ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC vs.
Revision 1983 by gezelter, Tue Apr 15 20:36:19 2014 UTC

# Line 1 | Line 1
1   /*
2 < * copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 44 | Line 44
44   * @file SimCreator.cpp
45   * @author tlin
46   * @date 11/03/2004
47 * @time 13:51am
47   * @version 1.0
48   */
49 +
50 + #ifdef IS_MPI
51 + #include "mpi.h"
52 + #include "math/ParallelRandNumGen.hpp"
53 + #endif
54 +
55   #include <exception>
56   #include <iostream>
57   #include <sstream>
# Line 59 | Line 64
64   #include "brains/ForceField.hpp"
65   #include "utils/simError.h"
66   #include "utils/StringUtils.hpp"
67 + #include "utils/Revision.hpp"
68   #include "math/SeqRandNumGen.hpp"
69   #include "mdParser/MDLexer.hpp"
70   #include "mdParser/MDParser.hpp"
# Line 84 | Line 90
90   #include "types/FixedChargeAdapter.hpp"
91   #include "types/FluctuatingChargeAdapter.hpp"
92  
87 #ifdef IS_MPI
88 #include "mpi.h"
89 #include "math/ParallelRandNumGen.hpp"
90 #endif
93  
94   namespace OpenMD {
95    
# Line 102 | Line 104 | namespace OpenMD {
104        const int masterNode = 0;
105  
106        if (worldRank == masterNode) {
107 <        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
107 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
108   #endif                
109          SimplePreprocessor preprocessor;
110 <        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock,
111 <                                ppStream);
110 >        preprocessor.preprocess(rawMetaDataStream, filename,
111 >                                startOfMetaDataBlock, ppStream);
112                  
113   #ifdef IS_MPI            
114 <        //brocasting the stream size
114 >        //broadcasting the stream size
115          streamSize = ppStream.str().size() +1;
116 <        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
117 <        MPI::COMM_WORLD.Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 <                              streamSize, MPI::CHAR, masterNode);
117 <                
116 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
117 >        MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())),
118 >                  streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
119        } else {
120  
121 <        MPI::COMM_WORLD.Bcast(&mdFileVersion, 1, MPI::INT, masterNode);
121 >        MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
122  
123          //get stream size
124 <        MPI::COMM_WORLD.Bcast(&streamSize, 1, MPI::LONG, masterNode);
124 <
124 >        MPI_Bcast(&streamSize, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
125          char* buf = new char[streamSize];
126          assert(buf);
127                  
128          //receive file content
129 <        MPI::COMM_WORLD.Bcast(buf, streamSize, MPI::CHAR, masterNode);
130 <                
129 >        MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
130 >
131          ppStream.str(buf);
132          delete [] buf;
133
133        }
134   #endif            
135        // Create a scanner that reads from the input stream
# Line 152 | Line 151 | namespace OpenMD {
151        parser.initializeASTFactory(factory);
152        parser.setASTFactory(&factory);
153        parser.mdfile();
155
154        // Create a tree parser that reads information into Globals
155        MDTreeParser treeParser;
156        treeParser.initializeASTFactory(factory);
# Line 255 | Line 253 | namespace OpenMD {
253      std::string mdRawData;
254      int metaDataBlockStart = -1;
255      int metaDataBlockEnd = -1;
256 <    int i;
257 <    streamoff mdOffset(0);
256 >    int i, j;
257 >    streamoff mdOffset;
258      int mdFileVersion;
259  
260 +    // Create a string for embedding the version information in the MetaData
261 +    std::string version;
262 +    version.assign("## Last run using OpenMD Version: ");
263 +    version.append(OPENMD_VERSION_MAJOR);
264 +    version.append(".");
265 +    version.append(OPENMD_VERSION_MINOR);
266  
267 +    std::string svnrev(g_REVISION, strnlen(g_REVISION, 20));
268 +    //convert a macro from compiler to a string in c++
269 +    // STR_DEFINE(svnrev, SVN_REV );
270 +    version.append(" Revision: ");
271 +    // If there's no SVN revision, just call this the RELEASE revision.
272 +    if (!svnrev.empty()) {
273 +      version.append(svnrev);
274 +    } else {
275 +      version.append("RELEASE");
276 +    }
277 +  
278   #ifdef IS_MPI            
279      const int masterNode = 0;
280      if (worldRank == masterNode) {
# Line 354 | Line 369 | namespace OpenMD {
369  
370        mdRawData.clear();
371  
372 +      bool foundVersion = false;
373 +
374        for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
375          mdFile_.getline(buffer, bufferSize);
376 <        mdRawData += buffer;
376 >        std::string line = trimLeftCopy(buffer);
377 >        j = CaseInsensitiveFind(line, "## Last run using OpenMD Version");
378 >        if (static_cast<size_t>(j) != string::npos) {
379 >          foundVersion = true;
380 >          mdRawData += version;
381 >        } else {
382 >          mdRawData += buffer;
383 >        }
384          mdRawData += "\n";
385        }
386 <
386 >      
387 >      if (!foundVersion) mdRawData += version + "\n";
388 >      
389        mdFile_.close();
390  
391   #ifdef IS_MPI
# Line 487 | Line 513 | namespace OpenMD {
513    
514   #ifdef IS_MPI
515    void SimCreator::divideMolecules(SimInfo *info) {
490    RealType numerator;
491    RealType denominator;
492    RealType precast;
493    RealType x;
494    RealType y;
516      RealType a;
496    int old_atoms;
497    int add_atoms;
498    int new_atoms;
499    int nTarget;
500    int done;
501    int i;
502    int loops;
503    int which_proc;
517      int nProcessors;
518      std::vector<int> atomsPerProc;
519      int nGlobalMols = info->getNGlobalMolecules();
520 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
520 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an
521 >                                                    // error
522 >                                                    // condition:
523      
524 <    nProcessors = MPI::COMM_WORLD.Get_size();
524 >    MPI_Comm_size( MPI_COMM_WORLD, &nProcessors);    
525      
526      if (nProcessors > nGlobalMols) {
527        sprintf(painCave.errMsg,
# Line 515 | Line 530 | namespace OpenMD {
530                "\tthe number of molecules.  This will not result in a \n"
531                "\tusable division of atoms for force decomposition.\n"
532                "\tEither try a smaller number of processors, or run the\n"
533 <              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
533 >              "\tsingle-processor version of OpenMD.\n", nProcessors,
534 >              nGlobalMols);
535        
536        painCave.isFatal = 1;
537        simError();
538      }
539      
524    int seedValue;
540      Globals * simParams = info->getSimParams();
541 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
541 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel
542 >                             //random number generator
543      if (simParams->haveSeed()) {
544 <      seedValue = simParams->getSeed();
544 >      int seedValue = simParams->getSeed();
545        myRandom = new SeqRandNumGen(seedValue);
546      }else {
547        myRandom = new SeqRandNumGen();
# Line 538 | Line 554 | namespace OpenMD {
554      atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
555      
556      if (worldRank == 0) {
557 <      numerator = info->getNGlobalAtoms();
558 <      denominator = nProcessors;
559 <      precast = numerator / denominator;
560 <      nTarget = (int)(precast + 0.5);
557 >      RealType numerator = info->getNGlobalAtoms();
558 >      RealType denominator = nProcessors;
559 >      RealType precast = numerator / denominator;
560 >      int nTarget = (int)(precast + 0.5);
561        
562 <      for(i = 0; i < nGlobalMols; i++) {
563 <        done = 0;
564 <        loops = 0;
562 >      for(int i = 0; i < nGlobalMols; i++) {
563 >
564 >        int done = 0;
565 >        int loops = 0;
566          
567          while (!done) {
568            loops++;
569            
570            // Pick a processor at random
571            
572 <          which_proc = (int) (myRandom->rand() * nProcessors);
572 >          int which_proc = (int) (myRandom->rand() * nProcessors);
573            
574            //get the molecule stamp first
575            int stampId = info->getMoleculeStampId(i);
576            MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
577            
578            // How many atoms does this processor have so far?
579 <          old_atoms = atomsPerProc[which_proc];
580 <          add_atoms = moleculeStamp->getNAtoms();
581 <          new_atoms = old_atoms + add_atoms;
579 >          int old_atoms = atomsPerProc[which_proc];
580 >          int add_atoms = moleculeStamp->getNAtoms();
581 >          int new_atoms = old_atoms + add_atoms;
582            
583            // If we've been through this loop too many times, we need
584            // to just give up and assign the molecule to this processor
585            // and be done with it.
586            
587            if (loops > 100) {
588 +
589              sprintf(painCave.errMsg,
590 <                    "I've tried 100 times to assign molecule %d to a "
591 <                    " processor, but can't find a good spot.\n"
592 <                    "I'm assigning it at random to processor %d.\n",
590 >                    "There have been 100 attempts to assign molecule %d to an\n"
591 >                    "\tunderworked processor, but there's no good place to\n"
592 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
593                      i, which_proc);
594 <            
594 >          
595              painCave.isFatal = 0;
596 +            painCave.severity = OPENMD_INFO;
597              simError();
598              
599              molToProcMap[i] = which_proc;
# Line 603 | Line 622 | namespace OpenMD {
622            //           Pacc(x) = exp(- a * x)
623            // where a = penalty / (average atoms per molecule)
624            
625 <          x = (RealType)(new_atoms - nTarget);
626 <          y = myRandom->rand();
625 >          RealType x = (RealType)(new_atoms - nTarget);
626 >          RealType y = myRandom->rand();
627            
628            if (y < exp(- a * x)) {
629              molToProcMap[i] = which_proc;
# Line 619 | Line 638 | namespace OpenMD {
638        }
639        
640        delete myRandom;
641 <      
641 >
642        // Spray out this nonsense to all other processors:
643 <      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
643 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
644 >
645      } else {
646        
647        // Listen to your marching orders from processor 0:
648 <      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
648 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
649 >
650      }
651      
652      info->setMolToProcMap(molToProcMap);
# Line 672 | Line 693 | namespace OpenMD {
693      set<AtomType*>::iterator i;
694      bool hasDirectionalAtoms = false;
695      bool hasFixedCharge = false;
696 <    bool hasMultipoles = false;    
696 >    bool hasDipoles = false;    
697 >    bool hasQuadrupoles = false;    
698      bool hasPolarizable = false;    
699      bool hasFluctuatingCharge = false;    
700      bool hasMetallic = false;
# Line 694 | Line 716 | namespace OpenMD {
716        if (da.isDirectional()){
717          hasDirectionalAtoms = true;
718        }
719 <      if (ma.isMultipole()){
720 <        hasMultipoles = true;
719 >      if (ma.isDipole()){
720 >        hasDipoles = true;
721        }
722 +      if (ma.isQuadrupole()){
723 +        hasQuadrupoles = true;
724 +      }
725        if (ea.isEAM() || sca.isSuttonChen()){
726          hasMetallic = true;
727        }
# Line 720 | Line 745 | namespace OpenMD {
745          storageLayout |= DataStorage::dslTorque;
746        }
747      }
748 <    if (hasMultipoles) {
749 <      storageLayout |= DataStorage::dslElectroFrame;
748 >    if (hasDipoles) {
749 >      storageLayout |= DataStorage::dslDipole;
750      }
751 +    if (hasQuadrupoles) {
752 +      storageLayout |= DataStorage::dslQuadrupole;
753 +    }
754      if (hasFixedCharge || hasFluctuatingCharge) {
755        storageLayout |= DataStorage::dslSkippedCharge;
756      }
# Line 757 | Line 785 | namespace OpenMD {
785        }
786      }
787  
788 <    if (simParams->getOutputElectricField()) {
788 >    if (simParams->getOutputElectricField() | simParams->haveElectricField()) {
789        storageLayout |= DataStorage::dslElectricField;
790      }
791 +
792      if (simParams->getOutputFluctuatingCharges()) {
793        storageLayout |= DataStorage::dslFlucQPosition;
794        storageLayout |= DataStorage::dslFlucQVelocity;
795        storageLayout |= DataStorage::dslFlucQForce;
796      }
797  
798 +    info->setStorageLayout(storageLayout);
799 +
800      return storageLayout;
801    }
802  
# Line 774 | Line 805 | namespace OpenMD {
805      Molecule::AtomIterator ai;
806      Molecule::RigidBodyIterator ri;
807      Molecule::CutoffGroupIterator ci;
808 +    Molecule::BondIterator boi;
809 +    Molecule::BendIterator bei;
810 +    Molecule::TorsionIterator ti;
811 +    Molecule::InversionIterator ii;
812      Molecule::IntegrableObjectIterator  ioi;
813 <    Molecule * mol;
814 <    Atom * atom;
815 <    RigidBody * rb;
816 <    CutoffGroup * cg;
813 >    Molecule* mol;
814 >    Atom* atom;
815 >    RigidBody* rb;
816 >    CutoffGroup* cg;
817 >    Bond* bond;
818 >    Bend* bend;
819 >    Torsion* torsion;
820 >    Inversion* inversion;
821      int beginAtomIndex;
822      int beginRigidBodyIndex;
823      int beginCutoffGroupIndex;
824 +    int beginBondIndex;
825 +    int beginBendIndex;
826 +    int beginTorsionIndex;
827 +    int beginInversionIndex;
828      int nGlobalAtoms = info->getNGlobalAtoms();
829 +    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
830      
831      beginAtomIndex = 0;
832 <    //rigidbody's index begins right after atom's
832 >    // The rigid body indices begin immediately after the atom indices:
833      beginRigidBodyIndex = info->getNGlobalAtoms();
834      beginCutoffGroupIndex = 0;
835 <
835 >    beginBondIndex = 0;
836 >    beginBendIndex = 0;
837 >    beginTorsionIndex = 0;
838 >    beginInversionIndex = 0;
839 >  
840      for(int i = 0; i < info->getNGlobalMolecules(); i++) {
841        
842   #ifdef IS_MPI      
# Line 797 | Line 845 | namespace OpenMD {
845          // stuff to do if I own this molecule
846          mol = info->getMoleculeByGlobalIndex(i);
847  
848 <        //local index(index in DataStorge) of atom is important
849 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        // The local index(index in DataStorge) of the atom is important:
849 >        for(atom = mol->beginAtom(ai); atom != NULL;
850 >            atom = mol->nextAtom(ai)) {
851            atom->setGlobalIndex(beginAtomIndex++);
852          }
853          
# Line 807 | Line 856 | namespace OpenMD {
856            rb->setGlobalIndex(beginRigidBodyIndex++);
857          }
858          
859 <        //local index of cutoff group is trivial, it only depends on
860 <        //the order of travesing
859 >        // The local index of other objects only depends on the order
860 >        // of traversal:
861          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
862              cg = mol->nextCutoffGroup(ci)) {
863            cg->setGlobalIndex(beginCutoffGroupIndex++);
864          }        
865 +        for(bond = mol->beginBond(boi); bond != NULL;
866 +            bond = mol->nextBond(boi)) {
867 +          bond->setGlobalIndex(beginBondIndex++);
868 +        }        
869 +        for(bend = mol->beginBend(bei); bend != NULL;
870 +            bend = mol->nextBend(bei)) {
871 +          bend->setGlobalIndex(beginBendIndex++);
872 +        }        
873 +        for(torsion = mol->beginTorsion(ti); torsion != NULL;
874 +            torsion = mol->nextTorsion(ti)) {
875 +          torsion->setGlobalIndex(beginTorsionIndex++);
876 +        }        
877 +        for(inversion = mol->beginInversion(ii); inversion != NULL;
878 +            inversion = mol->nextInversion(ii)) {
879 +          inversion->setGlobalIndex(beginInversionIndex++);
880 +        }        
881          
882   #ifdef IS_MPI        
883        }  else {
# Line 825 | Line 890 | namespace OpenMD {
890          beginAtomIndex += stamp->getNAtoms();
891          beginRigidBodyIndex += stamp->getNRigidBodies();
892          beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
893 +        beginBondIndex += stamp->getNBonds();
894 +        beginBendIndex += stamp->getNBends();
895 +        beginTorsionIndex += stamp->getNTorsions();
896 +        beginInversionIndex += stamp->getNInversions();
897        }
898   #endif          
899  
# Line 832 | Line 901 | namespace OpenMD {
901  
902      //fill globalGroupMembership
903      std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
904 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
905 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
906 <        
904 >    for(mol = info->beginMolecule(mi); mol != NULL;
905 >        mol = info->nextMolecule(mi)) {        
906 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
907 >           cg = mol->nextCutoffGroup(ci)) {        
908          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
909            globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
910          }
# Line 849 | Line 919 | namespace OpenMD {
919      // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
920      // docs said we could.
921      std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
922 <    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
923 <                              &tmpGroupMembership[0], nGlobalAtoms,
924 <                              MPI::INT, MPI::SUM);
922 >    MPI_Allreduce(&globalGroupMembership[0],
923 >                  &tmpGroupMembership[0], nGlobalAtoms,
924 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
925 >
926      info->setGlobalGroupMembership(tmpGroupMembership);
927   #else
928      info->setGlobalGroupMembership(globalGroupMembership);
929   #endif
930      
931      //fill molMembership
932 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
932 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
933 >                                         info->getNGlobalRigidBodies(), 0);
934      
935 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
935 >    for(mol = info->beginMolecule(mi); mol != NULL;
936 >        mol = info->nextMolecule(mi)) {
937        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
938          globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
939        }
940 +      for (rb = mol->beginRigidBody(ri); rb != NULL;
941 +           rb = mol->nextRigidBody(ri)) {
942 +        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
943 +      }
944      }
945      
946   #ifdef IS_MPI
947 <    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
948 <    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
949 <                              nGlobalAtoms,
950 <                              MPI::INT, MPI::SUM);
947 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
948 >                                      info->getNGlobalRigidBodies(), 0);
949 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
950 >                  nGlobalAtoms + nGlobalRigidBodies,
951 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
952      
953      info->setGlobalMolMembership(tmpMolMembership);
954   #else
# Line 881 | Line 959 | namespace OpenMD {
959      // here the molecules are listed by their global indices.
960  
961      std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
962 <    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
962 >    for (mol = info->beginMolecule(mi); mol != NULL;
963 >         mol = info->nextMolecule(mi)) {
964        nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
965      }
966      
967   #ifdef IS_MPI
968      std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
969 <    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
970 <                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
969 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
970 >      info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
971   #else
972      std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
973   #endif    
# Line 902 | Line 981 | namespace OpenMD {
981      }
982      
983      std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
984 <    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
984 >    for (mol = info->beginMolecule(mi); mol != NULL;
985 >         mol = info->nextMolecule(mi)) {
986        int myGlobalIndex = mol->getGlobalIndex();
987        int globalIO = startingIOIndexForMol[myGlobalIndex];
988        for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
# Line 918 | Line 998 | namespace OpenMD {
998    }
999    
1000    void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
1001 <
1001 >    
1002      DumpReader reader(info, mdFileName);
1003      int nframes = reader.getNFrames();
1004 <
1004 >    
1005      if (nframes > 0) {
1006        reader.readFrame(nframes - 1);
1007      } else {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines