ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/SimCreator.cpp
(Generate patch)

Comparing trunk/src/brains/SimCreator.cpp (file contents):
Revision 388 by tim, Tue Mar 1 23:02:33 2005 UTC vs.
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #include "math/MersenneTwister.hpp"
61 < #ifdef IS_MPI
62 < #include "io/mpiBASS.h"
63 < #endif
64 <
65 < namespace oopse {
66 <
67 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
68 <
69 < #ifdef IS_MPI
70 <
71 <    if (worldRank == 0) {
72 < #endif // is_mpi
73 <
74 <        simParams->initalize();
75 <        set_interface_stamps(stamps, simParams);
76 <
77 < #ifdef IS_MPI
78 <
79 <        mpiEventInit();
80 <
81 < #endif
82 <
83 <        yacc_BASS(mdFileName.c_str());
84 <
85 < #ifdef IS_MPI
86 <
87 <        throwMPIEvent(NULL);
88 <    } else {
89 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
93 <    }
94 <
95 < #endif
96 <
97 < }
98 <
99 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
100 <    
101 <    MakeStamps * stamps = new MakeStamps();
102 <
103 <    Globals * simParams = new Globals();
104 <
105 <    //parse meta-data file
106 <    parseFile(mdFileName, stamps, simParams);
107 <
108 <    //create the force field
109 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
110 <                          simParams->getForceField());
111 <    
112 <    if (ff == NULL) {
113 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
114 <                simParams->getForceField());
115 <        painCave.isFatal = 1;
116 <        simError();
117 <    }
118 <
119 <    if (simParams->haveForceFieldFileName()) {
120 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
121 <    }
122 <    
123 <    std::string forcefieldFileName;
124 <    forcefieldFileName = ff->getForceFieldFileName();
125 <
126 <    if (simParams->haveForceFieldVariant()) {
127 <        //If the force field has variant, the variant force field name will be
128 <        //Base.variant.frc. For exampel EAM.u6.frc
129 <        
130 <        std::string variant = simParams->getForceFieldVariant();
131 <
132 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
133 <        variant = "." + variant;
134 <        if (pos != std::string::npos) {
135 <            forcefieldFileName.insert(pos, variant);
136 <        } else {
137 <            //If the default force field file name does not containt .frc suffix, just append the .variant
138 <            forcefieldFileName.append(variant);
139 <        }
140 <    }
141 <    
142 <    ff->parse(forcefieldFileName);
143 <    
144 <    //extract the molecule stamps
145 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146 <    compList(stamps, simParams, moleculeStampPairs);
147 <
148 <    //create SimInfo
149 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
150 <
151 <    //gather parameters (SimCreator only retrieves part of the parameters)
152 <    gatherParameters(info, mdFileName);
153 <
154 <    //divide the molecules and determine the global index of molecules
155 < #ifdef IS_MPI
156 <    divideMolecules(info);
157 < #endif
158 <
159 <    //create the molecules
160 <    createMolecules(info);
161 <
162 <
163 <    //allocate memory for DataStorage(circular reference, need to break it)
164 <    info->setSnapshotManager(new SimSnapshotManager(info));
165 <    
166 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
167 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
168 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
169 <    setGlobalIndex(info);
170 <
171 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
172 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
173 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
174 <    //we can determine the beginning global indices of atoms before they get created.
175 <    SimInfo::MoleculeIterator mi;
176 <    Molecule* mol;
177 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
178 <        info->addExcludePairs(mol);
179 <    }
180 <    
181 <
182 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183 <    //eta, chi for NPT integrator)
184 <    if (loadInitCoords)
185 <        loadCoordinates(info);    
186 <    
187 <    return info;
188 < }
189 <
190 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
191 <
192 <    //figure out the ouput file names
193 <    std::string prefix;
194 <
195 < #ifdef IS_MPI
196 <
197 <    if (worldRank == 0) {
198 < #endif // is_mpi
199 <        Globals * simParams = info->getSimParams();
200 <        if (simParams->haveFinalConfig()) {
201 <            prefix = getPrefix(simParams->getFinalConfig());
202 <        } else {
203 <            prefix = getPrefix(mdfile);
204 <        }
205 <
206 <        info->setFinalConfigFileName(prefix + ".eor");
207 <        info->setDumpFileName(prefix + ".dump");
208 <        info->setStatFileName(prefix + ".stat");
209 <
210 < #ifdef IS_MPI
211 <
212 <    }
213 <
214 < #endif
215 <
216 < }
217 <
218 < #ifdef IS_MPI
219 < void SimCreator::divideMolecules(SimInfo *info) {
220 <    double numerator;
221 <    double denominator;
222 <    double precast;
223 <    double x;
224 <    double y;
225 <    double a;
226 <    int old_atoms;
227 <    int add_atoms;
228 <    int new_atoms;
229 <    int nTarget;
230 <    int done;
231 <    int i;
232 <    int j;
233 <    int loops;
234 <    int which_proc;
235 <    int nProcessors;
236 <    std::vector<int> atomsPerProc;
237 <    int nGlobalMols = info->getNGlobalMolecules();
238 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
239 <    
240 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
241 <
242 <    if (nProcessors > nGlobalMols) {
243 <        sprintf(painCave.errMsg,
244 <                "nProcessors (%d) > nMol (%d)\n"
245 <                    "\tThe number of processors is larger than\n"
246 <                    "\tthe number of molecules.  This will not result in a \n"
247 <                    "\tusable division of atoms for force decomposition.\n"
248 <                    "\tEither try a smaller number of processors, or run the\n"
249 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
250 <
251 <        painCave.isFatal = 1;
252 <        simError();
253 <    }
254 <
255 <    int seedValue;
256 <    Globals * simParams = info->getSimParams();
257 <    MTRand* myRandom; //divide labor does not need Parallel random number generator
258 <    if (simParams->haveSeed()) {
259 <        seedValue = simParams->getSeed();
260 <        myRandom = new MTRand(seedValue);
261 <    }else {
262 <        myRandom = new MTRand();
263 <    }  
264 <
265 <
266 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
267 <
268 <    //initialize atomsPerProc
269 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
270 <
271 <    if (worldRank == 0) {
272 <        numerator = info->getNGlobalAtoms();
273 <        denominator = nProcessors;
274 <        precast = numerator / denominator;
275 <        nTarget = (int)(precast + 0.5);
276 <
277 <        for(i = 0; i < nGlobalMols; i++) {
278 <            done = 0;
279 <            loops = 0;
280 <
281 <            while (!done) {
282 <                loops++;
283 <
284 <                // Pick a processor at random
285 <
286 <                which_proc = (int) (myRandom->rand() * nProcessors);
287 <
288 <                //get the molecule stamp first
289 <                int stampId = info->getMoleculeStampId(i);
290 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
291 <
292 <                // How many atoms does this processor have so far?
293 <                old_atoms = atomsPerProc[which_proc];
294 <                add_atoms = moleculeStamp->getNAtoms();
295 <                new_atoms = old_atoms + add_atoms;
296 <
297 <                // If we've been through this loop too many times, we need
298 <                // to just give up and assign the molecule to this processor
299 <                // and be done with it.
300 <
301 <                if (loops > 100) {
302 <                    sprintf(painCave.errMsg,
303 <                            "I've tried 100 times to assign molecule %d to a "
304 <                                " processor, but can't find a good spot.\n"
305 <                                "I'm assigning it at random to processor %d.\n",
306 <                            i, which_proc);
307 <
308 <                    painCave.isFatal = 0;
309 <                    simError();
310 <
311 <                    molToProcMap[i] = which_proc;
312 <                    atomsPerProc[which_proc] += add_atoms;
313 <
314 <                    done = 1;
315 <                    continue;
316 <                }
317 <
318 <                // If we can add this molecule to this processor without sending
319 <                // it above nTarget, then go ahead and do it:
320 <
321 <                if (new_atoms <= nTarget) {
322 <                    molToProcMap[i] = which_proc;
323 <                    atomsPerProc[which_proc] += add_atoms;
324 <
325 <                    done = 1;
326 <                    continue;
327 <                }
328 <
329 <                // The only situation left is when new_atoms > nTarget.  We
330 <                // want to accept this with some probability that dies off the
331 <                // farther we are from nTarget
332 <
333 <                // roughly:  x = new_atoms - nTarget
334 <                //           Pacc(x) = exp(- a * x)
335 <                // where a = penalty / (average atoms per molecule)
336 <
337 <                x = (double)(new_atoms - nTarget);
338 <                y = myRandom->rand();
339 <
340 <                if (y < exp(- a * x)) {
341 <                    molToProcMap[i] = which_proc;
342 <                    atomsPerProc[which_proc] += add_atoms;
343 <
344 <                    done = 1;
345 <                    continue;
346 <                } else {
347 <                    continue;
348 <                }
349 <            }
350 <        }
351 <
352 <        delete myRandom;
353 <        
354 <        // Spray out this nonsense to all other processors:
355 <
356 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
357 <    } else {
358 <
359 <        // Listen to your marching orders from processor 0:
360 <
361 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
362 <    }
363 <
364 <    info->setMolToProcMap(molToProcMap);
365 <    sprintf(checkPointMsg,
366 <            "Successfully divided the molecules among the processors.\n");
367 <    MPIcheckPoint();
368 < }
369 <
370 < #endif
371 <
372 < void SimCreator::createMolecules(SimInfo *info) {
373 <    MoleculeCreator molCreator;
374 <    int stampId;
375 <
376 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
377 <
378 < #ifdef IS_MPI
379 <
380 <        if (info->getMolToProc(i) == worldRank) {
381 < #endif
382 <
383 <            stampId = info->getMoleculeStampId(i);
384 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
385 <                                                                                    stampId, i, info->getLocalIndexManager());
386 <
387 <            info->addMolecule(mol);
388 <
389 < #ifdef IS_MPI
390 <
391 <        }
392 <
393 < #endif
394 <
395 <    } //end for(int i=0)  
396 < }
397 <
398 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
399 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
400 <    int i;
401 <    char * id;
402 <    MoleculeStamp * currentStamp;
403 <    Component** the_components = simParams->getComponents();
404 <    int n_components = simParams->getNComponents();
405 <
406 <    if (!simParams->haveNMol()) {
407 <        // we don't have the total number of molecules, so we assume it is
408 <        // given in each component
409 <
410 <        for(i = 0; i < n_components; i++) {
411 <            if (!the_components[i]->haveNMol()) {
412 <                // we have a problem
413 <                sprintf(painCave.errMsg,
414 <                        "SimCreator Error. No global NMol or component NMol given.\n"
415 <                            "\tCannot calculate the number of atoms.\n");
416 <
417 <                painCave.isFatal = 1;
418 <                simError();
419 <            }
420 <
421 <            id = the_components[i]->getType();
422 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
423 <
424 <            if (currentStamp == NULL) {
425 <                sprintf(painCave.errMsg,
426 <                        "SimCreator error: Component \"%s\" was not found in the "
427 <                            "list of declared molecules\n", id);
428 <
429 <                painCave.isFatal = 1;
430 <                simError();
431 <            }
432 <
433 <            moleculeStampPairs.push_back(
434 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
435 <        } //end for (i = 0; i < n_components; i++)
436 <    } else {
437 <        sprintf(painCave.errMsg, "SimSetup error.\n"
438 <                                     "\tSorry, the ability to specify total"
439 <                                     " nMols and then give molfractions in the components\n"
440 <                                     "\tis not currently supported."
441 <                                     " Please give nMol in the components.\n");
442 <
443 <        painCave.isFatal = 1;
444 <        simError();
445 <    }
446 <
447 < #ifdef IS_MPI
448 <
449 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
450 <    MPIcheckPoint();
451 <
452 < #endif // is_mpi
453 <
454 < }
455 <
456 < void SimCreator::setGlobalIndex(SimInfo *info) {
457 <    SimInfo::MoleculeIterator mi;
458 <    Molecule::AtomIterator ai;
459 <    Molecule::RigidBodyIterator ri;
460 <    Molecule::CutoffGroupIterator ci;
461 <    Molecule * mol;
462 <    Atom * atom;
463 <    RigidBody * rb;
464 <    CutoffGroup * cg;
465 <    int beginAtomIndex;
466 <    int beginRigidBodyIndex;
467 <    int beginCutoffGroupIndex;
468 <    int nGlobalAtoms = info->getNGlobalAtoms();
469 <    
470 < #ifndef IS_MPI
471 <
472 <    beginAtomIndex = 0;
473 <    beginRigidBodyIndex = 0;
474 <    beginCutoffGroupIndex = 0;
475 <
476 < #else
477 <
478 <    int nproc;
479 <    int myNode;
480 <
481 <    myNode = worldRank;
482 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
483 <
484 <    std::vector < int > tmpAtomsInProc(nproc, 0);
485 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
486 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
487 <    std::vector < int > NumAtomsInProc(nproc, 0);
488 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
489 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
490 <
491 <    tmpAtomsInProc[myNode] = info->getNAtoms();
492 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
493 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
494 <
495 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
496 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
497 <                  MPI_SUM, MPI_COMM_WORLD);
498 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
499 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
500 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
501 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
502 <
503 <    beginAtomIndex = 0;
504 <    beginRigidBodyIndex = 0;
505 <    beginCutoffGroupIndex = 0;
506 <
507 <    for(int i = 0; i < myNode; i++) {
508 <        beginAtomIndex += NumAtomsInProc[i];
509 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
510 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
511 <    }
512 <
513 < #endif
514 <
515 <    //rigidbody's index begins right after atom's
516 <    beginRigidBodyIndex += info->getNGlobalAtoms();
517 <
518 <    for(mol = info->beginMolecule(mi); mol != NULL;
519 <        mol = info->nextMolecule(mi)) {
520 <
521 <        //local index(index in DataStorge) of atom is important
522 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
523 <            atom->setGlobalIndex(beginAtomIndex++);
524 <        }
525 <
526 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
527 <            rb = mol->nextRigidBody(ri)) {
528 <            rb->setGlobalIndex(beginRigidBodyIndex++);
529 <        }
530 <
531 <        //local index of cutoff group is trivial, it only depends on the order of travesing
532 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
533 <            cg = mol->nextCutoffGroup(ci)) {
534 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
535 <        }
536 <    }
537 <
538 <    //fill globalGroupMembership
539 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
540 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
541 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
542 <
543 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
544 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
545 <            }
546 <
547 <        }      
548 <    }
549 <
550 < #ifdef IS_MPI    
551 <    // Since the globalGroupMembership has been zero filled and we've only
552 <    // poked values into the atoms we know, we can do an Allreduce
553 <    // to get the full globalGroupMembership array (We think).
554 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
555 <    // docs said we could.
556 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
557 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
558 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
559 <     info->setGlobalGroupMembership(tmpGroupMembership);
560 < #else
561 <    info->setGlobalGroupMembership(globalGroupMembership);
562 < #endif
563 <
564 <    //fill molMembership
565 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
566 <    
567 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
568 <
569 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
570 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
571 <        }
572 <    }
573 <
574 < #ifdef IS_MPI
575 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
576 <
577 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
578 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
579 <    
580 <    info->setGlobalMolMembership(tmpMolMembership);
581 < #else
582 <    info->setGlobalMolMembership(globalMolMembership);
583 < #endif
584 <
585 < }
586 <
587 < void SimCreator::loadCoordinates(SimInfo* info) {
588 <    Globals* simParams;
589 <    simParams = info->getSimParams();
590 <    
591 <    if (!simParams->haveInitialConfig()) {
592 <        sprintf(painCave.errMsg,
593 <                "Cannot intialize a simulation without an initial configuration file.\n");
594 <        painCave.isFatal = 1;;
595 <        simError();
596 <    }
597 <        
598 <    DumpReader reader(info, simParams->getInitialConfig());
599 <    int nframes = reader.getNFrames();
600 <
601 <    if (nframes > 0) {
602 <        reader.readFrame(nframes - 1);
603 <    } else {
604 <        //invalid initial coordinate file
605 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
606 <                simParams->getInitialConfig());
607 <        painCave.isFatal = 1;
608 <        simError();
609 <    }
610 <
611 <    //copy the current snapshot to previous snapshot
612 <    info->getSnapshotManager()->advance();
613 < }
614 <
615 < } //end namespace oopse
616 <
617 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimCreator.cpp
44 > * @author tlin
45 > * @date 11/03/2004
46 > * @time 13:51am
47 > * @version 1.0
48 > */
49 >
50 > #include <iostream>
51 > #include <sstream>
52 > #include <string>
53 >
54 > #include "brains/MoleculeCreator.hpp"
55 > #include "brains/SimCreator.hpp"
56 > #include "brains/SimSnapshotManager.hpp"
57 > #include "io/DumpReader.hpp"
58 > #include "UseTheForce/ForceFieldFactory.hpp"
59 > #include "utils/simError.h"
60 > #include "utils/StringUtils.hpp"
61 > #include "math/SeqRandNumGen.hpp"
62 > #include "mdParser/MDLexer.hpp"
63 > #include "mdParser/MDParser.hpp"
64 > #include "mdParser/MDTreeParser.hpp"
65 > #include "mdParser/SimplePreprocessor.hpp"
66 >
67 >
68 > #ifdef IS_MPI
69 > #include "math/ParallelRandNumGen.hpp"
70 > #endif
71 >
72 > namespace oopse {
73 >  
74 > Globals* SimCreator::parseFile(const std::string mdFileName){
75 >        Globals* simParams = NULL;
76 >        try {
77 >
78 >            // Create a preprocessor that preprocesses md file into an ostringstream
79 >            std::stringstream ppStream;
80 > #ifdef IS_MPI            
81 >            int streamSize;
82 >            const int masterNode = 0;
83 >            int commStatus;
84 >            if (worldRank == masterNode) {
85 > #endif
86 >                
87 >                SimplePreprocessor preprocessor;
88 >                preprocessor.preprocess(mdFileName, ppStream);
89 >                
90 > #ifdef IS_MPI            
91 >                //brocasting the stream size
92 >                streamSize = ppStream.str().size() +1;
93 >                commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
94 >
95 >                commStatus = MPI_Bcast(ppStream.str().c_str(), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
96 >            
97 >                
98 >            } else {
99 >                //get stream size
100 >                commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
101 >                
102 >                  char* buf = new char[streamSize];
103 >                  assert(buf);
104 >                
105 >                  //receive file content
106 >                  commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
107 >                
108 >                  ppStream.str(buf);
109 >                  delete buf;
110 >
111 >            }
112 > #endif            
113 >            // Create a scanner that reads from the input stream
114 >            MDLexer lexer(ppStream);
115 >            lexer.setFilename(mdFileName);
116 >            lexer.initDeferredLineCount();
117 >    
118 >            // Create a parser that reads from the scanner
119 >            MDParser parser(lexer);
120 >            parser.setFilename(mdFileName);
121 >
122 >            // Create an observer that synchorizes file name change
123 >            FilenameObserver observer;
124 >            observer.setLexer(&lexer);
125 >            observer.setParser(&parser);
126 >            lexer.setObserver(&observer);
127 >    
128 >            antlr::ASTFactory factory;
129 >            parser.initializeASTFactory(factory);
130 >            parser.setASTFactory(&factory);
131 >            parser.mdfile();
132 >
133 >            // Create a tree parser that reads information into Globals
134 >            MDTreeParser treeParser;
135 >            treeParser.initializeASTFactory(factory);
136 >            treeParser.setASTFactory(&factory);
137 >             simParams = treeParser.walkTree(parser.getAST());
138 >
139 >        }
140 >        catch (exception& e) {
141 >            cerr << "parser exception: " << e.what() << endl;
142 >        }
143 >
144 >        return simParams;
145 >  }
146 >  
147 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
148 >                                  bool loadInitCoords) {
149 >
150 >    //parse meta-data file
151 >    Globals* simParams = parseFile(mdFileName);
152 >    
153 >    //create the force field
154 >    ForceField * ff = ForceFieldFactory::getInstance()
155 >      ->createForceField(simParams->getForceField());
156 >    
157 >    if (ff == NULL) {
158 >      sprintf(painCave.errMsg,
159 >              "ForceField Factory can not create %s force field\n",
160 >              simParams->getForceField().c_str());
161 >      painCave.isFatal = 1;
162 >      simError();
163 >    }
164 >    
165 >    if (simParams->haveForceFieldFileName()) {
166 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
167 >    }
168 >    
169 >    std::string forcefieldFileName;
170 >    forcefieldFileName = ff->getForceFieldFileName();
171 >    
172 >    if (simParams->haveForceFieldVariant()) {
173 >      //If the force field has variant, the variant force field name will be
174 >      //Base.variant.frc. For exampel EAM.u6.frc
175 >      
176 >      std::string variant = simParams->getForceFieldVariant();
177 >      
178 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
179 >      variant = "." + variant;
180 >      if (pos != std::string::npos) {
181 >        forcefieldFileName.insert(pos, variant);
182 >      } else {
183 >        //If the default force field file name does not containt .frc suffix, just append the .variant
184 >        forcefieldFileName.append(variant);
185 >      }
186 >    }
187 >    
188 >    ff->parse(forcefieldFileName);
189 >        
190 >    //create SimInfo
191 >    SimInfo * info = new SimInfo(ff, simParams);
192 >    
193 >    //gather parameters (SimCreator only retrieves part of the parameters)
194 >    gatherParameters(info, mdFileName);
195 >    
196 >    //divide the molecules and determine the global index of molecules
197 > #ifdef IS_MPI
198 >    divideMolecules(info);
199 > #endif
200 >    
201 >    //create the molecules
202 >    createMolecules(info);
203 >    
204 >    
205 >    //allocate memory for DataStorage(circular reference, need to break it)
206 >    info->setSnapshotManager(new SimSnapshotManager(info));
207 >    
208 >    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
209 >    //global index will never change again). Local indices of atoms and rigidbodies are already set by
210 >    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
211 >    setGlobalIndex(info);
212 >    
213 >    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
214 >    //atoms don't have the global index yet  (their global index are all initialized to -1).
215 >    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
216 >    //we can determine the beginning global indices of atoms before they get created.
217 >    SimInfo::MoleculeIterator mi;
218 >    Molecule* mol;
219 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
220 >      info->addExcludePairs(mol);
221 >    }
222 >    
223 >    if (loadInitCoords)
224 >      loadCoordinates(info);    
225 >    
226 >    return info;
227 >  }
228 >  
229 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
230 >    
231 >    //figure out the output file names
232 >    std::string prefix;
233 >    
234 > #ifdef IS_MPI
235 >    
236 >    if (worldRank == 0) {
237 > #endif // is_mpi
238 >      Globals * simParams = info->getSimParams();
239 >      if (simParams->haveFinalConfig()) {
240 >        prefix = getPrefix(simParams->getFinalConfig());
241 >      } else {
242 >        prefix = getPrefix(mdfile);
243 >      }
244 >      
245 >      info->setFinalConfigFileName(prefix + ".eor");
246 >      info->setDumpFileName(prefix + ".dump");
247 >      info->setStatFileName(prefix + ".stat");
248 >      info->setRestFileName(prefix + ".zang");
249 >      
250 > #ifdef IS_MPI
251 >      
252 >    }
253 >    
254 > #endif
255 >    
256 >  }
257 >  
258 > #ifdef IS_MPI
259 >  void SimCreator::divideMolecules(SimInfo *info) {
260 >    double numerator;
261 >    double denominator;
262 >    double precast;
263 >    double x;
264 >    double y;
265 >    double a;
266 >    int old_atoms;
267 >    int add_atoms;
268 >    int new_atoms;
269 >    int nTarget;
270 >    int done;
271 >    int i;
272 >    int j;
273 >    int loops;
274 >    int which_proc;
275 >    int nProcessors;
276 >    std::vector<int> atomsPerProc;
277 >    int nGlobalMols = info->getNGlobalMolecules();
278 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
279 >    
280 >    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
281 >    
282 >    if (nProcessors > nGlobalMols) {
283 >      sprintf(painCave.errMsg,
284 >              "nProcessors (%d) > nMol (%d)\n"
285 >              "\tThe number of processors is larger than\n"
286 >              "\tthe number of molecules.  This will not result in a \n"
287 >              "\tusable division of atoms for force decomposition.\n"
288 >              "\tEither try a smaller number of processors, or run the\n"
289 >              "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
290 >      
291 >      painCave.isFatal = 1;
292 >      simError();
293 >    }
294 >    
295 >    int seedValue;
296 >    Globals * simParams = info->getSimParams();
297 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
298 >    if (simParams->haveSeed()) {
299 >      seedValue = simParams->getSeed();
300 >      myRandom = new SeqRandNumGen(seedValue);
301 >    }else {
302 >      myRandom = new SeqRandNumGen();
303 >    }  
304 >    
305 >    
306 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
307 >    
308 >    //initialize atomsPerProc
309 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
310 >    
311 >    if (worldRank == 0) {
312 >      numerator = info->getNGlobalAtoms();
313 >      denominator = nProcessors;
314 >      precast = numerator / denominator;
315 >      nTarget = (int)(precast + 0.5);
316 >      
317 >      for(i = 0; i < nGlobalMols; i++) {
318 >        done = 0;
319 >        loops = 0;
320 >        
321 >        while (!done) {
322 >          loops++;
323 >          
324 >          // Pick a processor at random
325 >          
326 >          which_proc = (int) (myRandom->rand() * nProcessors);
327 >          
328 >          //get the molecule stamp first
329 >          int stampId = info->getMoleculeStampId(i);
330 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
331 >          
332 >          // How many atoms does this processor have so far?
333 >          old_atoms = atomsPerProc[which_proc];
334 >          add_atoms = moleculeStamp->getNAtoms();
335 >          new_atoms = old_atoms + add_atoms;
336 >          
337 >          // If we've been through this loop too many times, we need
338 >          // to just give up and assign the molecule to this processor
339 >          // and be done with it.
340 >          
341 >          if (loops > 100) {
342 >            sprintf(painCave.errMsg,
343 >                    "I've tried 100 times to assign molecule %d to a "
344 >                    " processor, but can't find a good spot.\n"
345 >                    "I'm assigning it at random to processor %d.\n",
346 >                    i, which_proc);
347 >            
348 >            painCave.isFatal = 0;
349 >            simError();
350 >            
351 >            molToProcMap[i] = which_proc;
352 >            atomsPerProc[which_proc] += add_atoms;
353 >            
354 >            done = 1;
355 >            continue;
356 >          }
357 >          
358 >          // If we can add this molecule to this processor without sending
359 >          // it above nTarget, then go ahead and do it:
360 >          
361 >          if (new_atoms <= nTarget) {
362 >            molToProcMap[i] = which_proc;
363 >            atomsPerProc[which_proc] += add_atoms;
364 >            
365 >            done = 1;
366 >            continue;
367 >          }
368 >          
369 >          // The only situation left is when new_atoms > nTarget.  We
370 >          // want to accept this with some probability that dies off the
371 >          // farther we are from nTarget
372 >          
373 >          // roughly:  x = new_atoms - nTarget
374 >          //           Pacc(x) = exp(- a * x)
375 >          // where a = penalty / (average atoms per molecule)
376 >          
377 >          x = (double)(new_atoms - nTarget);
378 >          y = myRandom->rand();
379 >          
380 >          if (y < exp(- a * x)) {
381 >            molToProcMap[i] = which_proc;
382 >            atomsPerProc[which_proc] += add_atoms;
383 >            
384 >            done = 1;
385 >            continue;
386 >          } else {
387 >            continue;
388 >          }
389 >        }
390 >      }
391 >      
392 >      delete myRandom;
393 >      
394 >      // Spray out this nonsense to all other processors:
395 >      
396 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
397 >    } else {
398 >      
399 >      // Listen to your marching orders from processor 0:
400 >      
401 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
402 >    }
403 >    
404 >    info->setMolToProcMap(molToProcMap);
405 >    sprintf(checkPointMsg,
406 >            "Successfully divided the molecules among the processors.\n");
407 >    MPIcheckPoint();
408 >  }
409 >  
410 > #endif
411 >  
412 >  void SimCreator::createMolecules(SimInfo *info) {
413 >    MoleculeCreator molCreator;
414 >    int stampId;
415 >    
416 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
417 >      
418 > #ifdef IS_MPI
419 >      
420 >      if (info->getMolToProc(i) == worldRank) {
421 > #endif
422 >        
423 >        stampId = info->getMoleculeStampId(i);
424 >        Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
425 >                                                   stampId, i, info->getLocalIndexManager());
426 >        
427 >        info->addMolecule(mol);
428 >        
429 > #ifdef IS_MPI
430 >        
431 >      }
432 >      
433 > #endif
434 >      
435 >    } //end for(int i=0)  
436 >  }
437 >    
438 >  void SimCreator::setGlobalIndex(SimInfo *info) {
439 >    SimInfo::MoleculeIterator mi;
440 >    Molecule::AtomIterator ai;
441 >    Molecule::RigidBodyIterator ri;
442 >    Molecule::CutoffGroupIterator ci;
443 >    Molecule * mol;
444 >    Atom * atom;
445 >    RigidBody * rb;
446 >    CutoffGroup * cg;
447 >    int beginAtomIndex;
448 >    int beginRigidBodyIndex;
449 >    int beginCutoffGroupIndex;
450 >    int nGlobalAtoms = info->getNGlobalAtoms();
451 >    
452 > #ifndef IS_MPI
453 >    
454 >    beginAtomIndex = 0;
455 >    beginRigidBodyIndex = 0;
456 >    beginCutoffGroupIndex = 0;
457 >    
458 > #else
459 >    
460 >    int nproc;
461 >    int myNode;
462 >    
463 >    myNode = worldRank;
464 >    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
465 >    
466 >    std::vector < int > tmpAtomsInProc(nproc, 0);
467 >    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
468 >    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
469 >    std::vector < int > NumAtomsInProc(nproc, 0);
470 >    std::vector < int > NumRigidBodiesInProc(nproc, 0);
471 >    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
472 >    
473 >    tmpAtomsInProc[myNode] = info->getNAtoms();
474 >    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
475 >    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
476 >    
477 >    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
478 >    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
479 >                  MPI_SUM, MPI_COMM_WORLD);
480 >    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
481 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
482 >    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
483 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
484 >    
485 >    beginAtomIndex = 0;
486 >    beginRigidBodyIndex = 0;
487 >    beginCutoffGroupIndex = 0;
488 >    
489 >    for(int i = 0; i < myNode; i++) {
490 >      beginAtomIndex += NumAtomsInProc[i];
491 >      beginRigidBodyIndex += NumRigidBodiesInProc[i];
492 >      beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
493 >    }
494 >    
495 > #endif
496 >    
497 >    //rigidbody's index begins right after atom's
498 >    beginRigidBodyIndex += info->getNGlobalAtoms();
499 >    
500 >    for(mol = info->beginMolecule(mi); mol != NULL;
501 >        mol = info->nextMolecule(mi)) {
502 >      
503 >      //local index(index in DataStorge) of atom is important
504 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
505 >        atom->setGlobalIndex(beginAtomIndex++);
506 >      }
507 >      
508 >      for(rb = mol->beginRigidBody(ri); rb != NULL;
509 >          rb = mol->nextRigidBody(ri)) {
510 >        rb->setGlobalIndex(beginRigidBodyIndex++);
511 >      }
512 >      
513 >      //local index of cutoff group is trivial, it only depends on the order of travesing
514 >      for(cg = mol->beginCutoffGroup(ci); cg != NULL;
515 >          cg = mol->nextCutoffGroup(ci)) {
516 >        cg->setGlobalIndex(beginCutoffGroupIndex++);
517 >      }
518 >    }
519 >    
520 >    //fill globalGroupMembership
521 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
522 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
523 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
524 >        
525 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
526 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
527 >        }
528 >        
529 >      }      
530 >    }
531 >    
532 > #ifdef IS_MPI    
533 >    // Since the globalGroupMembership has been zero filled and we've only
534 >    // poked values into the atoms we know, we can do an Allreduce
535 >    // to get the full globalGroupMembership array (We think).
536 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
537 >    // docs said we could.
538 >    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
539 >    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
540 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
541 >    info->setGlobalGroupMembership(tmpGroupMembership);
542 > #else
543 >    info->setGlobalGroupMembership(globalGroupMembership);
544 > #endif
545 >    
546 >    //fill molMembership
547 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
548 >    
549 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
550 >      
551 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
552 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
553 >      }
554 >    }
555 >    
556 > #ifdef IS_MPI
557 >    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
558 >    
559 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
560 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
561 >    
562 >    info->setGlobalMolMembership(tmpMolMembership);
563 > #else
564 >    info->setGlobalMolMembership(globalMolMembership);
565 > #endif
566 >    
567 >  }
568 >  
569 >  void SimCreator::loadCoordinates(SimInfo* info) {
570 >    Globals* simParams;
571 >    simParams = info->getSimParams();
572 >    
573 >    if (!simParams->haveInitialConfig()) {
574 >      sprintf(painCave.errMsg,
575 >              "Cannot intialize a simulation without an initial configuration file.\n");
576 >      painCave.isFatal = 1;;
577 >      simError();
578 >    }
579 >    
580 >    DumpReader reader(info, simParams->getInitialConfig());
581 >    int nframes = reader.getNFrames();
582 >    
583 >    if (nframes > 0) {
584 >      reader.readFrame(nframes - 1);
585 >    } else {
586 >      //invalid initial coordinate file
587 >      sprintf(painCave.errMsg,
588 >              "Initial configuration file %s should at least contain one frame\n",
589 >              simParams->getInitialConfig().c_str());
590 >      painCave.isFatal = 1;
591 >      simError();
592 >    }
593 >    
594 >    //copy the current snapshot to previous snapshot
595 >    info->getSnapshotManager()->advance();
596 >  }
597 >  
598 > } //end namespace oopse
599 >
600 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines