ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1801 by gezelter, Mon Oct 1 18:21:15 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 55 | Line 56
56   #include "brains/SimCreator.hpp"
57   #include "brains/SimSnapshotManager.hpp"
58   #include "io/DumpReader.hpp"
59 < #include "UseTheForce/ForceFieldFactory.hpp"
59 > #include "brains/ForceField.hpp"
60   #include "utils/simError.h"
61   #include "utils/StringUtils.hpp"
62   #include "math/SeqRandNumGen.hpp"
# Line 75 | Line 76
76   #include "antlr/NoViableAltForCharException.hpp"
77   #include "antlr/NoViableAltException.hpp"
78  
79 + #include "types/DirectionalAdapter.hpp"
80 + #include "types/MultipoleAdapter.hpp"
81 + #include "types/EAMAdapter.hpp"
82 + #include "types/SuttonChenAdapter.hpp"
83 + #include "types/PolarizableAdapter.hpp"
84 + #include "types/FixedChargeAdapter.hpp"
85 + #include "types/FluctuatingChargeAdapter.hpp"
86 +
87   #ifdef IS_MPI
88 + #include "mpi.h"
89   #include "math/ParallelRandNumGen.hpp"
90   #endif
91  
92   namespace OpenMD {
93    
94 <  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int startOfMetaDataBlock ){
94 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
95      Globals* simParams = NULL;
96      try {
97  
# Line 90 | Line 100 | namespace OpenMD {
100   #ifdef IS_MPI            
101        int streamSize;
102        const int masterNode = 0;
103 <      int commStatus;
103 >
104        if (worldRank == masterNode) {
105 < #endif
106 <                
105 >        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
106 > #endif                
107          SimplePreprocessor preprocessor;
108 <        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
108 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock,
109 >                                ppStream);
110                  
111   #ifdef IS_MPI            
112          //brocasting the stream size
113          streamSize = ppStream.str().size() +1;
114 <        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
115 <
116 <        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
106 <            
114 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
115 >        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
116 >                              streamSize, MPI::CHAR, masterNode);
117                  
118        } else {
119 +
120 +        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
121 +
122          //get stream size
123 <        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
123 >        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
124  
125          char* buf = new char[streamSize];
126          assert(buf);
127                  
128          //receive file content
129 <        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
129 >        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
130                  
131          ppStream.str(buf);
132          delete [] buf;
# Line 229 | Line 242 | namespace OpenMD {
242        simError();
243      }
244  
245 +    simParams->setMDfileVersion(mdFileVersion);
246      return simParams;
247    }
248    
249    SimInfo*  SimCreator::createSim(const std::string & mdFileName,
250                                    bool loadInitCoords) {
251 <
251 >    
252      const int bufferSize = 65535;
253      char buffer[bufferSize];
254      int lineNo = 0;
# Line 242 | Line 256 | namespace OpenMD {
256      int metaDataBlockStart = -1;
257      int metaDataBlockEnd = -1;
258      int i;
259 <    int mdOffset;
259 >    streamoff mdOffset(0);
260 >    int mdFileVersion;
261  
262 +
263   #ifdef IS_MPI            
264      const int masterNode = 0;
265      if (worldRank == masterNode) {
266   #endif
267  
268 <      std::ifstream mdFile_(mdFileName.c_str());
268 >      std::ifstream mdFile_;
269 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
270        
271        if (mdFile_.fail()) {
272          sprintf(painCave.errMsg,
# Line 276 | Line 293 | namespace OpenMD {
293          painCave.isFatal = 1;
294          simError();
295        }
296 +      
297 +      // found the correct opening string, now try to get the file
298 +      // format version number.
299  
300 +      StringTokenizer tokenizer(line, "=<> \t\n\r");
301 +      std::string fileType = tokenizer.nextToken();
302 +      toUpper(fileType);
303 +
304 +      mdFileVersion = 0;
305 +
306 +      if (fileType == "OPENMD") {
307 +        while (tokenizer.hasMoreTokens()) {
308 +          std::string token(tokenizer.nextToken());
309 +          toUpper(token);
310 +          if (token == "VERSION") {
311 +            mdFileVersion = tokenizer.nextTokenAsInt();
312 +            break;
313 +          }
314 +        }
315 +      }
316 +            
317        //scan through the input stream and find MetaData tag        
318        while(mdFile_.getline(buffer, bufferSize)) {
319          ++lineNo;
# Line 332 | Line 369 | namespace OpenMD {
369      std::stringstream rawMetaDataStream(mdRawData);
370  
371      //parse meta-data file
372 <    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, metaDataBlockStart+1);
372 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
373 >                                   metaDataBlockStart + 1);
374      
375      //create the force field
376 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(simParams->getForceField());
376 >    ForceField * ff = new ForceField(simParams->getForceField());
377  
378      if (ff == NULL) {
379        sprintf(painCave.errMsg,
# Line 369 | Line 407 | namespace OpenMD {
407      }
408      
409      ff->parse(forcefieldFileName);
372    ff->setFortranForceOptions();
410      //create SimInfo
411      SimInfo * info = new SimInfo(ff, simParams);
412  
# Line 387 | Line 424 | namespace OpenMD {
424      //create the molecules
425      createMolecules(info);
426      
427 <    
427 >    //find the storage layout
428 >
429 >    int storageLayout = computeStorageLayout(info);
430 >
431      //allocate memory for DataStorage(circular reference, need to
432      //break it)
433 <    info->setSnapshotManager(new SimSnapshotManager(info));
433 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
434      
435      //set the global index of atoms, rigidbodies and cutoffgroups
436      //(only need to be set once, the global index will never change
# Line 413 | Line 453 | namespace OpenMD {
453      
454      if (loadInitCoords)
455        loadCoordinates(info, mdFileName);    
416    
456      return info;
457    }
458    
# Line 460 | Line 499 | namespace OpenMD {
499      int nTarget;
500      int done;
501      int i;
463    int j;
502      int loops;
503      int which_proc;
504      int nProcessors;
# Line 468 | Line 506 | namespace OpenMD {
506      int nGlobalMols = info->getNGlobalMolecules();
507      std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
508      
509 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
509 >    nProcessors = MPI::COMM_WORLD.Get_size();
510      
511      if (nProcessors > nGlobalMols) {
512        sprintf(painCave.errMsg,
# Line 506 | Line 544 | namespace OpenMD {
544        nTarget = (int)(precast + 0.5);
545        
546        for(i = 0; i < nGlobalMols; i++) {
547 +
548          done = 0;
549          loops = 0;
550          
# Line 530 | Line 569 | namespace OpenMD {
569            // and be done with it.
570            
571            if (loops > 100) {
572 +
573              sprintf(painCave.errMsg,
574 <                    "I've tried 100 times to assign molecule %d to a "
575 <                    " processor, but can't find a good spot.\n"
576 <                    "I'm assigning it at random to processor %d.\n",
574 >                    "There have been 100 attempts to assign molecule %d to an\n"
575 >                    "\tunderworked processor, but there's no good place to\n"
576 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
577                      i, which_proc);
578 <            
578 >          
579              painCave.isFatal = 0;
580 +            painCave.severity = OPENMD_INFO;
581              simError();
582              
583              molToProcMap[i] = which_proc;
# Line 581 | Line 622 | namespace OpenMD {
622        }
623        
624        delete myRandom;
625 <      
625 >
626        // Spray out this nonsense to all other processors:
627 <      
587 <      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
627 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
628      } else {
629        
630        // Listen to your marching orders from processor 0:
631 <      
632 <      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
631 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
632 >
633      }
634      
635      info->setMolToProcMap(molToProcMap);
# Line 612 | Line 652 | namespace OpenMD {
652   #endif
653          
654          stampId = info->getMoleculeStampId(i);
655 <        Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
656 <                                                   stampId, i, info->getLocalIndexManager());
655 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
656 >                                                   info->getMoleculeStamp(stampId),
657 >                                                   stampId, i,
658 >                                                   info->getLocalIndexManager());
659          
660          info->addMolecule(mol);
661          
# Line 626 | Line 668 | namespace OpenMD {
668      } //end for(int i=0)  
669    }
670      
671 +  int SimCreator::computeStorageLayout(SimInfo* info) {
672 +
673 +    Globals* simParams = info->getSimParams();
674 +    int nRigidBodies = info->getNGlobalRigidBodies();
675 +    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
676 +    set<AtomType*>::iterator i;
677 +    bool hasDirectionalAtoms = false;
678 +    bool hasFixedCharge = false;
679 +    bool hasMultipoles = false;    
680 +    bool hasPolarizable = false;    
681 +    bool hasFluctuatingCharge = false;    
682 +    bool hasMetallic = false;
683 +    int storageLayout = 0;
684 +    storageLayout |= DataStorage::dslPosition;
685 +    storageLayout |= DataStorage::dslVelocity;
686 +    storageLayout |= DataStorage::dslForce;
687 +
688 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
689 +
690 +      DirectionalAdapter da = DirectionalAdapter( (*i) );
691 +      MultipoleAdapter ma = MultipoleAdapter( (*i) );
692 +      EAMAdapter ea = EAMAdapter( (*i) );
693 +      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
694 +      PolarizableAdapter pa = PolarizableAdapter( (*i) );
695 +      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
696 +      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
697 +
698 +      if (da.isDirectional()){
699 +        hasDirectionalAtoms = true;
700 +      }
701 +      if (ma.isMultipole()){
702 +        hasMultipoles = true;
703 +      }
704 +      if (ea.isEAM() || sca.isSuttonChen()){
705 +        hasMetallic = true;
706 +      }
707 +      if ( fca.isFixedCharge() ){
708 +        hasFixedCharge = true;
709 +      }
710 +      if ( fqa.isFluctuatingCharge() ){
711 +        hasFluctuatingCharge = true;
712 +      }
713 +      if ( pa.isPolarizable() ){
714 +        hasPolarizable = true;
715 +      }
716 +    }
717 +    
718 +    if (nRigidBodies > 0 || hasDirectionalAtoms) {
719 +      storageLayout |= DataStorage::dslAmat;
720 +      if(storageLayout & DataStorage::dslVelocity) {
721 +        storageLayout |= DataStorage::dslAngularMomentum;
722 +      }
723 +      if (storageLayout & DataStorage::dslForce) {
724 +        storageLayout |= DataStorage::dslTorque;
725 +      }
726 +    }
727 +    if (hasMultipoles) {
728 +      storageLayout |= DataStorage::dslElectroFrame;
729 +    }
730 +    if (hasFixedCharge || hasFluctuatingCharge) {
731 +      storageLayout |= DataStorage::dslSkippedCharge;
732 +    }
733 +    if (hasMetallic) {
734 +      storageLayout |= DataStorage::dslDensity;
735 +      storageLayout |= DataStorage::dslFunctional;
736 +      storageLayout |= DataStorage::dslFunctionalDerivative;
737 +    }
738 +    if (hasPolarizable) {
739 +      storageLayout |= DataStorage::dslElectricField;
740 +    }
741 +    if (hasFluctuatingCharge){
742 +      storageLayout |= DataStorage::dslFlucQPosition;
743 +      if(storageLayout & DataStorage::dslVelocity) {
744 +        storageLayout |= DataStorage::dslFlucQVelocity;
745 +      }
746 +      if (storageLayout & DataStorage::dslForce) {
747 +        storageLayout |= DataStorage::dslFlucQForce;
748 +      }
749 +    }
750 +    
751 +    // if the user has asked for them, make sure we've got the memory for the
752 +    // objects defined.
753 +
754 +    if (simParams->getOutputParticlePotential()) {
755 +      storageLayout |= DataStorage::dslParticlePot;
756 +    }
757 +
758 +    if (simParams->havePrintHeatFlux()) {
759 +      if (simParams->getPrintHeatFlux()) {
760 +        storageLayout |= DataStorage::dslParticlePot;
761 +      }
762 +    }
763 +
764 +    if (simParams->getOutputElectricField()) {
765 +      storageLayout |= DataStorage::dslElectricField;
766 +    }
767 +    if (simParams->getOutputFluctuatingCharges()) {
768 +      storageLayout |= DataStorage::dslFlucQPosition;
769 +      storageLayout |= DataStorage::dslFlucQVelocity;
770 +      storageLayout |= DataStorage::dslFlucQForce;
771 +    }
772 +
773 +    return storageLayout;
774 +  }
775 +
776    void SimCreator::setGlobalIndex(SimInfo *info) {
777      SimInfo::MoleculeIterator mi;
778      Molecule::AtomIterator ai;
# Line 640 | Line 787 | namespace OpenMD {
787      int beginRigidBodyIndex;
788      int beginCutoffGroupIndex;
789      int nGlobalAtoms = info->getNGlobalAtoms();
643
644    /**@todo fixme */
645 #ifndef IS_MPI
790      
791      beginAtomIndex = 0;
648    beginRigidBodyIndex = 0;
649    beginCutoffGroupIndex = 0;
650    
651 #else
652    
653    int nproc;
654    int myNode;
655    
656    myNode = worldRank;
657    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
658    
659    std::vector < int > tmpAtomsInProc(nproc, 0);
660    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
661    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
662    std::vector < int > NumAtomsInProc(nproc, 0);
663    std::vector < int > NumRigidBodiesInProc(nproc, 0);
664    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
665    
666    tmpAtomsInProc[myNode] = info->getNAtoms();
667    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
668    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
669    
670    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
671    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
672                  MPI_SUM, MPI_COMM_WORLD);
673    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
674                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
675    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
676                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
677    
678    beginAtomIndex = 0;
679    beginRigidBodyIndex = 0;
680    beginCutoffGroupIndex = 0;
681    
682    for(int i = 0; i < myNode; i++) {
683      beginAtomIndex += NumAtomsInProc[i];
684      beginRigidBodyIndex += NumRigidBodiesInProc[i];
685      beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
686    }
687    
688 #endif
689    
792      //rigidbody's index begins right after atom's
793 <    beginRigidBodyIndex += info->getNGlobalAtoms();
794 <    
795 <    for(mol = info->beginMolecule(mi); mol != NULL;
796 <        mol = info->nextMolecule(mi)) {
793 >    beginRigidBodyIndex = info->getNGlobalAtoms();
794 >    beginCutoffGroupIndex = 0;
795 >
796 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
797        
798 <      //local index(index in DataStorge) of atom is important
799 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
800 <        atom->setGlobalIndex(beginAtomIndex++);
798 > #ifdef IS_MPI      
799 >      if (info->getMolToProc(i) == worldRank) {
800 > #endif        
801 >        // stuff to do if I own this molecule
802 >        mol = info->getMoleculeByGlobalIndex(i);
803 >
804 >        //local index(index in DataStorge) of atom is important
805 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
806 >          atom->setGlobalIndex(beginAtomIndex++);
807 >        }
808 >        
809 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
810 >            rb = mol->nextRigidBody(ri)) {
811 >          rb->setGlobalIndex(beginRigidBodyIndex++);
812 >        }
813 >        
814 >        //local index of cutoff group is trivial, it only depends on
815 >        //the order of travesing
816 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
817 >            cg = mol->nextCutoffGroup(ci)) {
818 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
819 >        }        
820 >        
821 > #ifdef IS_MPI        
822 >      }  else {
823 >
824 >        // stuff to do if I don't own this molecule
825 >        
826 >        int stampId = info->getMoleculeStampId(i);
827 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
828 >
829 >        beginAtomIndex += stamp->getNAtoms();
830 >        beginRigidBodyIndex += stamp->getNRigidBodies();
831 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
832        }
833 <      
834 <      for(rb = mol->beginRigidBody(ri); rb != NULL;
835 <          rb = mol->nextRigidBody(ri)) {
836 <        rb->setGlobalIndex(beginRigidBodyIndex++);
704 <      }
705 <      
706 <      //local index of cutoff group is trivial, it only depends on the order of travesing
707 <      for(cg = mol->beginCutoffGroup(ci); cg != NULL;
708 <          cg = mol->nextCutoffGroup(ci)) {
709 <        cg->setGlobalIndex(beginCutoffGroupIndex++);
710 <      }
711 <    }
712 <    
833 > #endif          
834 >
835 >    } //end for(int i=0)  
836 >
837      //fill globalGroupMembership
838      std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
839      for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
# Line 721 | Line 845 | namespace OpenMD {
845          
846        }      
847      }
848 <    
848 >  
849   #ifdef IS_MPI    
850      // Since the globalGroupMembership has been zero filled and we've only
851      // poked values into the atoms we know, we can do an Allreduce
# Line 729 | Line 853 | namespace OpenMD {
853      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
854      // docs said we could.
855      std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
856 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
857 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
856 >    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
857 >                              &tmpGroupMembership[0], nGlobalAtoms,
858 >                              MPI::INT, MPI::SUM);
859      info->setGlobalGroupMembership(tmpGroupMembership);
860   #else
861      info->setGlobalGroupMembership(globalGroupMembership);
# Line 747 | Line 872 | namespace OpenMD {
872      
873   #ifdef IS_MPI
874      std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
875 +    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
876 +                              nGlobalAtoms,
877 +                              MPI::INT, MPI::SUM);
878      
751    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
752                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
753    
879      info->setGlobalMolMembership(tmpMolMembership);
880   #else
881      info->setGlobalMolMembership(globalMolMembership);
# Line 766 | Line 891 | namespace OpenMD {
891      
892   #ifdef IS_MPI
893      std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
894 <    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
895 <                  info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
894 >    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
895 >                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
896   #else
897      std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
898   #endif    
# Line 784 | Line 909 | namespace OpenMD {
909      for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
910        int myGlobalIndex = mol->getGlobalIndex();
911        int globalIO = startingIOIndexForMol[myGlobalIndex];
912 <      for (StuntDouble* integrableObject = mol->beginIntegrableObject(ioi); integrableObject != NULL;
913 <           integrableObject = mol->nextIntegrableObject(ioi)) {
914 <        integrableObject->setGlobalIntegrableObjectIndex(globalIO);
915 <        IOIndexToIntegrableObject[globalIO] = integrableObject;
912 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
913 >           sd = mol->nextIntegrableObject(ioi)) {
914 >        sd->setGlobalIntegrableObjectIndex(globalIO);
915 >        IOIndexToIntegrableObject[globalIO] = sd;
916          globalIO++;
917        }
918      }
919 <    
919 >      
920      info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
921      
922    }
923    
924    void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
925 <    Globals* simParams;
801 <    simParams = info->getSimParams();
802 <    
803 <    
925 >
926      DumpReader reader(info, mdFileName);
927      int nframes = reader.getNFrames();
928 <    
928 >
929      if (nframes > 0) {
930        reader.readFrame(nframes - 1);
931      } else {
# Line 814 | Line 936 | namespace OpenMD {
936        painCave.isFatal = 1;
937        simError();
938      }
817    
939      //copy the current snapshot to previous snapshot
940      info->getSnapshotManager()->advance();
941    }

Comparing trunk/src/brains/SimCreator.cpp (property svn:keywords):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1801 by gezelter, Mon Oct 1 18:21:15 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines