLayout |= DataStorage::dslParticlePot;
795 >      }
796 >    }
797  
798 <                painCave.isFatal = 1;
799 <                simError();
800 <            }
798 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
799 >      storageLayout |= DataStorage::dslElectricField;
800 >    }
801  
802 <            moleculeStampPairs.push_back(
803 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
804 <        } //end for (i = 0; i < n_components; i++)
805 <    } else {
478 <        sprintf(painCave.errMsg, "SimSetup error.\n"
479 <                                     "\tSorry, the ability to specify total"
480 <                                     " nMols and then give molfractions in the components\n"
481 <                                     "\tis not currently supported."
482 <                                     " Please give nMol in the components.\n");
483 <
484 <        painCave.isFatal = 1;
485 <        simError();
802 >    if (simParams->getOutputFluctuatingCharges()) {
803 >      storageLayout |= DataStorage::dslFlucQPosition;
804 >      storageLayout |= DataStorage::dslFlucQVelocity;
805 >      storageLayout |= DataStorage::dslFlucQForce;
806      }
807  
808 < #ifdef IS_MPI
489 <
490 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
491 <    MPIcheckPoint();
808 >    info->setStorageLayout(storageLayout);
809  
810 < #endif // is_mpi
810 >    return storageLayout;
811 >  }
812  
813 < }
496 <
497 < void SimCreator::setGlobalIndex(SimInfo *info) {
813 >  void SimCreator::setGlobalIndex(SimInfo *info) {
814      SimInfo::MoleculeIterator mi;
815      Molecule::AtomIterator ai;
816      Molecule::RigidBodyIterator ri;
817      Molecule::CutoffGroupIterator ci;
818 <    Molecule * mol;
819 <    Atom * atom;
820 <    RigidBody * rb;
821 <    CutoffGroup * cg;
818 >    Molecule::BondIterator boi;
819 >    Molecule::BendIterator bei;
820 >    Molecule::TorsionIterator ti;
821 >    Molecule::InversionIterator ii;
822 >    Molecule::IntegrableObjectIterator  ioi;
823 >    Molecule* mol;
824 >    Atom* atom;
825 >    RigidBody* rb;
826 >    CutoffGroup* cg;
827 >    Bond* bond;
828 >    Bend* bend;
829 >    Torsion* torsion;
830 >    Inversion* inversion;
831      int beginAtomIndex;
832      int beginRigidBodyIndex;
833      int beginCutoffGroupIndex;
834 +    int beginBondIndex;
835 +    int beginBendIndex;
836 +    int beginTorsionIndex;
837 +    int beginInversionIndex;
838      int nGlobalAtoms = info->getNGlobalAtoms();
839 +    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
840      
511 #ifndef IS_MPI
512
841      beginAtomIndex = 0;
842 <    beginRigidBodyIndex = 0;
842 >    // The rigid body indices begin immediately after the atom indices:
843 >    beginRigidBodyIndex = info->getNGlobalAtoms();
844      beginCutoffGroupIndex = 0;
845 +    beginBondIndex = 0;
846 +    beginBendIndex = 0;
847 +    beginTorsionIndex = 0;
848 +    beginInversionIndex = 0;
849 +  
850 +    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
851 +      
852 + #ifdef IS_MPI      
853 +      if (info->getMolToProc(i) == worldRank) {
854 + #endif        
855 +        // stuff to do if I own this molecule
856 +        mol = info->getMoleculeByGlobalIndex(i);
857  
858 < #else
859 <
860 <    int nproc;
861 <    int myNode;
521 <
522 <    myNode = worldRank;
523 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
524 <
525 <    std::vector < int > tmpAtomsInProc(nproc, 0);
526 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
527 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
528 <    std::vector < int > NumAtomsInProc(nproc, 0);
529 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
530 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
531 <
532 <    tmpAtomsInProc[myNode] = info->getNAtoms();
533 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
534 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
535 <
536 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
537 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
538 <                  MPI_SUM, MPI_COMM_WORLD);
539 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
540 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
541 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
542 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
543 <
544 <    beginAtomIndex = 0;
545 <    beginRigidBodyIndex = 0;
546 <    beginCutoffGroupIndex = 0;
547 <
548 <    for(int i = 0; i < myNode; i++) {
549 <        beginAtomIndex += NumAtomsInProc[i];
550 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
551 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
552 <    }
553 <
554 < #endif
555 <
556 <    //rigidbody's index begins right after atom's
557 <    beginRigidBodyIndex += info->getNGlobalAtoms();
558 <
559 <    for(mol = info->beginMolecule(mi); mol != NULL;
560 <        mol = info->nextMolecule(mi)) {
561 <
562 <        //local index(index in DataStorge) of atom is important
563 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
564 <            atom->setGlobalIndex(beginAtomIndex++);
858 >        // The local index(index in DataStorge) of the atom is important:
859 >        for(atom = mol->beginAtom(ai); atom != NULL;
860 >            atom = mol->nextAtom(ai)) {
861 >          atom->setGlobalIndex(beginAtomIndex++);
862          }
863 <
863 >        
864          for(rb = mol->beginRigidBody(ri); rb != NULL;
865              rb = mol->nextRigidBody(ri)) {
866 <            rb->setGlobalIndex(beginRigidBodyIndex++);
866 >          rb->setGlobalIndex(beginRigidBodyIndex++);
867          }
868 <
869 <        //local index of cutoff group is trivial, it only depends on the order of travesing
868 >        
869 >        // The local index of other objects only depends on the order
870 >        // of traversal:
871          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
872              cg = mol->nextCutoffGroup(ci)) {
873 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
874 <        }
875 <    }
873 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
874 >        }        
875 >        for(bond = mol->beginBond(boi); bond != NULL;
876 >            bond = mol->nextBond(boi)) {
877 >          bond->setGlobalIndex(beginBondIndex++);
878 >        }        
879 >        for(bend = mol->beginBend(bei); bend != NULL;
880 >            bend = mol->nextBend(bei)) {
881 >          bend->setGlobalIndex(beginBendIndex++);
882 >        }        
883 >        for(torsion = mol->beginTorsion(ti); torsion != NULL;
884 >            torsion = mol->nextTorsion(ti)) {
885 >          torsion->setGlobalIndex(beginTorsionIndex++);
886 >        }        
887 >        for(inversion = mol->beginInversion(ii); inversion != NULL;
888 >            inversion = mol->nextInversion(ii)) {
889 >          inversion->setGlobalIndex(beginInversionIndex++);
890 >        }        
891 >        
892 > #ifdef IS_MPI        
893 >      }  else {
894  
895 <    //fill globalGroupMembership
896 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
897 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
898 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
895 >        // stuff to do if I don't own this molecule
896 >        
897 >        int stampId = info->getMoleculeStampId(i);
898 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
899  
900 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
902 <            }
900 >        beginAtomIndex += stamp->getNAtoms();
901 >        beginRigidBodyIndex += stamp->getNRigidBodies();
902 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
903 >        beginBondIndex += stamp->getNBonds();
904 >        beginBendIndex += stamp->getNBends();
905 >        beginTorsionIndex += stamp->getNTorsions();
906 >        beginInversionIndex += stamp->getNInversions();
907 >      }
908 > #endif          
909  
910 <        }      
589 <    }
910 >    } //end for(int i=0)  
911  
912 +    //fill globalGroupMembership
913 +    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
914 +    for(mol = info->beginMolecule(mi); mol != NULL;
915 +        mol = info->nextMolecule(mi)) {        
916 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
917 +           cg = mol->nextCutoffGroup(ci)) {        
918 +        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
919 +          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
920 +        }
921 +        
922 +      }      
923 +    }
924 +  
925   #ifdef IS_MPI    
926      // Since the globalGroupMembership has been zero filled and we've only
927      // poked values into the atoms we know, we can do an Allreduce
928      // to get the full globalGroupMembership array (We think).
929      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
930      // docs said we could.
931 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
932 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
931 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
932 >    MPI_Allreduce(&globalGroupMembership[0],
933 >                  &tmpGroupMembership[0], nGlobalAtoms,
934                    MPI_INT, MPI_SUM, MPI_COMM_WORLD);
935 <     info->setGlobalGroupMembership(tmpGroupMembership);
935 >    // MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
936 >    //                           &tmpGroupMembership[0], nGlobalAtoms,
937 >    //                           MPI::INT, MPI::SUM);
938 >    info->setGlobalGroupMembership(tmpGroupMembership);
939   #else
940      info->setGlobalGroupMembership(globalGroupMembership);
941   #endif
942 <
942 >    
943      //fill molMembership
944 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
944 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
945 >                                         info->getNGlobalRigidBodies(), 0);
946      
947 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
948 <
949 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
950 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
951 <        }
947 >    for(mol = info->beginMolecule(mi); mol != NULL;
948 >        mol = info->nextMolecule(mi)) {
949 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
950 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
951 >      }
952 >      for (rb = mol->beginRigidBody(ri); rb != NULL;
953 >           rb = mol->nextRigidBody(ri)) {
954 >        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
955 >      }
956      }
957 <
957 >    
958   #ifdef IS_MPI
959 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
960 <
961 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
959 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
960 >                                      info->getNGlobalRigidBodies(), 0);
961 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
962 >                  nGlobalAtoms + nGlobalRigidBodies,
963                    MPI_INT, MPI_SUM, MPI_COMM_WORLD);
964 +    // MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
965 +    //                           nGlobalAtoms + nGlobalRigidBodies,
966 +    //                           MPI::INT, MPI::SUM);
967      
968      info->setGlobalMolMembership(tmpMolMembership);
969   #else
970      info->setGlobalMolMembership(globalMolMembership);
971   #endif
972  
973 < }
973 >    // nIOPerMol holds the number of integrable objects per molecule
974 >    // here the molecules are listed by their global indices.
975  
976 < void SimCreator::loadCoordinates(SimInfo* info) {
977 <    Globals* simParams;
978 <    simParams = info->getSimParams();
976 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
977 >    for (mol = info->beginMolecule(mi); mol != NULL;
978 >         mol = info->nextMolecule(mi)) {
979 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
980 >    }
981      
982 <    if (!simParams->haveInitialConfig()) {
983 <        sprintf(painCave.errMsg,
984 <                "Cannot intialize a simulation without an initial configuration file.\n");
985 <        painCave.isFatal = 1;;
986 <        simError();
982 > #ifdef IS_MPI
983 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
984 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
985 >      info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
986 >    // MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
987 >    //                           info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
988 > #else
989 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
990 > #endif    
991 >
992 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
993 >    
994 >    int startingIndex = 0;
995 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
996 >      startingIOIndexForMol[i] = startingIndex;
997 >      startingIndex += numIntegrableObjectsPerMol[i];
998      }
999 <        
1000 <    DumpReader reader(info, simParams->getInitialConfig());
999 >    
1000 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
1001 >    for (mol = info->beginMolecule(mi); mol != NULL;
1002 >         mol = info->nextMolecule(mi)) {
1003 >      int myGlobalIndex = mol->getGlobalIndex();
1004 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
1005 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
1006 >           sd = mol->nextIntegrableObject(ioi)) {
1007 >        sd->setGlobalIntegrableObjectIndex(globalIO);
1008 >        IOIndexToIntegrableObject[globalIO] = sd;
1009 >        globalIO++;
1010 >      }
1011 >    }
1012 >      
1013 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
1014 >    
1015 >  }
1016 >  
1017 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
1018 >    
1019 >    DumpReader reader(info, mdFileName);
1020      int nframes = reader.getNFrames();
1021 <
1021 >    
1022      if (nframes > 0) {
1023 <        reader.readFrame(nframes - 1);
1023 >      reader.readFrame(nframes - 1);
1024      } else {
1025 <        //invalid initial coordinate file
1026 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
1027 <                simParams->getInitialConfig());
1028 <        painCave.isFatal = 1;
1029 <        simError();
1025 >      //invalid initial coordinate file
1026 >      sprintf(painCave.errMsg,
1027 >              "Initial configuration file %s should at least contain one frame\n",
1028 >              mdFileName.c_str());
1029 >      painCave.isFatal = 1;
1030 >      simError();
1031      }
651
1032      //copy the current snapshot to previous snapshot
1033      info->getSnapshotManager()->advance();
1034 < }
1034 >  }
1035 >  
1036 > } //end namespace OpenMD
1037  
656 } //end namespace oopse
1038  
658

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 297 by tim, Mon Feb 7 19:14:26 2005 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines