ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 1790 by gezelter, Thu Aug 30 17:18:22 2012 UTC vs.
Revision 1971 by gezelter, Fri Feb 28 13:25:13 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 44 | Line 44
44   * @file SimCreator.cpp
45   * @author tlin
46   * @date 11/03/2004
47 * @time 13:51am
47   * @version 1.0
48   */
49 +
50 + #ifdef IS_MPI
51 + #include "mpi.h"
52 + #include "math/ParallelRandNumGen.hpp"
53 + #endif
54 +
55   #include <exception>
56   #include <iostream>
57   #include <sstream>
# Line 84 | Line 89
89   #include "types/FixedChargeAdapter.hpp"
90   #include "types/FluctuatingChargeAdapter.hpp"
91  
87 #ifdef IS_MPI
88 #include "mpi.h"
89 #include "math/ParallelRandNumGen.hpp"
90 #endif
92  
93   namespace OpenMD {
94    
# Line 100 | Line 101 | namespace OpenMD {
101   #ifdef IS_MPI            
102        int streamSize;
103        const int masterNode = 0;
104 <      int commStatus;
104 >
105        if (worldRank == masterNode) {
106 <        commStatus = MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
106 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
107 >        // MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
108   #endif                
109          SimplePreprocessor preprocessor;
110 <        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
110 >        preprocessor.preprocess(rawMetaDataStream, filename,
111 >                                startOfMetaDataBlock, ppStream);
112                  
113   #ifdef IS_MPI            
114 <        //brocasting the stream size
114 >        //broadcasting the stream size
115          streamSize = ppStream.str().size() +1;
116 <        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
116 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
117 >        MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 >                  streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
119  
120 <        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
121 <            
122 <                
120 >        // MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
121 >        // MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
122 >        //                       streamSize, MPI::CHAR, masterNode);
123 >                          
124        } else {
125  
126 <        commStatus = MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
126 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
127 >        // MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
128  
129          //get stream size
130 <        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
131 <
130 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
131 >        // MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
132          char* buf = new char[streamSize];
133          assert(buf);
134                  
135          //receive file content
136 <        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
137 <                
136 >        MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
137 >        // MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
138 >
139          ppStream.str(buf);
140          delete [] buf;
133
141        }
142   #endif            
143        // Create a scanner that reads from the input stream
# Line 152 | Line 159 | namespace OpenMD {
159        parser.initializeASTFactory(factory);
160        parser.setASTFactory(&factory);
161        parser.mdfile();
155
162        // Create a tree parser that reads information into Globals
163        MDTreeParser treeParser;
164        treeParser.initializeASTFactory(factory);
# Line 255 | Line 261 | namespace OpenMD {
261      std::string mdRawData;
262      int metaDataBlockStart = -1;
263      int metaDataBlockEnd = -1;
264 <    int i;
265 <    streamoff mdOffset(0);
264 >    int i, j;
265 >    streamoff mdOffset;
266      int mdFileVersion;
267  
268 +    // Create a string for embedding the version information in the MetaData
269 +    std::string version;
270 +    version.assign("## Last run using OpenMD Version: ");
271 +    version.append(OPENMD_VERSION_MAJOR);
272 +    version.append(".");
273 +    version.append(OPENMD_VERSION_MINOR);
274  
275 +    std::string svnrev;
276 +    //convert a macro from compiler to a string in c++
277 +    STR_DEFINE(svnrev, SVN_REV );
278 +    version.append(" Revision: ");
279 +    // If there's no SVN revision, just call this the RELEASE revision.
280 +    if (!svnrev.empty()) {
281 +      version.append(svnrev);
282 +    } else {
283 +      version.append("RELEASE");
284 +    }
285 +  
286   #ifdef IS_MPI            
287      const int masterNode = 0;
288      if (worldRank == masterNode) {
# Line 354 | Line 377 | namespace OpenMD {
377  
378        mdRawData.clear();
379  
380 +      bool foundVersion = false;
381 +
382        for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
383          mdFile_.getline(buffer, bufferSize);
384 <        mdRawData += buffer;
384 >        std::string line = trimLeftCopy(buffer);
385 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
386 >        if (static_cast<size_t>(j) != string::npos) {
387 >          foundVersion = true;
388 >          mdRawData += version;
389 >        } else {
390 >          mdRawData += buffer;
391 >        }
392          mdRawData += "\n";
393        }
394 <
394 >      
395 >      if (!foundVersion) mdRawData += version + "\n";
396 >      
397        mdFile_.close();
398  
399   #ifdef IS_MPI
# Line 487 | Line 521 | namespace OpenMD {
521    
522   #ifdef IS_MPI
523    void SimCreator::divideMolecules(SimInfo *info) {
490    RealType numerator;
491    RealType denominator;
492    RealType precast;
493    RealType x;
494    RealType y;
524      RealType a;
496    int old_atoms;
497    int add_atoms;
498    int new_atoms;
499    int nTarget;
500    int done;
501    int i;
502    int j;
503    int loops;
504    int which_proc;
525      int nProcessors;
526      std::vector<int> atomsPerProc;
527      int nGlobalMols = info->getNGlobalMolecules();
528 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
528 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
529 >                                                    // error
530 >                                                    // condition:
531      
532 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
532 >    MPI_Comm_size( MPI_COMM_WORLD, &nProcessors);    
533 >    //nProcessors = MPI::COMM_WORLD.Get_size();
534      
535      if (nProcessors > nGlobalMols) {
536        sprintf(painCave.errMsg,
# Line 516 | Line 539 | namespace OpenMD {
539                "\tthe number of molecules.  This will not result in a \n"
540                "\tusable division of atoms for force decomposition.\n"
541                "\tEither try a smaller number of processors, or run the\n"
542 <              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
542 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
543 >              nGlobalMols);
544        
545        painCave.isFatal = 1;
546        simError();
547      }
548      
525    int seedValue;
549      Globals * simParams = info->getSimParams();
550 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
550 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
551 >                             //random number generator
552      if (simParams->haveSeed()) {
553 <      seedValue = simParams->getSeed();
553 >      int seedValue = simParams->getSeed();
554        myRandom = new SeqRandNumGen(seedValue);
555      }else {
556        myRandom = new SeqRandNumGen();
# Line 539 | Line 563 | namespace OpenMD {
563      atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
564      
565      if (worldRank == 0) {
566 <      numerator = info->getNGlobalAtoms();
567 <      denominator = nProcessors;
568 <      precast = numerator / denominator;
569 <      nTarget = (int)(precast + 0.5);
566 >      RealType numerator = info->getNGlobalAtoms();
567 >      RealType denominator = nProcessors;
568 >      RealType precast = numerator / denominator;
569 >      int nTarget = (int)(precast + 0.5);
570        
571 <      for(i = 0; i < nGlobalMols; i++) {
572 <        done = 0;
573 <        loops = 0;
571 >      for(int i = 0; i < nGlobalMols; i++) {
572 >
573 >        int done = 0;
574 >        int loops = 0;
575          
576          while (!done) {
577            loops++;
578            
579            // Pick a processor at random
580            
581 <          which_proc = (int) (myRandom->rand() * nProcessors);
581 >          int which_proc = (int) (myRandom->rand() * nProcessors);
582            
583            //get the molecule stamp first
584            int stampId = info->getMoleculeStampId(i);
585            MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
586            
587            // How many atoms does this processor have so far?
588 <          old_atoms = atomsPerProc[which_proc];
589 <          add_atoms = moleculeStamp->getNAtoms();
590 <          new_atoms = old_atoms + add_atoms;
588 >          int old_atoms = atomsPerProc[which_proc];
589 >          int add_atoms = moleculeStamp->getNAtoms();
590 >          int new_atoms = old_atoms + add_atoms;
591            
592            // If we've been through this loop too many times, we need
593            // to just give up and assign the molecule to this processor
594            // and be done with it.
595            
596            if (loops > 100) {
597 +
598              sprintf(painCave.errMsg,
599 <                    "I've tried 100 times to assign molecule %d to a "
600 <                    " processor, but can't find a good spot.\n"
601 <                    "I'm assigning it at random to processor %d.\n",
599 >                    "There have been 100 attempts to assign molecule %d to an\n"
600 >                    "\tunderworked processor, but there's no good place to\n"
601 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
602                      i, which_proc);
603 <            
603 >          
604              painCave.isFatal = 0;
605 +            painCave.severity = OPENMD_INFO;
606              simError();
607              
608              molToProcMap[i] = which_proc;
# Line 604 | Line 631 | namespace OpenMD {
631            //           Pacc(x) = exp(- a * x)
632            // where a = penalty / (average atoms per molecule)
633            
634 <          x = (RealType)(new_atoms - nTarget);
635 <          y = myRandom->rand();
634 >          RealType x = (RealType)(new_atoms - nTarget);
635 >          RealType y = myRandom->rand();
636            
637            if (y < exp(- a * x)) {
638              molToProcMap[i] = which_proc;
# Line 620 | Line 647 | namespace OpenMD {
647        }
648        
649        delete myRandom;
650 <      
650 >
651        // Spray out this nonsense to all other processors:
625      
652        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
653 +      // MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
654      } else {
655        
656        // Listen to your marching orders from processor 0:
630      
657        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
658 +      // MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
659 +
660      }
661      
662      info->setMolToProcMap(molToProcMap);
# Line 675 | Line 703 | namespace OpenMD {
703      set<AtomType*>::iterator i;
704      bool hasDirectionalAtoms = false;
705      bool hasFixedCharge = false;
706 <    bool hasMultipoles = false;    
706 >    bool hasDipoles = false;    
707 >    bool hasQuadrupoles = false;    
708      bool hasPolarizable = false;    
709      bool hasFluctuatingCharge = false;    
710      bool hasMetallic = false;
# Line 697 | Line 726 | namespace OpenMD {
726        if (da.isDirectional()){
727          hasDirectionalAtoms = true;
728        }
729 <      if (ma.isMultipole()){
730 <        hasMultipoles = true;
729 >      if (ma.isDipole()){
730 >        hasDipoles = true;
731        }
732 +      if (ma.isQuadrupole()){
733 +        hasQuadrupoles = true;
734 +      }
735        if (ea.isEAM() || sca.isSuttonChen()){
736          hasMetallic = true;
737        }
# Line 723 | Line 755 | namespace OpenMD {
755          storageLayout |= DataStorage::dslTorque;
756        }
757      }
758 <    if (hasMultipoles) {
759 <      storageLayout |= DataStorage::dslElectroFrame;
758 >    if (hasDipoles) {
759 >      storageLayout |= DataStorage::dslDipole;
760      }
761 +    if (hasQuadrupoles) {
762 +      storageLayout |= DataStorage::dslQuadrupole;
763 +    }
764      if (hasFixedCharge || hasFluctuatingCharge) {
765        storageLayout |= DataStorage::dslSkippedCharge;
766      }
# Line 760 | Line 795 | namespace OpenMD {
795        }
796      }
797  
798 <    if (simParams->getOutputElectricField()) {
798 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
799        storageLayout |= DataStorage::dslElectricField;
800      }
801 +
802      if (simParams->getOutputFluctuatingCharges()) {
803        storageLayout |= DataStorage::dslFlucQPosition;
804        storageLayout |= DataStorage::dslFlucQVelocity;
805        storageLayout |= DataStorage::dslFlucQForce;
806      }
807  
808 +    info->setStorageLayout(storageLayout);
809 +
810      return storageLayout;
811    }
812  
# Line 777 | Line 815 | namespace OpenMD {
815      Molecule::AtomIterator ai;
816      Molecule::RigidBodyIterator ri;
817      Molecule::CutoffGroupIterator ci;
818 +    Molecule::BondIterator boi;
819 +    Molecule::BendIterator bei;
820 +    Molecule::TorsionIterator ti;
821 +    Molecule::InversionIterator ii;
822      Molecule::IntegrableObjectIterator  ioi;
823 <    Molecule * mol;
824 <    Atom * atom;
825 <    RigidBody * rb;
826 <    CutoffGroup * cg;
823 >    Molecule* mol;
824 >    Atom* atom;
825 >    RigidBody* rb;
826 >    CutoffGroup* cg;
827 >    Bond* bond;
828 >    Bend* bend;
829 >    Torsion* torsion;
830 >    Inversion* inversion;
831      int beginAtomIndex;
832      int beginRigidBodyIndex;
833      int beginCutoffGroupIndex;
834 +    int beginBondIndex;
835 +    int beginBendIndex;
836 +    int beginTorsionIndex;
837 +    int beginInversionIndex;
838      int nGlobalAtoms = info->getNGlobalAtoms();
839 +    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
840      
841      beginAtomIndex = 0;
842 <    //rigidbody's index begins right after atom's
842 >    // The rigid body indices begin immediately after the atom indices:
843      beginRigidBodyIndex = info->getNGlobalAtoms();
844      beginCutoffGroupIndex = 0;
845 <
845 >    beginBondIndex = 0;
846 >    beginBendIndex = 0;
847 >    beginTorsionIndex = 0;
848 >    beginInversionIndex = 0;
849 >  
850      for(int i = 0; i < info->getNGlobalMolecules(); i++) {
851        
852   #ifdef IS_MPI      
# Line 800 | Line 855 | namespace OpenMD {
855          // stuff to do if I own this molecule
856          mol = info->getMoleculeByGlobalIndex(i);
857  
858 <        //local index(index in DataStorge) of atom is important
859 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
858 >        // The local index(index in DataStorge) of the atom is important:
859 >        for(atom = mol->beginAtom(ai); atom != NULL;
860 >            atom = mol->nextAtom(ai)) {
861            atom->setGlobalIndex(beginAtomIndex++);
862          }
863          
# Line 810 | Line 866 | namespace OpenMD {
866            rb->setGlobalIndex(beginRigidBodyIndex++);
867          }
868          
869 <        //local index of cutoff group is trivial, it only depends on
870 <        //the order of travesing
869 >        // The local index of other objects only depends on the order
870 >        // of traversal:
871          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
872              cg = mol->nextCutoffGroup(ci)) {
873            cg->setGlobalIndex(beginCutoffGroupIndex++);
874 +        }        
875 +        for(bond = mol->beginBond(boi); bond != NULL;
876 +            bond = mol->nextBond(boi)) {
877 +          bond->setGlobalIndex(beginBondIndex++);
878          }        
879 +        for(bend = mol->beginBend(bei); bend != NULL;
880 +            bend = mol->nextBend(bei)) {
881 +          bend->setGlobalIndex(beginBendIndex++);
882 +        }        
883 +        for(torsion = mol->beginTorsion(ti); torsion != NULL;
884 +            torsion = mol->nextTorsion(ti)) {
885 +          torsion->setGlobalIndex(beginTorsionIndex++);
886 +        }        
887 +        for(inversion = mol->beginInversion(ii); inversion != NULL;
888 +            inversion = mol->nextInversion(ii)) {
889 +          inversion->setGlobalIndex(beginInversionIndex++);
890 +        }        
891          
892   #ifdef IS_MPI        
893        }  else {
# Line 828 | Line 900 | namespace OpenMD {
900          beginAtomIndex += stamp->getNAtoms();
901          beginRigidBodyIndex += stamp->getNRigidBodies();
902          beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
903 +        beginBondIndex += stamp->getNBonds();
904 +        beginBendIndex += stamp->getNBends();
905 +        beginTorsionIndex += stamp->getNTorsions();
906 +        beginInversionIndex += stamp->getNInversions();
907        }
908   #endif          
909  
# Line 835 | Line 911 | namespace OpenMD {
911  
912      //fill globalGroupMembership
913      std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
914 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
915 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 <        
914 >    for(mol = info->beginMolecule(mi); mol != NULL;
915 >        mol = info->nextMolecule(mi)) {        
916 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
917 >           cg = mol->nextCutoffGroup(ci)) {        
918          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
919            globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
920          }
# Line 852 | Line 929 | namespace OpenMD {
929      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
930      // docs said we could.
931      std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
932 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
932 >    MPI_Allreduce(&globalGroupMembership[0],
933 >                  &tmpGroupMembership[0], nGlobalAtoms,
934                    MPI_INT, MPI_SUM, MPI_COMM_WORLD);
935 +    // MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
936 +    //                           &tmpGroupMembership[0], nGlobalAtoms,
937 +    //                           MPI::INT, MPI::SUM);
938      info->setGlobalGroupMembership(tmpGroupMembership);
939   #else
940      info->setGlobalGroupMembership(globalGroupMembership);
941   #endif
942      
943      //fill molMembership
944 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
944 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
945 >                                         info->getNGlobalRigidBodies(), 0);
946      
947 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
947 >    for(mol = info->beginMolecule(mi); mol != NULL;
948 >        mol = info->nextMolecule(mi)) {
949        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
950          globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
951        }
952 +      for (rb = mol->beginRigidBody(ri); rb != NULL;
953 +           rb = mol->nextRigidBody(ri)) {
954 +        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
955 +      }
956      }
957      
958   #ifdef IS_MPI
959 <    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
960 <    
961 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
959 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
960 >                                      info->getNGlobalRigidBodies(), 0);
961 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
962 >                  nGlobalAtoms + nGlobalRigidBodies,
963                    MPI_INT, MPI_SUM, MPI_COMM_WORLD);
964 +    // MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
965 +    //                           nGlobalAtoms + nGlobalRigidBodies,
966 +    //                           MPI::INT, MPI::SUM);
967      
968      info->setGlobalMolMembership(tmpMolMembership);
969   #else
# Line 883 | Line 974 | namespace OpenMD {
974      // here the molecules are listed by their global indices.
975  
976      std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
977 <    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
977 >    for (mol = info->beginMolecule(mi); mol != NULL;
978 >         mol = info->nextMolecule(mi)) {
979        nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
980      }
981      
982   #ifdef IS_MPI
983      std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
984      MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
985 <                  info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
985 >      info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
986 >    // MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
987 >    //                           info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
988   #else
989      std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
990   #endif    
# Line 904 | Line 998 | namespace OpenMD {
998      }
999      
1000      std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
1001 <    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
1001 >    for (mol = info->beginMolecule(mi); mol != NULL;
1002 >         mol = info->nextMolecule(mi)) {
1003        int myGlobalIndex = mol->getGlobalIndex();
1004        int globalIO = startingIOIndexForMol[myGlobalIndex];
1005        for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
# Line 920 | Line 1015 | namespace OpenMD {
1015    }
1016    
1017    void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
923    Globals* simParams;
924
925    simParams = info->getSimParams();
1018      
1019      DumpReader reader(info, mdFileName);
1020      int nframes = reader.getNFrames();
1021 <
1021 >    
1022      if (nframes > 0) {
1023        reader.readFrame(nframes - 1);
1024      } else {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines