ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 393 by tim, Wed Mar 2 16:28:20 2005 UTC vs.
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #include "math/SeqRandNumGen.hpp"
61 < #ifdef IS_MPI
62 < #include "io/mpiBASS.h"
63 < #include "math/ParallelRandNumGen.hpp"
64 < #endif
65 <
66 < namespace oopse {
67 <
68 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
69 <
70 < #ifdef IS_MPI
71 <
72 <    if (worldRank == 0) {
73 < #endif // is_mpi
74 <
75 <        simParams->initalize();
76 <        set_interface_stamps(stamps, simParams);
77 <
78 < #ifdef IS_MPI
79 <
80 <        mpiEventInit();
81 <
82 < #endif
83 <
84 <        yacc_BASS(mdFileName.c_str());
85 <
86 < #ifdef IS_MPI
87 <
88 <        throwMPIEvent(NULL);
89 <    } else {
90 <        set_interface_stamps(stamps, simParams);
91 <        mpiEventInit();
92 <        MPIcheckPoint();
93 <        mpiEventLoop();
94 <    }
95 <
96 < #endif
97 <
98 < }
99 <
100 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
101 <    
102 <    MakeStamps * stamps = new MakeStamps();
103 <
104 <    Globals * simParams = new Globals();
105 <
106 <    //parse meta-data file
107 <    parseFile(mdFileName, stamps, simParams);
108 <
109 <    //create the force field
110 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
111 <                          simParams->getForceField());
112 <    
113 <    if (ff == NULL) {
114 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
115 <                simParams->getForceField());
116 <        painCave.isFatal = 1;
117 <        simError();
118 <    }
119 <
120 <    if (simParams->haveForceFieldFileName()) {
121 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
122 <    }
123 <    
124 <    std::string forcefieldFileName;
125 <    forcefieldFileName = ff->getForceFieldFileName();
126 <
127 <    if (simParams->haveForceFieldVariant()) {
128 <        //If the force field has variant, the variant force field name will be
129 <        //Base.variant.frc. For exampel EAM.u6.frc
130 <        
131 <        std::string variant = simParams->getForceFieldVariant();
132 <
133 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
134 <        variant = "." + variant;
135 <        if (pos != std::string::npos) {
136 <            forcefieldFileName.insert(pos, variant);
137 <        } else {
138 <            //If the default force field file name does not containt .frc suffix, just append the .variant
139 <            forcefieldFileName.append(variant);
140 <        }
141 <    }
142 <    
143 <    ff->parse(forcefieldFileName);
144 <    
145 <    //extract the molecule stamps
146 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
147 <    compList(stamps, simParams, moleculeStampPairs);
148 <
149 <    //create SimInfo
150 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
151 <
152 <    //gather parameters (SimCreator only retrieves part of the parameters)
153 <    gatherParameters(info, mdFileName);
154 <
155 <    //divide the molecules and determine the global index of molecules
156 < #ifdef IS_MPI
157 <    divideMolecules(info);
158 < #endif
159 <
160 <    //create the molecules
161 <    createMolecules(info);
162 <
163 <
164 <    //allocate memory for DataStorage(circular reference, need to break it)
165 <    info->setSnapshotManager(new SimSnapshotManager(info));
166 <    
167 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
168 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
169 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
170 <    setGlobalIndex(info);
171 <
172 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
173 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
174 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
175 <    //we can determine the beginning global indices of atoms before they get created.
176 <    SimInfo::MoleculeIterator mi;
177 <    Molecule* mol;
178 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
179 <        info->addExcludePairs(mol);
180 <    }
181 <    
182 <
183 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
184 <    //eta, chi for NPT integrator)
185 <    if (loadInitCoords)
186 <        loadCoordinates(info);    
187 <    
188 <    return info;
189 < }
190 <
191 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
192 <
193 <    //figure out the ouput file names
194 <    std::string prefix;
195 <
196 < #ifdef IS_MPI
197 <
198 <    if (worldRank == 0) {
199 < #endif // is_mpi
200 <        Globals * simParams = info->getSimParams();
201 <        if (simParams->haveFinalConfig()) {
202 <            prefix = getPrefix(simParams->getFinalConfig());
203 <        } else {
204 <            prefix = getPrefix(mdfile);
205 <        }
206 <
207 <        info->setFinalConfigFileName(prefix + ".eor");
208 <        info->setDumpFileName(prefix + ".dump");
209 <        info->setStatFileName(prefix + ".stat");
210 <
211 < #ifdef IS_MPI
212 <
213 <    }
214 <
215 < #endif
216 <
217 < }
218 <
219 < #ifdef IS_MPI
220 < void SimCreator::divideMolecules(SimInfo *info) {
221 <    double numerator;
222 <    double denominator;
223 <    double precast;
224 <    double x;
225 <    double y;
226 <    double a;
227 <    int old_atoms;
228 <    int add_atoms;
229 <    int new_atoms;
230 <    int nTarget;
231 <    int done;
232 <    int i;
233 <    int j;
234 <    int loops;
235 <    int which_proc;
236 <    int nProcessors;
237 <    std::vector<int> atomsPerProc;
238 <    int nGlobalMols = info->getNGlobalMolecules();
239 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
240 <    
241 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
242 <
243 <    if (nProcessors > nGlobalMols) {
244 <        sprintf(painCave.errMsg,
245 <                "nProcessors (%d) > nMol (%d)\n"
246 <                    "\tThe number of processors is larger than\n"
247 <                    "\tthe number of molecules.  This will not result in a \n"
248 <                    "\tusable division of atoms for force decomposition.\n"
249 <                    "\tEither try a smaller number of processors, or run the\n"
250 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
251 <
252 <        painCave.isFatal = 1;
253 <        simError();
254 <    }
255 <
256 <    int seedValue;
257 <    Globals * simParams = info->getSimParams();
258 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
259 <    if (simParams->haveSeed()) {
260 <        seedValue = simParams->getSeed();
261 <        myRandom = new SeqRandNumGen(seedValue);
262 <    }else {
263 <        myRandom = new SeqRandNumGen();
264 <    }  
265 <
266 <
267 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
268 <
269 <    //initialize atomsPerProc
270 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
271 <
272 <    if (worldRank == 0) {
273 <        numerator = info->getNGlobalAtoms();
274 <        denominator = nProcessors;
275 <        precast = numerator / denominator;
276 <        nTarget = (int)(precast + 0.5);
277 <
278 <        for(i = 0; i < nGlobalMols; i++) {
279 <            done = 0;
280 <            loops = 0;
281 <
282 <            while (!done) {
283 <                loops++;
284 <
285 <                // Pick a processor at random
286 <
287 <                which_proc = (int) (myRandom->rand() * nProcessors);
288 <
289 <                //get the molecule stamp first
290 <                int stampId = info->getMoleculeStampId(i);
291 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
292 <
293 <                // How many atoms does this processor have so far?
294 <                old_atoms = atomsPerProc[which_proc];
295 <                add_atoms = moleculeStamp->getNAtoms();
296 <                new_atoms = old_atoms + add_atoms;
297 <
298 <                // If we've been through this loop too many times, we need
299 <                // to just give up and assign the molecule to this processor
300 <                // and be done with it.
301 <
302 <                if (loops > 100) {
303 <                    sprintf(painCave.errMsg,
304 <                            "I've tried 100 times to assign molecule %d to a "
305 <                                " processor, but can't find a good spot.\n"
306 <                                "I'm assigning it at random to processor %d.\n",
307 <                            i, which_proc);
308 <
309 <                    painCave.isFatal = 0;
310 <                    simError();
311 <
312 <                    molToProcMap[i] = which_proc;
313 <                    atomsPerProc[which_proc] += add_atoms;
314 <
315 <                    done = 1;
316 <                    continue;
317 <                }
318 <
319 <                // If we can add this molecule to this processor without sending
320 <                // it above nTarget, then go ahead and do it:
321 <
322 <                if (new_atoms <= nTarget) {
323 <                    molToProcMap[i] = which_proc;
324 <                    atomsPerProc[which_proc] += add_atoms;
325 <
326 <                    done = 1;
327 <                    continue;
328 <                }
329 <
330 <                // The only situation left is when new_atoms > nTarget.  We
331 <                // want to accept this with some probability that dies off the
332 <                // farther we are from nTarget
333 <
334 <                // roughly:  x = new_atoms - nTarget
335 <                //           Pacc(x) = exp(- a * x)
336 <                // where a = penalty / (average atoms per molecule)
337 <
338 <                x = (double)(new_atoms - nTarget);
339 <                y = myRandom->rand();
340 <
341 <                if (y < exp(- a * x)) {
342 <                    molToProcMap[i] = which_proc;
343 <                    atomsPerProc[which_proc] += add_atoms;
344 <
345 <                    done = 1;
346 <                    continue;
347 <                } else {
348 <                    continue;
349 <                }
350 <            }
351 <        }
352 <
353 <        delete myRandom;
354 <        
355 <        // Spray out this nonsense to all other processors:
356 <
357 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
358 <    } else {
359 <
360 <        // Listen to your marching orders from processor 0:
361 <
362 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
363 <    }
364 <
365 <    info->setMolToProcMap(molToProcMap);
366 <    sprintf(checkPointMsg,
367 <            "Successfully divided the molecules among the processors.\n");
368 <    MPIcheckPoint();
369 < }
370 <
371 < #endif
372 <
373 < void SimCreator::createMolecules(SimInfo *info) {
374 <    MoleculeCreator molCreator;
375 <    int stampId;
376 <
377 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
378 <
379 < #ifdef IS_MPI
380 <
381 <        if (info->getMolToProc(i) == worldRank) {
382 < #endif
383 <
384 <            stampId = info->getMoleculeStampId(i);
385 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
386 <                                                                                    stampId, i, info->getLocalIndexManager());
387 <
388 <            info->addMolecule(mol);
389 <
390 < #ifdef IS_MPI
391 <
392 <        }
393 <
394 < #endif
395 <
396 <    } //end for(int i=0)  
397 < }
398 <
399 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
400 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
401 <    int i;
402 <    char * id;
403 <    MoleculeStamp * currentStamp;
404 <    Component** the_components = simParams->getComponents();
405 <    int n_components = simParams->getNComponents();
406 <
407 <    if (!simParams->haveNMol()) {
408 <        // we don't have the total number of molecules, so we assume it is
409 <        // given in each component
410 <
411 <        for(i = 0; i < n_components; i++) {
412 <            if (!the_components[i]->haveNMol()) {
413 <                // we have a problem
414 <                sprintf(painCave.errMsg,
415 <                        "SimCreator Error. No global NMol or component NMol given.\n"
416 <                            "\tCannot calculate the number of atoms.\n");
417 <
418 <                painCave.isFatal = 1;
419 <                simError();
420 <            }
421 <
422 <            id = the_components[i]->getType();
423 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
424 <
425 <            if (currentStamp == NULL) {
426 <                sprintf(painCave.errMsg,
427 <                        "SimCreator error: Component \"%s\" was not found in the "
428 <                            "list of declared molecules\n", id);
429 <
430 <                painCave.isFatal = 1;
431 <                simError();
432 <            }
433 <
434 <            moleculeStampPairs.push_back(
435 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
436 <        } //end for (i = 0; i < n_components; i++)
437 <    } else {
438 <        sprintf(painCave.errMsg, "SimSetup error.\n"
439 <                                     "\tSorry, the ability to specify total"
440 <                                     " nMols and then give molfractions in the components\n"
441 <                                     "\tis not currently supported."
442 <                                     " Please give nMol in the components.\n");
443 <
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <
448 < #ifdef IS_MPI
449 <
450 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
451 <    MPIcheckPoint();
452 <
453 < #endif // is_mpi
454 <
455 < }
456 <
457 < void SimCreator::setGlobalIndex(SimInfo *info) {
458 <    SimInfo::MoleculeIterator mi;
459 <    Molecule::AtomIterator ai;
460 <    Molecule::RigidBodyIterator ri;
461 <    Molecule::CutoffGroupIterator ci;
462 <    Molecule * mol;
463 <    Atom * atom;
464 <    RigidBody * rb;
465 <    CutoffGroup * cg;
466 <    int beginAtomIndex;
467 <    int beginRigidBodyIndex;
468 <    int beginCutoffGroupIndex;
469 <    int nGlobalAtoms = info->getNGlobalAtoms();
470 <    
471 < #ifndef IS_MPI
472 <
473 <    beginAtomIndex = 0;
474 <    beginRigidBodyIndex = 0;
475 <    beginCutoffGroupIndex = 0;
476 <
477 < #else
478 <
479 <    int nproc;
480 <    int myNode;
481 <
482 <    myNode = worldRank;
483 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
484 <
485 <    std::vector < int > tmpAtomsInProc(nproc, 0);
486 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
487 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
488 <    std::vector < int > NumAtomsInProc(nproc, 0);
489 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
490 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
491 <
492 <    tmpAtomsInProc[myNode] = info->getNAtoms();
493 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
494 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
495 <
496 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
497 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
498 <                  MPI_SUM, MPI_COMM_WORLD);
499 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
500 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
501 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
502 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
503 <
504 <    beginAtomIndex = 0;
505 <    beginRigidBodyIndex = 0;
506 <    beginCutoffGroupIndex = 0;
507 <
508 <    for(int i = 0; i < myNode; i++) {
509 <        beginAtomIndex += NumAtomsInProc[i];
510 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
511 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
512 <    }
513 <
514 < #endif
515 <
516 <    //rigidbody's index begins right after atom's
517 <    beginRigidBodyIndex += info->getNGlobalAtoms();
518 <
519 <    for(mol = info->beginMolecule(mi); mol != NULL;
520 <        mol = info->nextMolecule(mi)) {
521 <
522 <        //local index(index in DataStorge) of atom is important
523 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
524 <            atom->setGlobalIndex(beginAtomIndex++);
525 <        }
526 <
527 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
528 <            rb = mol->nextRigidBody(ri)) {
529 <            rb->setGlobalIndex(beginRigidBodyIndex++);
530 <        }
531 <
532 <        //local index of cutoff group is trivial, it only depends on the order of travesing
533 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
534 <            cg = mol->nextCutoffGroup(ci)) {
535 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
536 <        }
537 <    }
538 <
539 <    //fill globalGroupMembership
540 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
541 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
542 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
543 <
544 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
545 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
546 <            }
547 <
548 <        }      
549 <    }
550 <
551 < #ifdef IS_MPI    
552 <    // Since the globalGroupMembership has been zero filled and we've only
553 <    // poked values into the atoms we know, we can do an Allreduce
554 <    // to get the full globalGroupMembership array (We think).
555 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
556 <    // docs said we could.
557 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
558 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
559 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
560 <     info->setGlobalGroupMembership(tmpGroupMembership);
561 < #else
562 <    info->setGlobalGroupMembership(globalGroupMembership);
563 < #endif
564 <
565 <    //fill molMembership
566 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
567 <    
568 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
569 <
570 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
571 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
572 <        }
573 <    }
574 <
575 < #ifdef IS_MPI
576 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
577 <
578 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
579 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
580 <    
581 <    info->setGlobalMolMembership(tmpMolMembership);
582 < #else
583 <    info->setGlobalMolMembership(globalMolMembership);
584 < #endif
585 <
586 < }
587 <
588 < void SimCreator::loadCoordinates(SimInfo* info) {
589 <    Globals* simParams;
590 <    simParams = info->getSimParams();
591 <    
592 <    if (!simParams->haveInitialConfig()) {
593 <        sprintf(painCave.errMsg,
594 <                "Cannot intialize a simulation without an initial configuration file.\n");
595 <        painCave.isFatal = 1;;
596 <        simError();
597 <    }
598 <        
599 <    DumpReader reader(info, simParams->getInitialConfig());
600 <    int nframes = reader.getNFrames();
601 <
602 <    if (nframes > 0) {
603 <        reader.readFrame(nframes - 1);
604 <    } else {
605 <        //invalid initial coordinate file
606 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
607 <                simParams->getInitialConfig());
608 <        painCave.isFatal = 1;
609 <        simError();
610 <    }
611 <
612 <    //copy the current snapshot to previous snapshot
613 <    info->getSnapshotManager()->advance();
614 < }
615 <
616 < } //end namespace oopse
617 <
618 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimCreator.cpp
44 > * @author tlin
45 > * @date 11/03/2004
46 > * @time 13:51am
47 > * @version 1.0
48 > */
49 > #include <exception>
50 > #include <iostream>
51 > #include <sstream>
52 > #include <string>
53 >
54 > #include "brains/MoleculeCreator.hpp"
55 > #include "brains/SimCreator.hpp"
56 > #include "brains/SimSnapshotManager.hpp"
57 > #include "io/DumpReader.hpp"
58 > #include "UseTheForce/ForceFieldFactory.hpp"
59 > #include "utils/simError.h"
60 > #include "utils/StringUtils.hpp"
61 > #include "math/SeqRandNumGen.hpp"
62 > #include "mdParser/MDLexer.hpp"
63 > #include "mdParser/MDParser.hpp"
64 > #include "mdParser/MDTreeParser.hpp"
65 > #include "mdParser/SimplePreprocessor.hpp"
66 > #include "antlr/ANTLRException.hpp"
67 > #include "antlr/TokenStreamRecognitionException.hpp"
68 > #include "antlr/TokenStreamIOException.hpp"
69 > #include "antlr/TokenStreamException.hpp"
70 > #include "antlr/RecognitionException.hpp"
71 > #include "antlr/CharStreamException.hpp"
72 >
73 > #include "antlr/MismatchedCharException.hpp"
74 > #include "antlr/MismatchedTokenException.hpp"
75 > #include "antlr/NoViableAltForCharException.hpp"
76 > #include "antlr/NoViableAltException.hpp"
77 >
78 > #ifdef IS_MPI
79 > #include "math/ParallelRandNumGen.hpp"
80 > #endif
81 >
82 > namespace OpenMD {
83 >  
84 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int startOfMetaDataBlock ){
85 >    Globals* simParams = NULL;
86 >    try {
87 >
88 >      // Create a preprocessor that preprocesses md file into an ostringstream
89 >      std::stringstream ppStream;
90 > #ifdef IS_MPI            
91 >      int streamSize;
92 >      const int masterNode = 0;
93 >      int commStatus;
94 >      if (worldRank == masterNode) {
95 > #endif
96 >                
97 >        SimplePreprocessor preprocessor;
98 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
99 >                
100 > #ifdef IS_MPI            
101 >        //brocasting the stream size
102 >        streamSize = ppStream.str().size() +1;
103 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
104 >
105 >        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
106 >            
107 >                
108 >      } else {
109 >        //get stream size
110 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
111 >
112 >        char* buf = new char[streamSize];
113 >        assert(buf);
114 >                
115 >        //receive file content
116 >        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
117 >                
118 >        ppStream.str(buf);
119 >        delete [] buf;
120 >
121 >      }
122 > #endif            
123 >      // Create a scanner that reads from the input stream
124 >      MDLexer lexer(ppStream);
125 >      lexer.setFilename(filename);
126 >      lexer.initDeferredLineCount();
127 >    
128 >      // Create a parser that reads from the scanner
129 >      MDParser parser(lexer);
130 >      parser.setFilename(filename);
131 >
132 >      // Create an observer that synchorizes file name change
133 >      FilenameObserver observer;
134 >      observer.setLexer(&lexer);
135 >      observer.setParser(&parser);
136 >      lexer.setObserver(&observer);
137 >    
138 >      antlr::ASTFactory factory;
139 >      parser.initializeASTFactory(factory);
140 >      parser.setASTFactory(&factory);
141 >      parser.mdfile();
142 >
143 >      // Create a tree parser that reads information into Globals
144 >      MDTreeParser treeParser;
145 >      treeParser.initializeASTFactory(factory);
146 >      treeParser.setASTFactory(&factory);
147 >      simParams = treeParser.walkTree(parser.getAST());
148 >    }
149 >
150 >      
151 >    catch(antlr::MismatchedCharException& e) {
152 >      sprintf(painCave.errMsg,
153 >              "parser exception: %s %s:%d:%d\n",
154 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
155 >      painCave.isFatal = 1;
156 >      simError();          
157 >    }
158 >    catch(antlr::MismatchedTokenException &e) {
159 >      sprintf(painCave.errMsg,
160 >              "parser exception: %s %s:%d:%d\n",
161 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
162 >      painCave.isFatal = 1;
163 >      simError();  
164 >    }
165 >    catch(antlr::NoViableAltForCharException &e) {
166 >      sprintf(painCave.errMsg,
167 >              "parser exception: %s %s:%d:%d\n",
168 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
169 >      painCave.isFatal = 1;
170 >      simError();  
171 >    }
172 >    catch(antlr::NoViableAltException &e) {
173 >      sprintf(painCave.errMsg,
174 >              "parser exception: %s %s:%d:%d\n",
175 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
176 >      painCave.isFatal = 1;
177 >      simError();  
178 >    }
179 >      
180 >    catch(antlr::TokenStreamRecognitionException& e) {
181 >      sprintf(painCave.errMsg,
182 >              "parser exception: %s %s:%d:%d\n",
183 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
184 >      painCave.isFatal = 1;
185 >      simError();  
186 >    }
187 >        
188 >    catch(antlr::TokenStreamIOException& e) {
189 >      sprintf(painCave.errMsg,
190 >              "parser exception: %s\n",
191 >              e.getMessage().c_str());
192 >      painCave.isFatal = 1;
193 >      simError();
194 >    }
195 >        
196 >    catch(antlr::TokenStreamException& e) {
197 >      sprintf(painCave.errMsg,
198 >              "parser exception: %s\n",
199 >              e.getMessage().c_str());
200 >      painCave.isFatal = 1;
201 >      simError();
202 >    }        
203 >    catch (antlr::RecognitionException& e) {
204 >      sprintf(painCave.errMsg,
205 >              "parser exception: %s %s:%d:%d\n",
206 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
207 >      painCave.isFatal = 1;
208 >      simError();          
209 >    }
210 >    catch (antlr::CharStreamException& e) {
211 >      sprintf(painCave.errMsg,
212 >              "parser exception: %s\n",
213 >              e.getMessage().c_str());
214 >      painCave.isFatal = 1;
215 >      simError();        
216 >    }
217 >    catch (OpenMDException& e) {
218 >      sprintf(painCave.errMsg,
219 >              "%s\n",
220 >              e.getMessage().c_str());
221 >      painCave.isFatal = 1;
222 >      simError();
223 >    }
224 >    catch (std::exception& e) {
225 >      sprintf(painCave.errMsg,
226 >              "parser exception: %s\n",
227 >              e.what());
228 >      painCave.isFatal = 1;
229 >      simError();
230 >    }
231 >
232 >    return simParams;
233 >  }
234 >  
235 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
236 >                                  bool loadInitCoords) {
237 >
238 >    const int bufferSize = 65535;
239 >    char buffer[bufferSize];
240 >    int lineNo = 0;
241 >    std::string mdRawData;
242 >    int metaDataBlockStart = -1;
243 >    int metaDataBlockEnd = -1;
244 >    int i;
245 >    int mdOffset;
246 >
247 > #ifdef IS_MPI            
248 >    const int masterNode = 0;
249 >    if (worldRank == masterNode) {
250 > #endif
251 >
252 >      std::ifstream mdFile_(mdFileName.c_str());
253 >      
254 >      if (mdFile_.fail()) {
255 >        sprintf(painCave.errMsg,
256 >                "SimCreator: Cannot open file: %s\n",
257 >                mdFileName.c_str());
258 >        painCave.isFatal = 1;
259 >        simError();
260 >      }
261 >
262 >      mdFile_.getline(buffer, bufferSize);
263 >      ++lineNo;
264 >      std::string line = trimLeftCopy(buffer);
265 >      i = CaseInsensitiveFind(line, "<OpenMD");
266 >      if (static_cast<size_t>(i) == string::npos) {
267 >        // try the older file strings to see if that works:
268 >        i = CaseInsensitiveFind(line, "<OOPSE");
269 >      }
270 >      
271 >      if (static_cast<size_t>(i) == string::npos) {
272 >        // still no luck!
273 >        sprintf(painCave.errMsg,
274 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
275 >                mdFileName.c_str());
276 >        painCave.isFatal = 1;
277 >        simError();
278 >      }
279 >
280 >      //scan through the input stream and find MetaData tag        
281 >      while(mdFile_.getline(buffer, bufferSize)) {
282 >        ++lineNo;
283 >        
284 >        std::string line = trimLeftCopy(buffer);
285 >        if (metaDataBlockStart == -1) {
286 >          i = CaseInsensitiveFind(line, "<MetaData>");
287 >          if (i != string::npos) {
288 >            metaDataBlockStart = lineNo;
289 >            mdOffset = mdFile_.tellg();
290 >          }
291 >        } else {
292 >          i = CaseInsensitiveFind(line, "</MetaData>");
293 >          if (i != string::npos) {
294 >            metaDataBlockEnd = lineNo;
295 >          }
296 >        }
297 >      }
298 >
299 >      if (metaDataBlockStart == -1) {
300 >        sprintf(painCave.errMsg,
301 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
302 >                mdFileName.c_str());
303 >        painCave.isFatal = 1;
304 >        simError();
305 >      }
306 >      if (metaDataBlockEnd == -1) {
307 >        sprintf(painCave.errMsg,
308 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
309 >                mdFileName.c_str());
310 >        painCave.isFatal = 1;
311 >        simError();
312 >      }
313 >        
314 >      mdFile_.clear();
315 >      mdFile_.seekg(0);
316 >      mdFile_.seekg(mdOffset);
317 >
318 >      mdRawData.clear();
319 >
320 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
321 >        mdFile_.getline(buffer, bufferSize);
322 >        mdRawData += buffer;
323 >        mdRawData += "\n";
324 >      }
325 >
326 >      mdFile_.close();
327 >
328 > #ifdef IS_MPI
329 >    }
330 > #endif
331 >
332 >    std::stringstream rawMetaDataStream(mdRawData);
333 >
334 >    //parse meta-data file
335 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, metaDataBlockStart+1);
336 >    
337 >    //create the force field
338 >    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(simParams->getForceField());
339 >
340 >    if (ff == NULL) {
341 >      sprintf(painCave.errMsg,
342 >              "ForceField Factory can not create %s force field\n",
343 >              simParams->getForceField().c_str());
344 >      painCave.isFatal = 1;
345 >      simError();
346 >    }
347 >    
348 >    if (simParams->haveForceFieldFileName()) {
349 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
350 >    }
351 >    
352 >    std::string forcefieldFileName;
353 >    forcefieldFileName = ff->getForceFieldFileName();
354 >    
355 >    if (simParams->haveForceFieldVariant()) {
356 >      //If the force field has variant, the variant force field name will be
357 >      //Base.variant.frc. For exampel EAM.u6.frc
358 >      
359 >      std::string variant = simParams->getForceFieldVariant();
360 >      
361 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
362 >      variant = "." + variant;
363 >      if (pos != std::string::npos) {
364 >        forcefieldFileName.insert(pos, variant);
365 >      } else {
366 >        //If the default force field file name does not containt .frc suffix, just append the .variant
367 >        forcefieldFileName.append(variant);
368 >      }
369 >    }
370 >    
371 >    ff->parse(forcefieldFileName);
372 >    ff->setFortranForceOptions();
373 >    //create SimInfo
374 >    SimInfo * info = new SimInfo(ff, simParams);
375 >
376 >    info->setRawMetaData(mdRawData);
377 >    
378 >    //gather parameters (SimCreator only retrieves part of the
379 >    //parameters)
380 >    gatherParameters(info, mdFileName);
381 >    
382 >    //divide the molecules and determine the global index of molecules
383 > #ifdef IS_MPI
384 >    divideMolecules(info);
385 > #endif
386 >    
387 >    //create the molecules
388 >    createMolecules(info);
389 >    
390 >    
391 >    //allocate memory for DataStorage(circular reference, need to
392 >    //break it)
393 >    info->setSnapshotManager(new SimSnapshotManager(info));
394 >    
395 >    //set the global index of atoms, rigidbodies and cutoffgroups
396 >    //(only need to be set once, the global index will never change
397 >    //again). Local indices of atoms and rigidbodies are already set
398 >    //by MoleculeCreator class which actually delegates the
399 >    //responsibility to LocalIndexManager.
400 >    setGlobalIndex(info);
401 >    
402 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
403 >    //method, at that point atoms don't have the global index yet
404 >    //(their global index are all initialized to -1).  Therefore we
405 >    //have to call addInteractionPairs explicitly here. A way to work
406 >    //around is that we can determine the beginning global indices of
407 >    //atoms before they get created.
408 >    SimInfo::MoleculeIterator mi;
409 >    Molecule* mol;
410 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
411 >      info->addInteractionPairs(mol);
412 >    }
413 >    
414 >    if (loadInitCoords)
415 >      loadCoordinates(info, mdFileName);    
416 >    
417 >    return info;
418 >  }
419 >  
420 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
421 >    
422 >    //figure out the output file names
423 >    std::string prefix;
424 >    
425 > #ifdef IS_MPI
426 >    
427 >    if (worldRank == 0) {
428 > #endif // is_mpi
429 >      Globals * simParams = info->getSimParams();
430 >      if (simParams->haveFinalConfig()) {
431 >        prefix = getPrefix(simParams->getFinalConfig());
432 >      } else {
433 >        prefix = getPrefix(mdfile);
434 >      }
435 >      
436 >      info->setFinalConfigFileName(prefix + ".eor");
437 >      info->setDumpFileName(prefix + ".dump");
438 >      info->setStatFileName(prefix + ".stat");
439 >      info->setRestFileName(prefix + ".zang");
440 >      
441 > #ifdef IS_MPI
442 >      
443 >    }
444 >    
445 > #endif
446 >    
447 >  }
448 >  
449 > #ifdef IS_MPI
450 >  void SimCreator::divideMolecules(SimInfo *info) {
451 >    RealType numerator;
452 >    RealType denominator;
453 >    RealType precast;
454 >    RealType x;
455 >    RealType y;
456 >    RealType a;
457 >    int old_atoms;
458 >    int add_atoms;
459 >    int new_atoms;
460 >    int nTarget;
461 >    int done;
462 >    int i;
463 >    int j;
464 >    int loops;
465 >    int which_proc;
466 >    int nProcessors;
467 >    std::vector<int> atomsPerProc;
468 >    int nGlobalMols = info->getNGlobalMolecules();
469 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
470 >    
471 >    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
472 >    
473 >    if (nProcessors > nGlobalMols) {
474 >      sprintf(painCave.errMsg,
475 >              "nProcessors (%d) > nMol (%d)\n"
476 >              "\tThe number of processors is larger than\n"
477 >              "\tthe number of molecules.  This will not result in a \n"
478 >              "\tusable division of atoms for force decomposition.\n"
479 >              "\tEither try a smaller number of processors, or run the\n"
480 >              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
481 >      
482 >      painCave.isFatal = 1;
483 >      simError();
484 >    }
485 >    
486 >    int seedValue;
487 >    Globals * simParams = info->getSimParams();
488 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
489 >    if (simParams->haveSeed()) {
490 >      seedValue = simParams->getSeed();
491 >      myRandom = new SeqRandNumGen(seedValue);
492 >    }else {
493 >      myRandom = new SeqRandNumGen();
494 >    }  
495 >    
496 >    
497 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
498 >    
499 >    //initialize atomsPerProc
500 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
501 >    
502 >    if (worldRank == 0) {
503 >      numerator = info->getNGlobalAtoms();
504 >      denominator = nProcessors;
505 >      precast = numerator / denominator;
506 >      nTarget = (int)(precast + 0.5);
507 >      
508 >      for(i = 0; i < nGlobalMols; i++) {
509 >        done = 0;
510 >        loops = 0;
511 >        
512 >        while (!done) {
513 >          loops++;
514 >          
515 >          // Pick a processor at random
516 >          
517 >          which_proc = (int) (myRandom->rand() * nProcessors);
518 >          
519 >          //get the molecule stamp first
520 >          int stampId = info->getMoleculeStampId(i);
521 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
522 >          
523 >          // How many atoms does this processor have so far?
524 >          old_atoms = atomsPerProc[which_proc];
525 >          add_atoms = moleculeStamp->getNAtoms();
526 >          new_atoms = old_atoms + add_atoms;
527 >          
528 >          // If we've been through this loop too many times, we need
529 >          // to just give up and assign the molecule to this processor
530 >          // and be done with it.
531 >          
532 >          if (loops > 100) {
533 >            sprintf(painCave.errMsg,
534 >                    "I've tried 100 times to assign molecule %d to a "
535 >                    " processor, but can't find a good spot.\n"
536 >                    "I'm assigning it at random to processor %d.\n",
537 >                    i, which_proc);
538 >            
539 >            painCave.isFatal = 0;
540 >            simError();
541 >            
542 >            molToProcMap[i] = which_proc;
543 >            atomsPerProc[which_proc] += add_atoms;
544 >            
545 >            done = 1;
546 >            continue;
547 >          }
548 >          
549 >          // If we can add this molecule to this processor without sending
550 >          // it above nTarget, then go ahead and do it:
551 >          
552 >          if (new_atoms <= nTarget) {
553 >            molToProcMap[i] = which_proc;
554 >            atomsPerProc[which_proc] += add_atoms;
555 >            
556 >            done = 1;
557 >            continue;
558 >          }
559 >          
560 >          // The only situation left is when new_atoms > nTarget.  We
561 >          // want to accept this with some probability that dies off the
562 >          // farther we are from nTarget
563 >          
564 >          // roughly:  x = new_atoms - nTarget
565 >          //           Pacc(x) = exp(- a * x)
566 >          // where a = penalty / (average atoms per molecule)
567 >          
568 >          x = (RealType)(new_atoms - nTarget);
569 >          y = myRandom->rand();
570 >          
571 >          if (y < exp(- a * x)) {
572 >            molToProcMap[i] = which_proc;
573 >            atomsPerProc[which_proc] += add_atoms;
574 >            
575 >            done = 1;
576 >            continue;
577 >          } else {
578 >            continue;
579 >          }
580 >        }
581 >      }
582 >      
583 >      delete myRandom;
584 >      
585 >      // Spray out this nonsense to all other processors:
586 >      
587 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
588 >    } else {
589 >      
590 >      // Listen to your marching orders from processor 0:
591 >      
592 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
593 >    }
594 >    
595 >    info->setMolToProcMap(molToProcMap);
596 >    sprintf(checkPointMsg,
597 >            "Successfully divided the molecules among the processors.\n");
598 >    errorCheckPoint();
599 >  }
600 >  
601 > #endif
602 >  
603 >  void SimCreator::createMolecules(SimInfo *info) {
604 >    MoleculeCreator molCreator;
605 >    int stampId;
606 >    
607 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
608 >      
609 > #ifdef IS_MPI
610 >      
611 >      if (info->getMolToProc(i) == worldRank) {
612 > #endif
613 >        
614 >        stampId = info->getMoleculeStampId(i);
615 >        Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
616 >                                                   stampId, i, info->getLocalIndexManager());
617 >        
618 >        info->addMolecule(mol);
619 >        
620 > #ifdef IS_MPI
621 >        
622 >      }
623 >      
624 > #endif
625 >      
626 >    } //end for(int i=0)  
627 >  }
628 >    
629 >  void SimCreator::setGlobalIndex(SimInfo *info) {
630 >    SimInfo::MoleculeIterator mi;
631 >    Molecule::AtomIterator ai;
632 >    Molecule::RigidBodyIterator ri;
633 >    Molecule::CutoffGroupIterator ci;
634 >    Molecule::IntegrableObjectIterator  ioi;
635 >    Molecule * mol;
636 >    Atom * atom;
637 >    RigidBody * rb;
638 >    CutoffGroup * cg;
639 >    int beginAtomIndex;
640 >    int beginRigidBodyIndex;
641 >    int beginCutoffGroupIndex;
642 >    int nGlobalAtoms = info->getNGlobalAtoms();
643 >
644 >    /**@todo fixme */
645 > #ifndef IS_MPI
646 >    
647 >    beginAtomIndex = 0;
648 >    beginRigidBodyIndex = 0;
649 >    beginCutoffGroupIndex = 0;
650 >    
651 > #else
652 >    
653 >    int nproc;
654 >    int myNode;
655 >    
656 >    myNode = worldRank;
657 >    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
658 >    
659 >    std::vector < int > tmpAtomsInProc(nproc, 0);
660 >    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
661 >    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
662 >    std::vector < int > NumAtomsInProc(nproc, 0);
663 >    std::vector < int > NumRigidBodiesInProc(nproc, 0);
664 >    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
665 >    
666 >    tmpAtomsInProc[myNode] = info->getNAtoms();
667 >    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
668 >    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
669 >    
670 >    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
671 >    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
672 >                  MPI_SUM, MPI_COMM_WORLD);
673 >    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
674 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
675 >    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
676 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
677 >    
678 >    beginAtomIndex = 0;
679 >    beginRigidBodyIndex = 0;
680 >    beginCutoffGroupIndex = 0;
681 >    
682 >    for(int i = 0; i < myNode; i++) {
683 >      beginAtomIndex += NumAtomsInProc[i];
684 >      beginRigidBodyIndex += NumRigidBodiesInProc[i];
685 >      beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
686 >    }
687 >    
688 > #endif
689 >    
690 >    //rigidbody's index begins right after atom's
691 >    beginRigidBodyIndex += info->getNGlobalAtoms();
692 >    
693 >    for(mol = info->beginMolecule(mi); mol != NULL;
694 >        mol = info->nextMolecule(mi)) {
695 >      
696 >      //local index(index in DataStorge) of atom is important
697 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
698 >        atom->setGlobalIndex(beginAtomIndex++);
699 >      }
700 >      
701 >      for(rb = mol->beginRigidBody(ri); rb != NULL;
702 >          rb = mol->nextRigidBody(ri)) {
703 >        rb->setGlobalIndex(beginRigidBodyIndex++);
704 >      }
705 >      
706 >      //local index of cutoff group is trivial, it only depends on the order of travesing
707 >      for(cg = mol->beginCutoffGroup(ci); cg != NULL;
708 >          cg = mol->nextCutoffGroup(ci)) {
709 >        cg->setGlobalIndex(beginCutoffGroupIndex++);
710 >      }
711 >    }
712 >    
713 >    //fill globalGroupMembership
714 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
715 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
716 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
717 >        
718 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
719 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
720 >        }
721 >        
722 >      }      
723 >    }
724 >    
725 > #ifdef IS_MPI    
726 >    // Since the globalGroupMembership has been zero filled and we've only
727 >    // poked values into the atoms we know, we can do an Allreduce
728 >    // to get the full globalGroupMembership array (We think).
729 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
730 >    // docs said we could.
731 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
732 >    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
733 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
734 >    info->setGlobalGroupMembership(tmpGroupMembership);
735 > #else
736 >    info->setGlobalGroupMembership(globalGroupMembership);
737 > #endif
738 >    
739 >    //fill molMembership
740 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
741 >    
742 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
743 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
745 >      }
746 >    }
747 >    
748 > #ifdef IS_MPI
749 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
750 >    
751 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
752 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
753 >    
754 >    info->setGlobalMolMembership(tmpMolMembership);
755 > #else
756 >    info->setGlobalMolMembership(globalMolMembership);
757 > #endif
758 >
759 >    // nIOPerMol holds the number of integrable objects per molecule
760 >    // here the molecules are listed by their global indices.
761 >
762 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
763 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
764 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
765 >    }
766 >    
767 > #ifdef IS_MPI
768 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
769 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
770 >                  info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
771 > #else
772 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
773 > #endif    
774 >
775 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
776 >    
777 >    int startingIndex = 0;
778 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
779 >      startingIOIndexForMol[i] = startingIndex;
780 >      startingIndex += numIntegrableObjectsPerMol[i];
781 >    }
782 >    
783 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
784 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
785 >      int myGlobalIndex = mol->getGlobalIndex();
786 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
787 >      for (StuntDouble* integrableObject = mol->beginIntegrableObject(ioi); integrableObject != NULL;
788 >           integrableObject = mol->nextIntegrableObject(ioi)) {
789 >        integrableObject->setGlobalIntegrableObjectIndex(globalIO);
790 >        IOIndexToIntegrableObject[globalIO] = integrableObject;
791 >        globalIO++;
792 >      }
793 >    }
794 >    
795 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
796 >    
797 >  }
798 >  
799 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
800 >    Globals* simParams;
801 >    simParams = info->getSimParams();
802 >    
803 >    
804 >    DumpReader reader(info, mdFileName);
805 >    int nframes = reader.getNFrames();
806 >    
807 >    if (nframes > 0) {
808 >      reader.readFrame(nframes - 1);
809 >    } else {
810 >      //invalid initial coordinate file
811 >      sprintf(painCave.errMsg,
812 >              "Initial configuration file %s should at least contain one frame\n",
813 >              mdFileName.c_str());
814 >      painCave.isFatal = 1;
815 >      simError();
816 >    }
817 >    
818 >    //copy the current snapshot to previous snapshot
819 >    info->getSnapshotManager()->advance();
820 >  }
821 >  
822 > } //end namespace OpenMD
823 >
824 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines