ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 297 by tim, Mon Feb 7 19:14:26 2005 UTC vs.
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
1 > /*
2 > * copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 46 | Line 47
47   * @time 13:51am
48   * @version 1.0
49   */
50 + #include <exception>
51 + #include <iostream>
52 + #include <sstream>
53 + #include <string>
54  
50 #include <sprng.h>
51
55   #include "brains/MoleculeCreator.hpp"
56   #include "brains/SimCreator.hpp"
57   #include "brains/SimSnapshotManager.hpp"
58   #include "io/DumpReader.hpp"
59 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
59 > #include "brains/ForceField.hpp"
60   #include "utils/simError.h"
61   #include "utils/StringUtils.hpp"
62 < #ifdef IS_MPI
63 < #include "io/mpiBASS.h"
64 < #include "math/randomSPRNG.hpp"
65 < #endif
62 > #include "math/SeqRandNumGen.hpp"
63 > #include "mdParser/MDLexer.hpp"
64 > #include "mdParser/MDParser.hpp"
65 > #include "mdParser/MDTreeParser.hpp"
66 > #include "mdParser/SimplePreprocessor.hpp"
67 > #include "antlr/ANTLRException.hpp"
68 > #include "antlr/TokenStreamRecognitionException.hpp"
69 > #include "antlr/TokenStreamIOException.hpp"
70 > #include "antlr/TokenStreamException.hpp"
71 > #include "antlr/RecognitionException.hpp"
72 > #include "antlr/CharStreamException.hpp"
73  
74 < namespace oopse {
74 > #include "antlr/MismatchedCharException.hpp"
75 > #include "antlr/MismatchedTokenException.hpp"
76 > #include "antlr/NoViableAltForCharException.hpp"
77 > #include "antlr/NoViableAltException.hpp"
78  
79 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
79 > #include "types/DirectionalAdapter.hpp"
80 > #include "types/MultipoleAdapter.hpp"
81 > #include "types/EAMAdapter.hpp"
82 > #include "types/SuttonChenAdapter.hpp"
83 > #include "types/PolarizableAdapter.hpp"
84 > #include "types/FixedChargeAdapter.hpp"
85 > #include "types/FluctuatingChargeAdapter.hpp"
86  
87   #ifdef IS_MPI
88 + #include "mpi.h"
89 + #include "math/ParallelRandNumGen.hpp"
90 + #endif
91  
92 <    if (worldRank == 0) {
93 < #endif // is_mpi
92 > namespace OpenMD {
93 >  
94 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
95 >    Globals* simParams = NULL;
96 >    try {
97  
98 <        simParams->initalize();
99 <        set_interface_stamps(stamps, simParams);
98 >      // Create a preprocessor that preprocesses md file into an ostringstream
99 >      std::stringstream ppStream;
100 > #ifdef IS_MPI            
101 >      int streamSize;
102 >      const int masterNode = 0;
103  
104 < #ifdef IS_MPI
104 >      if (worldRank == masterNode) {
105 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
106 > #endif                
107 >        SimplePreprocessor preprocessor;
108 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock,
109 >                                ppStream);
110 >                
111 > #ifdef IS_MPI            
112 >        //brocasting the stream size
113 >        streamSize = ppStream.str().size() +1;
114 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
115 >        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
116 >                              streamSize, MPI::CHAR, masterNode);
117 >                
118 >      } else {
119  
120 <        mpiEventInit();
120 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
121  
122 < #endif
122 >        //get stream size
123 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
124  
125 <        yacc_BASS(mdFileName.c_str());
125 >        char* buf = new char[streamSize];
126 >        assert(buf);
127 >                
128 >        //receive file content
129 >        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
130 >                
131 >        ppStream.str(buf);
132 >        delete [] buf;
133  
134 < #ifdef IS_MPI
134 >      }
135 > #endif            
136 >      // Create a scanner that reads from the input stream
137 >      MDLexer lexer(ppStream);
138 >      lexer.setFilename(filename);
139 >      lexer.initDeferredLineCount();
140 >    
141 >      // Create a parser that reads from the scanner
142 >      MDParser parser(lexer);
143 >      parser.setFilename(filename);
144  
145 <        throwMPIEvent(NULL);
146 <    } else {
147 <        set_interface_stamps(stamps, simParams);
148 <        mpiEventInit();
149 <        MPIcheckPoint();
150 <        mpiEventLoop();
145 >      // Create an observer that synchorizes file name change
146 >      FilenameObserver observer;
147 >      observer.setLexer(&lexer);
148 >      observer.setParser(&parser);
149 >      lexer.setObserver(&observer);
150 >    
151 >      antlr::ASTFactory factory;
152 >      parser.initializeASTFactory(factory);
153 >      parser.setASTFactory(&factory);
154 >      parser.mdfile();
155 >
156 >      // Create a tree parser that reads information into Globals
157 >      MDTreeParser treeParser;
158 >      treeParser.initializeASTFactory(factory);
159 >      treeParser.setASTFactory(&factory);
160 >      simParams = treeParser.walkTree(parser.getAST());
161      }
162  
163 < #endif
163 >      
164 >    catch(antlr::MismatchedCharException& e) {
165 >      sprintf(painCave.errMsg,
166 >              "parser exception: %s %s:%d:%d\n",
167 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
168 >      painCave.isFatal = 1;
169 >      simError();          
170 >    }
171 >    catch(antlr::MismatchedTokenException &e) {
172 >      sprintf(painCave.errMsg,
173 >              "parser exception: %s %s:%d:%d\n",
174 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
175 >      painCave.isFatal = 1;
176 >      simError();  
177 >    }
178 >    catch(antlr::NoViableAltForCharException &e) {
179 >      sprintf(painCave.errMsg,
180 >              "parser exception: %s %s:%d:%d\n",
181 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
182 >      painCave.isFatal = 1;
183 >      simError();  
184 >    }
185 >    catch(antlr::NoViableAltException &e) {
186 >      sprintf(painCave.errMsg,
187 >              "parser exception: %s %s:%d:%d\n",
188 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
189 >      painCave.isFatal = 1;
190 >      simError();  
191 >    }
192 >      
193 >    catch(antlr::TokenStreamRecognitionException& e) {
194 >      sprintf(painCave.errMsg,
195 >              "parser exception: %s %s:%d:%d\n",
196 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
197 >      painCave.isFatal = 1;
198 >      simError();  
199 >    }
200 >        
201 >    catch(antlr::TokenStreamIOException& e) {
202 >      sprintf(painCave.errMsg,
203 >              "parser exception: %s\n",
204 >              e.getMessage().c_str());
205 >      painCave.isFatal = 1;
206 >      simError();
207 >    }
208 >        
209 >    catch(antlr::TokenStreamException& e) {
210 >      sprintf(painCave.errMsg,
211 >              "parser exception: %s\n",
212 >              e.getMessage().c_str());
213 >      painCave.isFatal = 1;
214 >      simError();
215 >    }        
216 >    catch (antlr::RecognitionException& e) {
217 >      sprintf(painCave.errMsg,
218 >              "parser exception: %s %s:%d:%d\n",
219 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
220 >      painCave.isFatal = 1;
221 >      simError();          
222 >    }
223 >    catch (antlr::CharStreamException& e) {
224 >      sprintf(painCave.errMsg,
225 >              "parser exception: %s\n",
226 >              e.getMessage().c_str());
227 >      painCave.isFatal = 1;
228 >      simError();        
229 >    }
230 >    catch (OpenMDException& e) {
231 >      sprintf(painCave.errMsg,
232 >              "%s\n",
233 >              e.getMessage().c_str());
234 >      painCave.isFatal = 1;
235 >      simError();
236 >    }
237 >    catch (std::exception& e) {
238 >      sprintf(painCave.errMsg,
239 >              "parser exception: %s\n",
240 >              e.what());
241 >      painCave.isFatal = 1;
242 >      simError();
243 >    }
244  
245 < }
246 <
247 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
245 >    simParams->setMDfileVersion(mdFileVersion);
246 >    return simParams;
247 >  }
248 >  
249 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
250 >                                  bool loadInitCoords) {
251      
252 <    MakeStamps * stamps = new MakeStamps();
252 >    const int bufferSize = 65535;
253 >    char buffer[bufferSize];
254 >    int lineNo = 0;
255 >    std::string mdRawData;
256 >    int metaDataBlockStart = -1;
257 >    int metaDataBlockEnd = -1;
258 >    int i;
259 >    streamoff mdOffset(0);
260 >    int mdFileVersion;
261  
103    Globals * simParams = new Globals();
262  
263 <    //parse meta-data file
264 <    parseFile(mdFileName, stamps, simParams);
263 > #ifdef IS_MPI            
264 >    const int masterNode = 0;
265 >    if (worldRank == masterNode) {
266 > #endif
267  
268 <    //create the force field
269 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
270 <                          simParams->getForceField());
271 <    
272 <    if (ff == NULL) {
273 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
274 <                simParams->getForceField());
275 <        painCave.isFatal = 1;
276 <        simError();
268 >      std::ifstream mdFile_;
269 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
270 >      
271 >      if (mdFile_.fail()) {
272 >        sprintf(painCave.errMsg,
273 >                "SimCreator: Cannot open file: %s\n",
274 >                mdFileName.c_str());
275 >        painCave.isFatal = 1;
276 >        simError();
277 >      }
278 >
279 >      mdFile_.getline(buffer, bufferSize);
280 >      ++lineNo;
281 >      std::string line = trimLeftCopy(buffer);
282 >      i = CaseInsensitiveFind(line, "<OpenMD");
283 >      if (static_cast<size_t>(i) == string::npos) {
284 >        // try the older file strings to see if that works:
285 >        i = CaseInsensitiveFind(line, "<OOPSE");
286 >      }
287 >      
288 >      if (static_cast<size_t>(i) == string::npos) {
289 >        // still no luck!
290 >        sprintf(painCave.errMsg,
291 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
292 >                mdFileName.c_str());
293 >        painCave.isFatal = 1;
294 >        simError();
295 >      }
296 >      
297 >      // found the correct opening string, now try to get the file
298 >      // format version number.
299 >
300 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
301 >      std::string fileType = tokenizer.nextToken();
302 >      toUpper(fileType);
303 >
304 >      mdFileVersion = 0;
305 >
306 >      if (fileType == "OPENMD") {
307 >        while (tokenizer.hasMoreTokens()) {
308 >          std::string token(tokenizer.nextToken());
309 >          toUpper(token);
310 >          if (token == "VERSION") {
311 >            mdFileVersion = tokenizer.nextTokenAsInt();
312 >            break;
313 >          }
314 >        }
315 >      }
316 >            
317 >      //scan through the input stream and find MetaData tag        
318 >      while(mdFile_.getline(buffer, bufferSize)) {
319 >        ++lineNo;
320 >        
321 >        std::string line = trimLeftCopy(buffer);
322 >        if (metaDataBlockStart == -1) {
323 >          i = CaseInsensitiveFind(line, "<MetaData>");
324 >          if (i != string::npos) {
325 >            metaDataBlockStart = lineNo;
326 >            mdOffset = mdFile_.tellg();
327 >          }
328 >        } else {
329 >          i = CaseInsensitiveFind(line, "</MetaData>");
330 >          if (i != string::npos) {
331 >            metaDataBlockEnd = lineNo;
332 >          }
333 >        }
334 >      }
335 >
336 >      if (metaDataBlockStart == -1) {
337 >        sprintf(painCave.errMsg,
338 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
339 >                mdFileName.c_str());
340 >        painCave.isFatal = 1;
341 >        simError();
342 >      }
343 >      if (metaDataBlockEnd == -1) {
344 >        sprintf(painCave.errMsg,
345 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
346 >                mdFileName.c_str());
347 >        painCave.isFatal = 1;
348 >        simError();
349 >      }
350 >        
351 >      mdFile_.clear();
352 >      mdFile_.seekg(0);
353 >      mdFile_.seekg(mdOffset);
354 >
355 >      mdRawData.clear();
356 >
357 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
358 >        mdFile_.getline(buffer, bufferSize);
359 >        mdRawData += buffer;
360 >        mdRawData += "\n";
361 >      }
362 >
363 >      mdFile_.close();
364 >
365 > #ifdef IS_MPI
366      }
367 + #endif
368  
369 +    std::stringstream rawMetaDataStream(mdRawData);
370 +
371 +    //parse meta-data file
372 +    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
373 +                                   metaDataBlockStart + 1);
374 +    
375 +    //create the force field
376 +    ForceField * ff = new ForceField(simParams->getForceField());
377 +
378 +    if (ff == NULL) {
379 +      sprintf(painCave.errMsg,
380 +              "ForceField Factory can not create %s force field\n",
381 +              simParams->getForceField().c_str());
382 +      painCave.isFatal = 1;
383 +      simError();
384 +    }
385 +    
386      if (simParams->haveForceFieldFileName()) {
387 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
387 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
388      }
389      
390      std::string forcefieldFileName;
391      forcefieldFileName = ff->getForceFieldFileName();
392 <
392 >    
393      if (simParams->haveForceFieldVariant()) {
394 <        //If the force field has variant, the variant force field name will be
395 <        //Base.variant.frc. For exampel EAM.u6.frc
396 <        
397 <        std::string variant = simParams->getForceFieldVariant();
398 <
399 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
400 <        variant = "." + variant;
401 <        if (pos != std::string::npos) {
402 <            forcefieldFileName.insert(pos, variant);
403 <        } else {
404 <            //If the default force field file name does not containt .frc suffix, just append the .variant
405 <            forcefieldFileName.append(variant);
406 <        }
394 >      //If the force field has variant, the variant force field name will be
395 >      //Base.variant.frc. For exampel EAM.u6.frc
396 >      
397 >      std::string variant = simParams->getForceFieldVariant();
398 >      
399 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
400 >      variant = "." + variant;
401 >      if (pos != std::string::npos) {
402 >        forcefieldFileName.insert(pos, variant);
403 >      } else {
404 >        //If the default force field file name does not containt .frc suffix, just append the .variant
405 >        forcefieldFileName.append(variant);
406 >      }
407      }
408      
409      ff->parse(forcefieldFileName);
143    
144    //extract the molecule stamps
145    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146    compList(stamps, simParams, moleculeStampPairs);
147
410      //create SimInfo
411 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
411 >    SimInfo * info = new SimInfo(ff, simParams);
412  
413 <    //gather parameters (SimCreator only retrieves part of the parameters)
413 >    info->setRawMetaData(mdRawData);
414 >    
415 >    //gather parameters (SimCreator only retrieves part of the
416 >    //parameters)
417      gatherParameters(info, mdFileName);
418 <
418 >    
419      //divide the molecules and determine the global index of molecules
420   #ifdef IS_MPI
421      divideMolecules(info);
422   #endif
423 <
423 >    
424      //create the molecules
425      createMolecules(info);
426 +    
427 +    //find the storage layout
428  
429 +    int storageLayout = computeStorageLayout(info);
430  
431 <    //allocate memory for DataStorage(circular reference, need to break it)
432 <    info->setSnapshotManager(new SimSnapshotManager(info));
431 >    //allocate memory for DataStorage(circular reference, need to
432 >    //break it)
433 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
434      
435 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
436 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
437 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
435 >    //set the global index of atoms, rigidbodies and cutoffgroups
436 >    //(only need to be set once, the global index will never change
437 >    //again). Local indices of atoms and rigidbodies are already set
438 >    //by MoleculeCreator class which actually delegates the
439 >    //responsibility to LocalIndexManager.
440      setGlobalIndex(info);
441 <
442 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
443 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
444 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
445 <    //we can determine the beginning global indices of atoms before they get created.
441 >    
442 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
443 >    //method, at that point atoms don't have the global index yet
444 >    //(their global index are all initialized to -1).  Therefore we
445 >    //have to call addInteractionPairs explicitly here. A way to work
446 >    //around is that we can determine the beginning global indices of
447 >    //atoms before they get created.
448      SimInfo::MoleculeIterator mi;
449      Molecule* mol;
450      for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
451 <        info->addExcludePairs(mol);
451 >      info->addInteractionPairs(mol);
452      }
453      
181
182    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183    //eta, chi for NPT integrator)
454      if (loadInitCoords)
455 <        loadCoordinates(info);    
186 <    
455 >      loadCoordinates(info, mdFileName);    
456      return info;
457 < }
458 <
459 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
460 <
461 <    //setup seed for random number generator
193 <    int seedValue;
194 <    Globals * simParams = info->getSimParams();
195 <
196 <    if (simParams->haveSeed()) {
197 <        seedValue = simParams->getSeed();
198 <
199 <        if (seedValue < 100000000 ) {
200 <            sprintf(painCave.errMsg,
201 <                    "Seed for sprng library should contain at least 9 digits\n"
202 <                        "OOPSE will generate a seed for user\n");
203 <
204 <            painCave.isFatal = 0;
205 <            simError();
206 <
207 <            //using seed generated by system instead of invalid seed set by user
208 <
209 < #ifndef IS_MPI
210 <
211 <            seedValue = make_sprng_seed();
212 <
213 < #else
214 <
215 <            if (worldRank == 0) {
216 <                seedValue = make_sprng_seed();
217 <            }
218 <
219 <            MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
220 <
221 < #endif
222 <
223 <        } //end if (seedValue /1000000000 == 0)
224 <    } else {
225 <
226 < #ifndef IS_MPI
227 <
228 <        seedValue = make_sprng_seed();
229 <
230 < #else
231 <
232 <        if (worldRank == 0) {
233 <            seedValue = make_sprng_seed();
234 <        }
235 <
236 <        MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
237 <
238 < #endif
239 <
240 <    } //end of simParams->haveSeed()
241 <
242 <    info->setSeed(seedValue);
243 <
244 <
245 <    //figure out the ouput file names
457 >  }
458 >  
459 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
460 >    
461 >    //figure out the output file names
462      std::string prefix;
463 <
463 >    
464   #ifdef IS_MPI
465 <
465 >    
466      if (worldRank == 0) {
467   #endif // is_mpi
468 <
469 <        if (simParams->haveFinalConfig()) {
470 <            prefix = getPrefix(simParams->getFinalConfig());
471 <        } else {
472 <            prefix = getPrefix(mdfile);
473 <        }
474 <
475 <        info->setFinalConfigFileName(prefix + ".eor");
476 <        info->setDumpFileName(prefix + ".dump");
477 <        info->setStatFileName(prefix + ".stat");
478 <
468 >      Globals * simParams = info->getSimParams();
469 >      if (simParams->haveFinalConfig()) {
470 >        prefix = getPrefix(simParams->getFinalConfig());
471 >      } else {
472 >        prefix = getPrefix(mdfile);
473 >      }
474 >      
475 >      info->setFinalConfigFileName(prefix + ".eor");
476 >      info->setDumpFileName(prefix + ".dump");
477 >      info->setStatFileName(prefix + ".stat");
478 >      info->setRestFileName(prefix + ".zang");
479 >      
480   #ifdef IS_MPI
481 <
481 >      
482      }
483 <
483 >    
484   #endif
485 <
486 < }
487 <
485 >    
486 >  }
487 >  
488   #ifdef IS_MPI
489 < void SimCreator::divideMolecules(SimInfo *info) {
490 <    double numerator;
491 <    double denominator;
492 <    double precast;
493 <    double x;
494 <    double y;
495 <    double a;
489 >  void SimCreator::divideMolecules(SimInfo *info) {
490 >    RealType numerator;
491 >    RealType denominator;
492 >    RealType precast;
493 >    RealType x;
494 >    RealType y;
495 >    RealType a;
496      int old_atoms;
497      int add_atoms;
498      int new_atoms;
499      int nTarget;
500      int done;
501      int i;
285    int j;
502      int loops;
503      int which_proc;
504      int nProcessors;
505      std::vector<int> atomsPerProc;
290    randomSPRNG myRandom(info->getSeed());
506      int nGlobalMols = info->getNGlobalMolecules();
507      std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
508      
509 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
510 <
509 >    nProcessors = MPI::COMM_WORLD.Get_size();
510 >    
511      if (nProcessors > nGlobalMols) {
512 <        sprintf(painCave.errMsg,
513 <                "nProcessors (%d) > nMol (%d)\n"
514 <                    "\tThe number of processors is larger than\n"
515 <                    "\tthe number of molecules.  This will not result in a \n"
516 <                    "\tusable division of atoms for force decomposition.\n"
517 <                    "\tEither try a smaller number of processors, or run the\n"
518 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
519 <
520 <        painCave.isFatal = 1;
521 <        simError();
512 >      sprintf(painCave.errMsg,
513 >              "nProcessors (%d) > nMol (%d)\n"
514 >              "\tThe number of processors is larger than\n"
515 >              "\tthe number of molecules.  This will not result in a \n"
516 >              "\tusable division of atoms for force decomposition.\n"
517 >              "\tEither try a smaller number of processors, or run the\n"
518 >              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
519 >      
520 >      painCave.isFatal = 1;
521 >      simError();
522      }
523 <
523 >    
524 >    int seedValue;
525 >    Globals * simParams = info->getSimParams();
526 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
527 >    if (simParams->haveSeed()) {
528 >      seedValue = simParams->getSeed();
529 >      myRandom = new SeqRandNumGen(seedValue);
530 >    }else {
531 >      myRandom = new SeqRandNumGen();
532 >    }  
533 >    
534 >    
535      a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
536 <
536 >    
537      //initialize atomsPerProc
538      atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
539 <
539 >    
540      if (worldRank == 0) {
541 <        numerator = info->getNGlobalAtoms();
542 <        denominator = nProcessors;
543 <        precast = numerator / denominator;
544 <        nTarget = (int)(precast + 0.5);
545 <
546 <        for(i = 0; i < nGlobalMols; i++) {
547 <            done = 0;
548 <            loops = 0;
549 <
550 <            while (!done) {
551 <                loops++;
552 <
553 <                // Pick a processor at random
554 <
555 <                which_proc = (int) (myRandom.getRandom() * nProcessors);
556 <
557 <                //get the molecule stamp first
558 <                int stampId = info->getMoleculeStampId(i);
559 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
560 <
561 <                // How many atoms does this processor have so far?
562 <                old_atoms = atomsPerProc[which_proc];
563 <                add_atoms = moleculeStamp->getNAtoms();
564 <                new_atoms = old_atoms + add_atoms;
565 <
566 <                // If we've been through this loop too many times, we need
567 <                // to just give up and assign the molecule to this processor
568 <                // and be done with it.
569 <
570 <                if (loops > 100) {
571 <                    sprintf(painCave.errMsg,
572 <                            "I've tried 100 times to assign molecule %d to a "
573 <                                " processor, but can't find a good spot.\n"
574 <                                "I'm assigning it at random to processor %d.\n",
575 <                            i, which_proc);
576 <
577 <                    painCave.isFatal = 0;
578 <                    simError();
579 <
580 <                    molToProcMap[i] = which_proc;
581 <                    atomsPerProc[which_proc] += add_atoms;
582 <
583 <                    done = 1;
584 <                    continue;
585 <                }
586 <
587 <                // If we can add this molecule to this processor without sending
588 <                // it above nTarget, then go ahead and do it:
589 <
590 <                if (new_atoms <= nTarget) {
591 <                    molToProcMap[i] = which_proc;
592 <                    atomsPerProc[which_proc] += add_atoms;
593 <
594 <                    done = 1;
595 <                    continue;
596 <                }
597 <
598 <                // The only situation left is when new_atoms > nTarget.  We
599 <                // want to accept this with some probability that dies off the
600 <                // farther we are from nTarget
601 <
602 <                // roughly:  x = new_atoms - nTarget
603 <                //           Pacc(x) = exp(- a * x)
604 <                // where a = penalty / (average atoms per molecule)
605 <
606 <                x = (double)(new_atoms - nTarget);
607 <                y = myRandom.getRandom();
608 <
609 <                if (y < exp(- a * x)) {
610 <                    molToProcMap[i] = which_proc;
611 <                    atomsPerProc[which_proc] += add_atoms;
612 <
613 <                    done = 1;
614 <                    continue;
615 <                } else {
616 <                    continue;
617 <                }
392 <            }
541 >      numerator = info->getNGlobalAtoms();
542 >      denominator = nProcessors;
543 >      precast = numerator / denominator;
544 >      nTarget = (int)(precast + 0.5);
545 >      
546 >      for(i = 0; i < nGlobalMols; i++) {
547 >        done = 0;
548 >        loops = 0;
549 >        
550 >        while (!done) {
551 >          loops++;
552 >          
553 >          // Pick a processor at random
554 >          
555 >          which_proc = (int) (myRandom->rand() * nProcessors);
556 >          
557 >          //get the molecule stamp first
558 >          int stampId = info->getMoleculeStampId(i);
559 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
560 >          
561 >          // How many atoms does this processor have so far?
562 >          old_atoms = atomsPerProc[which_proc];
563 >          add_atoms = moleculeStamp->getNAtoms();
564 >          new_atoms = old_atoms + add_atoms;
565 >          
566 >          // If we've been through this loop too many times, we need
567 >          // to just give up and assign the molecule to this processor
568 >          // and be done with it.
569 >          
570 >          if (loops > 100) {
571 >            sprintf(painCave.errMsg,
572 >                    "I've tried 100 times to assign molecule %d to a "
573 >                    " processor, but can't find a good spot.\n"
574 >                    "I'm assigning it at random to processor %d.\n",
575 >                    i, which_proc);
576 >            
577 >            painCave.isFatal = 0;
578 >            simError();
579 >            
580 >            molToProcMap[i] = which_proc;
581 >            atomsPerProc[which_proc] += add_atoms;
582 >            
583 >            done = 1;
584 >            continue;
585 >          }
586 >          
587 >          // If we can add this molecule to this processor without sending
588 >          // it above nTarget, then go ahead and do it:
589 >          
590 >          if (new_atoms <= nTarget) {
591 >            molToProcMap[i] = which_proc;
592 >            atomsPerProc[which_proc] += add_atoms;
593 >            
594 >            done = 1;
595 >            continue;
596 >          }
597 >          
598 >          // The only situation left is when new_atoms > nTarget.  We
599 >          // want to accept this with some probability that dies off the
600 >          // farther we are from nTarget
601 >          
602 >          // roughly:  x = new_atoms - nTarget
603 >          //           Pacc(x) = exp(- a * x)
604 >          // where a = penalty / (average atoms per molecule)
605 >          
606 >          x = (RealType)(new_atoms - nTarget);
607 >          y = myRandom->rand();
608 >          
609 >          if (y < exp(- a * x)) {
610 >            molToProcMap[i] = which_proc;
611 >            atomsPerProc[which_proc] += add_atoms;
612 >            
613 >            done = 1;
614 >            continue;
615 >          } else {
616 >            continue;
617 >          }
618          }
619 <
620 <        // Spray out this nonsense to all other processors:
621 <
622 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
619 >      }
620 >      
621 >      delete myRandom;
622 >      
623 >      // Spray out this nonsense to all other processors:
624 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
625      } else {
626 <
627 <        // Listen to your marching orders from processor 0:
628 <
402 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
626 >      
627 >      // Listen to your marching orders from processor 0:
628 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
629      }
630 <
630 >    
631      info->setMolToProcMap(molToProcMap);
632      sprintf(checkPointMsg,
633              "Successfully divided the molecules among the processors.\n");
634 <    MPIcheckPoint();
635 < }
636 <
634 >    errorCheckPoint();
635 >  }
636 >  
637   #endif
638 <
639 < void SimCreator::createMolecules(SimInfo *info) {
638 >  
639 >  void SimCreator::createMolecules(SimInfo *info) {
640      MoleculeCreator molCreator;
641      int stampId;
642 <
642 >    
643      for(int i = 0; i < info->getNGlobalMolecules(); i++) {
644 <
644 >      
645   #ifdef IS_MPI
646 <
647 <        if (info->getMolToProc(i) == worldRank) {
646 >      
647 >      if (info->getMolToProc(i) == worldRank) {
648   #endif
649 <
650 <            stampId = info->getMoleculeStampId(i);
651 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
652 <                                                                                    stampId, i, info->getLocalIndexManager());
653 <
654 <            info->addMolecule(mol);
655 <
649 >        
650 >        stampId = info->getMoleculeStampId(i);
651 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
652 >                                                   info->getMoleculeStamp(stampId),
653 >                                                   stampId, i,
654 >                                                   info->getLocalIndexManager());
655 >        
656 >        info->addMolecule(mol);
657 >        
658   #ifdef IS_MPI
659 <
660 <        }
661 <
659 >        
660 >      }
661 >      
662   #endif
663 <
663 >      
664      } //end for(int i=0)  
665 < }
665 >  }
666 >    
667 >  int SimCreator::computeStorageLayout(SimInfo* info) {
668  
669 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
670 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
671 <    int i;
672 <    char * id;
673 <    MoleculeStamp * currentStamp;
674 <    Component** the_components = simParams->getComponents();
675 <    int n_components = simParams->getNComponents();
669 >    Globals* simParams = info->getSimParams();
670 >    int nRigidBodies = info->getNGlobalRigidBodies();
671 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
672 >    set<AtomType*>::iterator i;
673 >    bool hasDirectionalAtoms = false;
674 >    bool hasFixedCharge = false;
675 >    bool hasMultipoles = false;    
676 >    bool hasPolarizable = false;    
677 >    bool hasFluctuatingCharge = false;    
678 >    bool hasMetallic = false;
679 >    int storageLayout = 0;
680 >    storageLayout |= DataStorage::dslPosition;
681 >    storageLayout |= DataStorage::dslVelocity;
682 >    storageLayout |= DataStorage::dslForce;
683  
684 <    if (!simParams->haveNMol()) {
448 <        // we don't have the total number of molecules, so we assume it is
449 <        // given in each component
684 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
685  
686 <        for(i = 0; i < n_components; i++) {
687 <            if (!the_components[i]->haveNMol()) {
688 <                // we have a problem
689 <                sprintf(painCave.errMsg,
690 <                        "SimCreator Error. No global NMol or component NMol given.\n"
691 <                            "\tCannot calculate the number of atoms.\n");
686 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
687 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
688 >      EAMAdapter ea = EAMAdapter( (*i) );
689 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
690 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
691 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
692 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
693  
694 <                painCave.isFatal = 1;
695 <                simError();
696 <            }
697 <
698 <            id = the_components[i]->getType();
699 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
700 <
701 <            if (currentStamp == NULL) {
702 <                sprintf(painCave.errMsg,
703 <                        "SimCreator error: Component \"%s\" was not found in the "
704 <                            "list of declared molecules\n", id);
705 <
706 <                painCave.isFatal = 1;
707 <                simError();
708 <            }
709 <
710 <            moleculeStampPairs.push_back(
711 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
712 <        } //end for (i = 0; i < n_components; i++)
713 <    } else {
714 <        sprintf(painCave.errMsg, "SimSetup error.\n"
715 <                                     "\tSorry, the ability to specify total"
716 <                                     " nMols and then give molfractions in the components\n"
717 <                                     "\tis not currently supported."
718 <                                     " Please give nMol in the components.\n");
694 >      if (da.isDirectional()){
695 >        hasDirectionalAtoms = true;
696 >      }
697 >      if (ma.isMultipole()){
698 >        hasMultipoles = true;
699 >      }
700 >      if (ea.isEAM() || sca.isSuttonChen()){
701 >        hasMetallic = true;
702 >      }
703 >      if ( fca.isFixedCharge() ){
704 >        hasFixedCharge = true;
705 >      }
706 >      if ( fqa.isFluctuatingCharge() ){
707 >        hasFluctuatingCharge = true;
708 >      }
709 >      if ( pa.isPolarizable() ){
710 >        hasPolarizable = true;
711 >      }
712 >    }
713 >    
714 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
715 >      storageLayout |= DataStorage::dslAmat;
716 >      if(storageLayout & DataStorage::dslVelocity) {
717 >        storageLayout |= DataStorage::dslAngularMomentum;
718 >      }
719 >      if (storageLayout & DataStorage::dslForce) {
720 >        storageLayout |= DataStorage::dslTorque;
721 >      }
722 >    }
723 >    if (hasMultipoles) {
724 >      storageLayout |= DataStorage::dslElectroFrame;
725 >    }
726 >    if (hasFixedCharge || hasFluctuatingCharge) {
727 >      storageLayout |= DataStorage::dslSkippedCharge;
728 >    }
729 >    if (hasMetallic) {
730 >      storageLayout |= DataStorage::dslDensity;
731 >      storageLayout |= DataStorage::dslFunctional;
732 >      storageLayout |= DataStorage::dslFunctionalDerivative;
733 >    }
734 >    if (hasPolarizable) {
735 >      storageLayout |= DataStorage::dslElectricField;
736 >    }
737 >    if (hasFluctuatingCharge){
738 >      storageLayout |= DataStorage::dslFlucQPosition;
739 >      if(storageLayout & DataStorage::dslVelocity) {
740 >        storageLayout |= DataStorage::dslFlucQVelocity;
741 >      }
742 >      if (storageLayout & DataStorage::dslForce) {
743 >        storageLayout |= DataStorage::dslFlucQForce;
744 >      }
745 >    }
746 >    
747 >    // if the user has asked for them, make sure we've got the memory for the
748 >    // objects defined.
749  
750 <        painCave.isFatal = 1;
751 <        simError();
750 >    if (simParams->getOutputParticlePotential()) {
751 >      storageLayout |= DataStorage::dslParticlePot;
752      }
753  
754 < #ifdef IS_MPI
754 >    if (simParams->havePrintHeatFlux()) {
755 >      if (simParams->getPrintHeatFlux()) {
756 >        storageLayout |= DataStorage::dslParticlePot;
757 >      }
758 >    }
759  
760 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
761 <    MPIcheckPoint();
760 >    if (simParams->getOutputElectricField()) {
761 >      storageLayout |= DataStorage::dslElectricField;
762 >    }
763 >    if (simParams->getOutputFluctuatingCharges()) {
764 >      storageLayout |= DataStorage::dslFlucQPosition;
765 >      storageLayout |= DataStorage::dslFlucQVelocity;
766 >      storageLayout |= DataStorage::dslFlucQForce;
767 >    }
768  
769 < #endif // is_mpi
769 >    return storageLayout;
770 >  }
771  
772 < }
496 <
497 < void SimCreator::setGlobalIndex(SimInfo *info) {
772 >  void SimCreator::setGlobalIndex(SimInfo *info) {
773      SimInfo::MoleculeIterator mi;
774      Molecule::AtomIterator ai;
775      Molecule::RigidBodyIterator ri;
776      Molecule::CutoffGroupIterator ci;
777 +    Molecule::IntegrableObjectIterator  ioi;
778      Molecule * mol;
779      Atom * atom;
780      RigidBody * rb;
# Line 508 | Line 784 | void SimCreator::setGlobalIndex(SimInfo *info) {
784      int beginCutoffGroupIndex;
785      int nGlobalAtoms = info->getNGlobalAtoms();
786      
511 #ifndef IS_MPI
512
787      beginAtomIndex = 0;
788 <    beginRigidBodyIndex = 0;
788 >    //rigidbody's index begins right after atom's
789 >    beginRigidBodyIndex = info->getNGlobalAtoms();
790      beginCutoffGroupIndex = 0;
791  
792 < #else
792 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
793 >      
794 > #ifdef IS_MPI      
795 >      if (info->getMolToProc(i) == worldRank) {
796 > #endif        
797 >        // stuff to do if I own this molecule
798 >        mol = info->getMoleculeByGlobalIndex(i);
799  
519    int nproc;
520    int myNode;
521
522    myNode = worldRank;
523    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
524
525    std::vector < int > tmpAtomsInProc(nproc, 0);
526    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
527    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
528    std::vector < int > NumAtomsInProc(nproc, 0);
529    std::vector < int > NumRigidBodiesInProc(nproc, 0);
530    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
531
532    tmpAtomsInProc[myNode] = info->getNAtoms();
533    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
534    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
535
536    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
537    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
538                  MPI_SUM, MPI_COMM_WORLD);
539    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
540                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
541    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
542                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
543
544    beginAtomIndex = 0;
545    beginRigidBodyIndex = 0;
546    beginCutoffGroupIndex = 0;
547
548    for(int i = 0; i < myNode; i++) {
549        beginAtomIndex += NumAtomsInProc[i];
550        beginRigidBodyIndex += NumRigidBodiesInProc[i];
551        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
552    }
553
554 #endif
555
556    //rigidbody's index begins right after atom's
557    beginRigidBodyIndex += info->getNGlobalAtoms();
558
559    for(mol = info->beginMolecule(mi); mol != NULL;
560        mol = info->nextMolecule(mi)) {
561
800          //local index(index in DataStorge) of atom is important
801          for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
802 <            atom->setGlobalIndex(beginAtomIndex++);
802 >          atom->setGlobalIndex(beginAtomIndex++);
803          }
804 <
804 >        
805          for(rb = mol->beginRigidBody(ri); rb != NULL;
806              rb = mol->nextRigidBody(ri)) {
807 <            rb->setGlobalIndex(beginRigidBodyIndex++);
807 >          rb->setGlobalIndex(beginRigidBodyIndex++);
808          }
809 <
810 <        //local index of cutoff group is trivial, it only depends on the order of travesing
809 >        
810 >        //local index of cutoff group is trivial, it only depends on
811 >        //the order of travesing
812          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
813              cg = mol->nextCutoffGroup(ci)) {
814 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
815 <        }
816 <    }
814 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
815 >        }        
816 >        
817 > #ifdef IS_MPI        
818 >      }  else {
819  
820 +        // stuff to do if I don't own this molecule
821 +        
822 +        int stampId = info->getMoleculeStampId(i);
823 +        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
824 +
825 +        beginAtomIndex += stamp->getNAtoms();
826 +        beginRigidBodyIndex += stamp->getNRigidBodies();
827 +        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
828 +      }
829 + #endif          
830 +
831 +    } //end for(int i=0)  
832 +
833      //fill globalGroupMembership
834      std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
835      for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
836 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
837 <
838 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
839 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
840 <            }
841 <
842 <        }      
836 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
837 >        
838 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
839 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
840 >        }
841 >        
842 >      }      
843      }
844 <
844 >  
845   #ifdef IS_MPI    
846      // Since the globalGroupMembership has been zero filled and we've only
847      // poked values into the atoms we know, we can do an Allreduce
848      // to get the full globalGroupMembership array (We think).
849      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
850      // docs said we could.
851 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
852 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
853 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
854 <     info->setGlobalGroupMembership(tmpGroupMembership);
851 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
852 >    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
853 >                              &tmpGroupMembership[0], nGlobalAtoms,
854 >                              MPI::INT, MPI::SUM);
855 >    info->setGlobalGroupMembership(tmpGroupMembership);
856   #else
857      info->setGlobalGroupMembership(globalGroupMembership);
858   #endif
859 <
859 >    
860      //fill molMembership
861      std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
862      
863      for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
864 <
865 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
866 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
612 <        }
864 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
865 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
866 >      }
867      }
868 <
868 >    
869   #ifdef IS_MPI
870 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
871 <
872 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
873 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
870 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
871 >    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
872 >                              nGlobalAtoms,
873 >                              MPI::INT, MPI::SUM);
874      
875      info->setGlobalMolMembership(tmpMolMembership);
876   #else
877      info->setGlobalMolMembership(globalMolMembership);
878   #endif
879  
880 < }
880 >    // nIOPerMol holds the number of integrable objects per molecule
881 >    // here the molecules are listed by their global indices.
882  
883 < void SimCreator::loadCoordinates(SimInfo* info) {
884 <    Globals* simParams;
885 <    simParams = info->getSimParams();
883 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
884 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
885 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
886 >    }
887      
888 <    if (!simParams->haveInitialConfig()) {
889 <        sprintf(painCave.errMsg,
890 <                "Cannot intialize a simulation without an initial configuration file.\n");
891 <        painCave.isFatal = 1;;
892 <        simError();
888 > #ifdef IS_MPI
889 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
890 >    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
891 >                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
892 > #else
893 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
894 > #endif    
895 >
896 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
897 >    
898 >    int startingIndex = 0;
899 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
900 >      startingIOIndexForMol[i] = startingIndex;
901 >      startingIndex += numIntegrableObjectsPerMol[i];
902      }
903 <        
904 <    DumpReader reader(info, simParams->getInitialConfig());
903 >    
904 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
905 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
906 >      int myGlobalIndex = mol->getGlobalIndex();
907 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
908 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
909 >           sd = mol->nextIntegrableObject(ioi)) {
910 >        sd->setGlobalIntegrableObjectIndex(globalIO);
911 >        IOIndexToIntegrableObject[globalIO] = sd;
912 >        globalIO++;
913 >      }
914 >    }
915 >      
916 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
917 >    
918 >  }
919 >  
920 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
921 >
922 >    DumpReader reader(info, mdFileName);
923      int nframes = reader.getNFrames();
924  
925      if (nframes > 0) {
926 <        reader.readFrame(nframes - 1);
926 >      reader.readFrame(nframes - 1);
927      } else {
928 <        //invalid initial coordinate file
929 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
930 <                simParams->getInitialConfig());
931 <        painCave.isFatal = 1;
932 <        simError();
928 >      //invalid initial coordinate file
929 >      sprintf(painCave.errMsg,
930 >              "Initial configuration file %s should at least contain one frame\n",
931 >              mdFileName.c_str());
932 >      painCave.isFatal = 1;
933 >      simError();
934      }
651
935      //copy the current snapshot to previous snapshot
936      info->getSnapshotManager()->advance();
937 < }
937 >  }
938 >  
939 > } //end namespace OpenMD
940  
656 } //end namespace oopse
941  
658

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 297 by tim, Mon Feb 7 19:14:26 2005 UTC vs.
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines