1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "UseTheForce/doForces_interface.h" |
53 |
#define __C |
54 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
#include "utils/simError.h" |
56 |
#include "primitives/Bend.hpp" |
57 |
#include "primitives/Bend.hpp" |
58 |
namespace oopse { |
59 |
|
60 |
/* |
61 |
struct BendOrderStruct { |
62 |
Bend* bend; |
63 |
BendDataSet dataSet; |
64 |
}; |
65 |
struct TorsionOrderStruct { |
66 |
Torsion* torsion; |
67 |
TorsionDataSet dataSet; |
68 |
}; |
69 |
|
70 |
bool BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) { |
71 |
return b1.dataSet.deltaV < b2.dataSet.deltaV; |
72 |
} |
73 |
|
74 |
bool TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) { |
75 |
return t1.dataSet.deltaV < t2.dataSet.deltaV; |
76 |
} |
77 |
*/ |
78 |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
79 |
|
80 |
if (!info_->isFortranInitialized()) { |
81 |
info_->update(); |
82 |
} |
83 |
|
84 |
preCalculation(); |
85 |
|
86 |
calcShortRangeInteraction(); |
87 |
|
88 |
calcLongRangeInteraction(needPotential, needStress); |
89 |
|
90 |
postCalculation(); |
91 |
|
92 |
/* |
93 |
std::vector<BendOrderStruct> bendOrderStruct; |
94 |
for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) { |
95 |
BendOrderStruct tmp; |
96 |
tmp.bend= const_cast<Bend*>(i->first); |
97 |
tmp.dataSet = i->second; |
98 |
bendOrderStruct.push_back(tmp); |
99 |
} |
100 |
|
101 |
std::vector<TorsionOrderStruct> torsionOrderStruct; |
102 |
for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) { |
103 |
TorsionOrderStruct tmp; |
104 |
tmp.torsion = const_cast<Torsion*>(j->first); |
105 |
tmp.dataSet = j->second; |
106 |
torsionOrderStruct.push_back(tmp); |
107 |
} |
108 |
|
109 |
std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor)); |
110 |
std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor)); |
111 |
for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) { |
112 |
Bend* bend = k->bend; |
113 |
std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " "; |
114 |
std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl; |
115 |
} |
116 |
for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) { |
117 |
Torsion* torsion = l->torsion; |
118 |
std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " "; |
119 |
std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl; |
120 |
} |
121 |
*/ |
122 |
} |
123 |
|
124 |
void ForceManager::preCalculation() { |
125 |
SimInfo::MoleculeIterator mi; |
126 |
Molecule* mol; |
127 |
Molecule::AtomIterator ai; |
128 |
Atom* atom; |
129 |
Molecule::RigidBodyIterator rbIter; |
130 |
RigidBody* rb; |
131 |
|
132 |
// forces are zeroed here, before any are accumulated. |
133 |
// NOTE: do not rezero the forces in Fortran. |
134 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
135 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
136 |
atom->zeroForcesAndTorques(); |
137 |
} |
138 |
|
139 |
//change the positions of atoms which belong to the rigidbodies |
140 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
141 |
rb->zeroForcesAndTorques(); |
142 |
} |
143 |
} |
144 |
|
145 |
} |
146 |
|
147 |
void ForceManager::calcShortRangeInteraction() { |
148 |
Molecule* mol; |
149 |
RigidBody* rb; |
150 |
Bond* bond; |
151 |
Bend* bend; |
152 |
Torsion* torsion; |
153 |
SimInfo::MoleculeIterator mi; |
154 |
Molecule::RigidBodyIterator rbIter; |
155 |
Molecule::BondIterator bondIter;; |
156 |
Molecule::BendIterator bendIter; |
157 |
Molecule::TorsionIterator torsionIter; |
158 |
RealType bondPotential = 0.0; |
159 |
RealType bendPotential = 0.0; |
160 |
RealType torsionPotential = 0.0; |
161 |
|
162 |
//calculate short range interactions |
163 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
164 |
|
165 |
//change the positions of atoms which belong to the rigidbodies |
166 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
167 |
rb->updateAtoms(); |
168 |
} |
169 |
|
170 |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
171 |
bond->calcForce(); |
172 |
bondPotential += bond->getPotential(); |
173 |
} |
174 |
|
175 |
|
176 |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
177 |
|
178 |
RealType angle; |
179 |
bend->calcForce(angle); |
180 |
RealType currBendPot = bend->getPotential(); |
181 |
bendPotential += bend->getPotential(); |
182 |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
183 |
if (i == bendDataSets.end()) { |
184 |
BendDataSet dataSet; |
185 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
186 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
187 |
dataSet.deltaV = 0.0; |
188 |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
189 |
}else { |
190 |
i->second.prev.angle = i->second.curr.angle; |
191 |
i->second.prev.potential = i->second.curr.potential; |
192 |
i->second.curr.angle = angle; |
193 |
i->second.curr.potential = currBendPot; |
194 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
195 |
} |
196 |
} |
197 |
|
198 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
199 |
RealType angle; |
200 |
torsion->calcForce(angle); |
201 |
RealType currTorsionPot = torsion->getPotential(); |
202 |
torsionPotential += torsion->getPotential(); |
203 |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
204 |
if (i == torsionDataSets.end()) { |
205 |
TorsionDataSet dataSet; |
206 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
207 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
208 |
dataSet.deltaV = 0.0; |
209 |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
210 |
}else { |
211 |
i->second.prev.angle = i->second.curr.angle; |
212 |
i->second.prev.potential = i->second.curr.potential; |
213 |
i->second.curr.angle = angle; |
214 |
i->second.curr.potential = currTorsionPot; |
215 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
216 |
} |
217 |
} |
218 |
|
219 |
} |
220 |
|
221 |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential; |
222 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
223 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
224 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
225 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
226 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
227 |
|
228 |
} |
229 |
|
230 |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
231 |
Snapshot* curSnapshot; |
232 |
DataStorage* config; |
233 |
RealType* frc; |
234 |
RealType* pos; |
235 |
RealType* trq; |
236 |
RealType* A; |
237 |
RealType* electroFrame; |
238 |
RealType* rc; |
239 |
|
240 |
//get current snapshot from SimInfo |
241 |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
242 |
|
243 |
//get array pointers |
244 |
config = &(curSnapshot->atomData); |
245 |
frc = config->getArrayPointer(DataStorage::dslForce); |
246 |
pos = config->getArrayPointer(DataStorage::dslPosition); |
247 |
trq = config->getArrayPointer(DataStorage::dslTorque); |
248 |
A = config->getArrayPointer(DataStorage::dslAmat); |
249 |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
250 |
|
251 |
//calculate the center of mass of cutoff group |
252 |
SimInfo::MoleculeIterator mi; |
253 |
Molecule* mol; |
254 |
Molecule::CutoffGroupIterator ci; |
255 |
CutoffGroup* cg; |
256 |
Vector3d com; |
257 |
std::vector<Vector3d> rcGroup; |
258 |
|
259 |
if(info_->getNCutoffGroups() > 0){ |
260 |
|
261 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
262 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
263 |
cg->getCOM(com); |
264 |
rcGroup.push_back(com); |
265 |
} |
266 |
}// end for (mol) |
267 |
|
268 |
rc = rcGroup[0].getArrayPointer(); |
269 |
} else { |
270 |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
271 |
rc = pos; |
272 |
} |
273 |
|
274 |
//initialize data before passing to fortran |
275 |
RealType longRangePotential[LR_POT_TYPES]; |
276 |
RealType lrPot = 0.0; |
277 |
Vector3d totalDipole; |
278 |
Mat3x3d tau; |
279 |
short int passedCalcPot = needPotential; |
280 |
short int passedCalcStress = needStress; |
281 |
int isError = 0; |
282 |
|
283 |
for (int i=0; i<LR_POT_TYPES;i++){ |
284 |
longRangePotential[i]=0.0; //Initialize array |
285 |
} |
286 |
|
287 |
doForceLoop( pos, |
288 |
rc, |
289 |
A, |
290 |
electroFrame, |
291 |
frc, |
292 |
trq, |
293 |
tau.getArrayPointer(), |
294 |
longRangePotential, |
295 |
&passedCalcPot, |
296 |
&passedCalcStress, |
297 |
&isError ); |
298 |
|
299 |
if( isError ){ |
300 |
sprintf( painCave.errMsg, |
301 |
"Error returned from the fortran force calculation.\n" ); |
302 |
painCave.isFatal = 1; |
303 |
simError(); |
304 |
} |
305 |
for (int i=0; i<LR_POT_TYPES;i++){ |
306 |
lrPot += longRangePotential[i]; //Quick hack |
307 |
} |
308 |
|
309 |
// grab the simulation box dipole moment if specified |
310 |
if (info_->getCalcBoxDipole()){ |
311 |
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
312 |
|
313 |
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
314 |
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
315 |
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
316 |
} |
317 |
|
318 |
//store the tau and long range potential |
319 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
320 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
321 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
322 |
|
323 |
curSnapshot->statData.setTau(tau); |
324 |
} |
325 |
|
326 |
|
327 |
void ForceManager::postCalculation() { |
328 |
SimInfo::MoleculeIterator mi; |
329 |
Molecule* mol; |
330 |
Molecule::RigidBodyIterator rbIter; |
331 |
RigidBody* rb; |
332 |
|
333 |
// collect the atomic forces onto rigid bodies |
334 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
335 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
336 |
rb->calcForcesAndTorques(); |
337 |
} |
338 |
} |
339 |
|
340 |
} |
341 |
|
342 |
} //end namespace oopse |