6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
44 |
|
* @file ForceManager.cpp |
45 |
|
* @author tlin |
46 |
|
* @date 11/09/2004 |
46 |
– |
* @time 10:39am |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
50 |
+ |
|
51 |
|
#include "brains/ForceManager.hpp" |
52 |
|
#include "primitives/Molecule.hpp" |
53 |
< |
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
54 |
< |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "utils/simError.h" |
55 |
+ |
#include "primitives/Bond.hpp" |
56 |
|
#include "primitives/Bend.hpp" |
57 |
< |
#include "primitives/Bend.hpp" |
58 |
< |
namespace oopse { |
57 |
> |
#include "primitives/Torsion.hpp" |
58 |
> |
#include "primitives/Inversion.hpp" |
59 |
> |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
> |
#include "perturbations/UniformField.hpp" |
61 |
> |
#include "perturbations/UniformGradient.hpp" |
62 |
> |
#include "parallel/ForceMatrixDecomposition.hpp" |
63 |
|
|
64 |
< |
/* |
65 |
< |
struct BendOrderStruct { |
66 |
< |
Bend* bend; |
63 |
< |
BendDataSet dataSet; |
64 |
< |
}; |
65 |
< |
struct TorsionOrderStruct { |
66 |
< |
Torsion* torsion; |
67 |
< |
TorsionDataSet dataSet; |
68 |
< |
}; |
64 |
> |
#include <cstdio> |
65 |
> |
#include <iostream> |
66 |
> |
#include <iomanip> |
67 |
|
|
68 |
< |
bool BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) { |
69 |
< |
return b1.dataSet.deltaV < b2.dataSet.deltaV; |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
> |
|
71 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL), |
72 |
> |
initialized_(false) { |
73 |
> |
forceField_ = info_->getForceField(); |
74 |
> |
interactionMan_ = new InteractionManager(); |
75 |
> |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
76 |
> |
thermo = new Thermo(info_); |
77 |
|
} |
78 |
|
|
79 |
< |
bool TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) { |
80 |
< |
return t1.dataSet.deltaV < t2.dataSet.deltaV; |
79 |
> |
ForceManager::~ForceManager() { |
80 |
> |
perturbations_.clear(); |
81 |
> |
|
82 |
> |
delete switcher_; |
83 |
> |
delete interactionMan_; |
84 |
> |
delete fDecomp_; |
85 |
> |
delete thermo; |
86 |
|
} |
87 |
< |
*/ |
88 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
87 |
> |
|
88 |
> |
/** |
89 |
> |
* setupCutoffs |
90 |
> |
* |
91 |
> |
* Sets the values of cutoffRadius, switchingRadius, and cutoffMethod |
92 |
> |
* |
93 |
> |
* cutoffRadius : realType |
94 |
> |
* If the cutoffRadius was explicitly set, use that value. |
95 |
> |
* If the cutoffRadius was not explicitly set: |
96 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
97 |
> |
* No electrostatic atoms? Poll the atom types present in the |
98 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
99 |
> |
* Use the maximum suggested value that was found. |
100 |
> |
* |
101 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED, |
102 |
> |
* SHIFTED_POTENTIAL, or EWALD_FULL) |
103 |
> |
* If cutoffMethod was explicitly set, use that choice. |
104 |
> |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
105 |
> |
* |
106 |
> |
* switchingRadius : realType |
107 |
> |
* If the cutoffMethod was set to SWITCHED: |
108 |
> |
* If the switchingRadius was explicitly set, use that value |
109 |
> |
* (but do a sanity check first). |
110 |
> |
* If the switchingRadius was not explicitly set: use 0.85 * |
111 |
> |
* cutoffRadius_ |
112 |
> |
* If the cutoffMethod was not set to SWITCHED: |
113 |
> |
* Set switchingRadius equal to cutoffRadius for safety. |
114 |
> |
*/ |
115 |
> |
void ForceManager::setupCutoffs() { |
116 |
> |
|
117 |
> |
Globals* simParams_ = info_->getSimParams(); |
118 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
119 |
> |
int mdFileVersion; |
120 |
> |
rCut_ = 0.0; //Needs a value for a later max() call; |
121 |
> |
|
122 |
> |
if (simParams_->haveMDfileVersion()) |
123 |
> |
mdFileVersion = simParams_->getMDfileVersion(); |
124 |
> |
else |
125 |
> |
mdFileVersion = 0; |
126 |
> |
|
127 |
> |
// We need the list of simulated atom types to figure out cutoffs |
128 |
> |
// as well as long range corrections. |
129 |
|
|
130 |
< |
if (!info_->isFortranInitialized()) { |
131 |
< |
info_->update(); |
130 |
> |
set<AtomType*>::iterator i; |
131 |
> |
set<AtomType*> atomTypes_; |
132 |
> |
atomTypes_ = info_->getSimulatedAtomTypes(); |
133 |
> |
|
134 |
> |
if (simParams_->haveCutoffRadius()) { |
135 |
> |
rCut_ = simParams_->getCutoffRadius(); |
136 |
> |
} else { |
137 |
> |
if (info_->usesElectrostaticAtoms()) { |
138 |
> |
sprintf(painCave.errMsg, |
139 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
140 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
141 |
> |
"\tfor the cutoffRadius.\n"); |
142 |
> |
painCave.isFatal = 0; |
143 |
> |
painCave.severity = OPENMD_INFO; |
144 |
> |
simError(); |
145 |
> |
rCut_ = 12.0; |
146 |
> |
} else { |
147 |
> |
RealType thisCut; |
148 |
> |
for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { |
149 |
> |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
150 |
> |
rCut_ = max(thisCut, rCut_); |
151 |
> |
} |
152 |
> |
sprintf(painCave.errMsg, |
153 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
154 |
> |
"\tOpenMD will use %lf angstroms.\n", |
155 |
> |
rCut_); |
156 |
> |
painCave.isFatal = 0; |
157 |
> |
painCave.severity = OPENMD_INFO; |
158 |
> |
simError(); |
159 |
> |
} |
160 |
|
} |
161 |
|
|
162 |
< |
preCalculation(); |
163 |
< |
|
164 |
< |
calcShortRangeInteraction(); |
162 |
> |
fDecomp_->setCutoffRadius(rCut_); |
163 |
> |
interactionMan_->setCutoffRadius(rCut_); |
164 |
> |
rCutSq_ = rCut_ * rCut_; |
165 |
|
|
166 |
< |
calcLongRangeInteraction(needPotential, needStress); |
166 |
> |
map<string, CutoffMethod> stringToCutoffMethod; |
167 |
> |
stringToCutoffMethod["HARD"] = HARD; |
168 |
> |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
169 |
> |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
170 |
> |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
171 |
> |
stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED; |
172 |
> |
stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL; |
173 |
> |
|
174 |
> |
if (simParams_->haveCutoffMethod()) { |
175 |
> |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
176 |
> |
map<string, CutoffMethod>::iterator i; |
177 |
> |
i = stringToCutoffMethod.find(cutMeth); |
178 |
> |
if (i == stringToCutoffMethod.end()) { |
179 |
> |
sprintf(painCave.errMsg, |
180 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
181 |
> |
"\tShould be one of: " |
182 |
> |
"HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n" |
183 |
> |
"\tSHIFTED_FORCE, or EWALD_FULL\n", |
184 |
> |
cutMeth.c_str()); |
185 |
> |
painCave.isFatal = 1; |
186 |
> |
painCave.severity = OPENMD_ERROR; |
187 |
> |
simError(); |
188 |
> |
} else { |
189 |
> |
cutoffMethod_ = i->second; |
190 |
> |
} |
191 |
> |
} else { |
192 |
> |
if (mdFileVersion > 1) { |
193 |
> |
sprintf(painCave.errMsg, |
194 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
195 |
> |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
196 |
> |
painCave.isFatal = 0; |
197 |
> |
painCave.severity = OPENMD_INFO; |
198 |
> |
simError(); |
199 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
200 |
> |
} else { |
201 |
> |
// handle the case where the old file version was in play |
202 |
> |
// (there should be no cutoffMethod, so we have to deduce it |
203 |
> |
// from other data). |
204 |
|
|
205 |
< |
postCalculation(); |
205 |
> |
sprintf(painCave.errMsg, |
206 |
> |
"ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n" |
207 |
> |
"\tOpenMD found a file which does not set a cutoffMethod.\n" |
208 |
> |
"\tOpenMD will attempt to deduce a cutoffMethod using the\n" |
209 |
> |
"\tbehavior of the older (version 1) code. To remove this\n" |
210 |
> |
"\twarning, add an explicit cutoffMethod and change the top\n" |
211 |
> |
"\tof the file so that it begins with <OpenMD version=2>\n"); |
212 |
> |
painCave.isFatal = 0; |
213 |
> |
painCave.severity = OPENMD_WARNING; |
214 |
> |
simError(); |
215 |
> |
|
216 |
> |
// The old file version tethered the shifting behavior to the |
217 |
> |
// electrostaticSummationMethod keyword. |
218 |
> |
|
219 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
220 |
> |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
221 |
> |
toUpper(myMethod); |
222 |
> |
|
223 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
224 |
> |
cutoffMethod_ = SHIFTED_POTENTIAL; |
225 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
226 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
227 |
> |
} else if (myMethod == "TAYLOR_SHIFTED") { |
228 |
> |
cutoffMethod_ = TAYLOR_SHIFTED; |
229 |
> |
} else if (myMethod == "EWALD_FULL") { |
230 |
> |
cutoffMethod_ = EWALD_FULL; |
231 |
> |
} |
232 |
> |
|
233 |
> |
if (simParams_->haveSwitchingRadius()) |
234 |
> |
rSwitch_ = simParams_->getSwitchingRadius(); |
235 |
|
|
236 |
< |
/* |
237 |
< |
std::vector<BendOrderStruct> bendOrderStruct; |
238 |
< |
for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) { |
239 |
< |
BendOrderStruct tmp; |
240 |
< |
tmp.bend= const_cast<Bend*>(i->first); |
241 |
< |
tmp.dataSet = i->second; |
242 |
< |
bendOrderStruct.push_back(tmp); |
236 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" || |
237 |
> |
myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") { |
238 |
> |
if (simParams_->haveSwitchingRadius()){ |
239 |
> |
sprintf(painCave.errMsg, |
240 |
> |
"ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n" |
241 |
> |
"\tA value was set for the switchingRadius\n" |
242 |
> |
"\teven though the electrostaticSummationMethod was\n" |
243 |
> |
"\tset to %s\n", myMethod.c_str()); |
244 |
> |
painCave.severity = OPENMD_WARNING; |
245 |
> |
painCave.isFatal = 1; |
246 |
> |
simError(); |
247 |
> |
} |
248 |
> |
} |
249 |
> |
if (abs(rCut_ - rSwitch_) < 0.0001) { |
250 |
> |
if (cutoffMethod_ == SHIFTED_FORCE) { |
251 |
> |
sprintf(painCave.errMsg, |
252 |
> |
"ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" |
253 |
> |
"\tcutoffRadius and switchingRadius are set to the\n" |
254 |
> |
"\tsame value. OpenMD will use shifted force\n" |
255 |
> |
"\tpotentials instead of switching functions.\n"); |
256 |
> |
painCave.isFatal = 0; |
257 |
> |
painCave.severity = OPENMD_WARNING; |
258 |
> |
simError(); |
259 |
> |
} else { |
260 |
> |
cutoffMethod_ = SHIFTED_POTENTIAL; |
261 |
> |
sprintf(painCave.errMsg, |
262 |
> |
"ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" |
263 |
> |
"\tcutoffRadius and switchingRadius are set to the\n" |
264 |
> |
"\tsame value. OpenMD will use shifted potentials\n" |
265 |
> |
"\tinstead of switching functions.\n"); |
266 |
> |
painCave.isFatal = 0; |
267 |
> |
painCave.severity = OPENMD_WARNING; |
268 |
> |
simError(); |
269 |
> |
} |
270 |
> |
} |
271 |
> |
} |
272 |
> |
} |
273 |
|
} |
274 |
+ |
|
275 |
+ |
// create the switching function object: |
276 |
|
|
277 |
< |
std::vector<TorsionOrderStruct> torsionOrderStruct; |
278 |
< |
for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) { |
279 |
< |
TorsionOrderStruct tmp; |
280 |
< |
tmp.torsion = const_cast<Torsion*>(j->first); |
281 |
< |
tmp.dataSet = j->second; |
282 |
< |
torsionOrderStruct.push_back(tmp); |
277 |
> |
switcher_ = new SwitchingFunction(); |
278 |
> |
|
279 |
> |
if (cutoffMethod_ == SWITCHED) { |
280 |
> |
if (simParams_->haveSwitchingRadius()) { |
281 |
> |
rSwitch_ = simParams_->getSwitchingRadius(); |
282 |
> |
if (rSwitch_ > rCut_) { |
283 |
> |
sprintf(painCave.errMsg, |
284 |
> |
"ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
285 |
> |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
286 |
> |
painCave.isFatal = 1; |
287 |
> |
painCave.severity = OPENMD_ERROR; |
288 |
> |
simError(); |
289 |
> |
} |
290 |
> |
} else { |
291 |
> |
rSwitch_ = 0.85 * rCut_; |
292 |
> |
sprintf(painCave.errMsg, |
293 |
> |
"ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
294 |
> |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
295 |
> |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
296 |
> |
painCave.isFatal = 0; |
297 |
> |
painCave.severity = OPENMD_WARNING; |
298 |
> |
simError(); |
299 |
> |
} |
300 |
> |
} else { |
301 |
> |
if (mdFileVersion > 1) { |
302 |
> |
// throw an error if we define a switching radius and don't need one. |
303 |
> |
// older file versions should not do this. |
304 |
> |
if (simParams_->haveSwitchingRadius()) { |
305 |
> |
map<string, CutoffMethod>::const_iterator it; |
306 |
> |
string theMeth; |
307 |
> |
for (it = stringToCutoffMethod.begin(); |
308 |
> |
it != stringToCutoffMethod.end(); ++it) { |
309 |
> |
if (it->second == cutoffMethod_) { |
310 |
> |
theMeth = it->first; |
311 |
> |
break; |
312 |
> |
} |
313 |
> |
} |
314 |
> |
sprintf(painCave.errMsg, |
315 |
> |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
316 |
> |
"\tis not set to SWITCHED, so switchingRadius value\n" |
317 |
> |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
318 |
> |
painCave.isFatal = 0; |
319 |
> |
painCave.severity = OPENMD_WARNING; |
320 |
> |
simError(); |
321 |
> |
} |
322 |
> |
} |
323 |
> |
rSwitch_ = rCut_; |
324 |
|
} |
325 |
|
|
326 |
< |
std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor)); |
327 |
< |
std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor)); |
328 |
< |
for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) { |
329 |
< |
Bend* bend = k->bend; |
330 |
< |
std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " "; |
331 |
< |
std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl; |
326 |
> |
// Default to cubic switching function. |
327 |
> |
sft_ = cubic; |
328 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
329 |
> |
string funcType = simParams_->getSwitchingFunctionType(); |
330 |
> |
toUpper(funcType); |
331 |
> |
if (funcType == "CUBIC") { |
332 |
> |
sft_ = cubic; |
333 |
> |
} else { |
334 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
335 |
> |
sft_ = fifth_order_poly; |
336 |
> |
} else { |
337 |
> |
// throw error |
338 |
> |
sprintf( painCave.errMsg, |
339 |
> |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
340 |
> |
"\tswitchingFunctionType must be one of: " |
341 |
> |
"\"cubic\" or \"fifth_order_polynomial\".", |
342 |
> |
funcType.c_str() ); |
343 |
> |
painCave.isFatal = 1; |
344 |
> |
painCave.severity = OPENMD_ERROR; |
345 |
> |
simError(); |
346 |
> |
} |
347 |
> |
} |
348 |
|
} |
349 |
< |
for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) { |
350 |
< |
Torsion* torsion = l->torsion; |
118 |
< |
std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " "; |
119 |
< |
std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl; |
120 |
< |
} |
121 |
< |
*/ |
349 |
> |
switcher_->setSwitchType(sft_); |
350 |
> |
switcher_->setSwitch(rSwitch_, rCut_); |
351 |
|
} |
352 |
|
|
353 |
+ |
void ForceManager::initialize() { |
354 |
+ |
|
355 |
+ |
if (!info_->isTopologyDone()) { |
356 |
+ |
|
357 |
+ |
info_->update(); |
358 |
+ |
interactionMan_->setSimInfo(info_); |
359 |
+ |
interactionMan_->initialize(); |
360 |
+ |
|
361 |
+ |
//! We want to delay the cutoffs until after the interaction |
362 |
+ |
//! manager has set up the atom-atom interactions so that we can |
363 |
+ |
//! query them for suggested cutoff values |
364 |
+ |
setupCutoffs(); |
365 |
+ |
|
366 |
+ |
info_->prepareTopology(); |
367 |
+ |
|
368 |
+ |
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
369 |
+ |
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
370 |
+ |
if (doHeatFlux_) doParticlePot_ = true; |
371 |
+ |
|
372 |
+ |
doElectricField_ = info_->getSimParams()->getOutputElectricField(); |
373 |
+ |
doSitePotential_ = info_->getSimParams()->getOutputSitePotential(); |
374 |
+ |
|
375 |
+ |
} |
376 |
+ |
|
377 |
+ |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
378 |
+ |
|
379 |
+ |
//! Force fields can set options on how to scale van der Waals and |
380 |
+ |
//! electrostatic interactions for atoms connected via bonds, bends |
381 |
+ |
//! and torsions in this case the topological distance between |
382 |
+ |
//! atoms is: |
383 |
+ |
//! 0 = topologically unconnected |
384 |
+ |
//! 1 = bonded together |
385 |
+ |
//! 2 = connected via a bend |
386 |
+ |
//! 3 = connected via a torsion |
387 |
+ |
|
388 |
+ |
vdwScale_.reserve(4); |
389 |
+ |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
390 |
+ |
|
391 |
+ |
electrostaticScale_.reserve(4); |
392 |
+ |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
393 |
+ |
|
394 |
+ |
vdwScale_[0] = 1.0; |
395 |
+ |
vdwScale_[1] = fopts.getvdw12scale(); |
396 |
+ |
vdwScale_[2] = fopts.getvdw13scale(); |
397 |
+ |
vdwScale_[3] = fopts.getvdw14scale(); |
398 |
+ |
|
399 |
+ |
electrostaticScale_[0] = 1.0; |
400 |
+ |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
401 |
+ |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
402 |
+ |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
403 |
+ |
|
404 |
+ |
if (info_->getSimParams()->haveUniformField()) { |
405 |
+ |
UniformField* eField = new UniformField(info_); |
406 |
+ |
perturbations_.push_back(eField); |
407 |
+ |
} |
408 |
+ |
if (info_->getSimParams()->haveUniformGradientStrength() || |
409 |
+ |
info_->getSimParams()->haveUniformGradientDirection1() || |
410 |
+ |
info_->getSimParams()->haveUniformGradientDirection2() ) { |
411 |
+ |
UniformGradient* eGrad = new UniformGradient(info_); |
412 |
+ |
perturbations_.push_back(eGrad); |
413 |
+ |
} |
414 |
+ |
|
415 |
+ |
usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions(); |
416 |
+ |
|
417 |
+ |
fDecomp_->distributeInitialData(); |
418 |
+ |
|
419 |
+ |
initialized_ = true; |
420 |
+ |
|
421 |
+ |
} |
422 |
+ |
|
423 |
+ |
void ForceManager::calcForces() { |
424 |
+ |
|
425 |
+ |
if (!initialized_) initialize(); |
426 |
+ |
|
427 |
+ |
preCalculation(); |
428 |
+ |
shortRangeInteractions(); |
429 |
+ |
longRangeInteractions(); |
430 |
+ |
postCalculation(); |
431 |
+ |
} |
432 |
+ |
|
433 |
|
void ForceManager::preCalculation() { |
434 |
|
SimInfo::MoleculeIterator mi; |
435 |
|
Molecule* mol; |
437 |
|
Atom* atom; |
438 |
|
Molecule::RigidBodyIterator rbIter; |
439 |
|
RigidBody* rb; |
440 |
+ |
Molecule::CutoffGroupIterator ci; |
441 |
+ |
CutoffGroup* cg; |
442 |
|
|
443 |
< |
// forces are zeroed here, before any are accumulated. |
444 |
< |
// NOTE: do not rezero the forces in Fortran. |
445 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
446 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
443 |
> |
// forces and potentials are zeroed here, before any are |
444 |
> |
// accumulated. |
445 |
> |
|
446 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
447 |
> |
|
448 |
> |
snap->setBondPotential(0.0); |
449 |
> |
snap->setBendPotential(0.0); |
450 |
> |
snap->setTorsionPotential(0.0); |
451 |
> |
snap->setInversionPotential(0.0); |
452 |
> |
|
453 |
> |
potVec zeroPot(0.0); |
454 |
> |
snap->setLongRangePotential(zeroPot); |
455 |
> |
snap->setExcludedPotentials(zeroPot); |
456 |
> |
|
457 |
> |
snap->setRestraintPotential(0.0); |
458 |
> |
snap->setRawPotential(0.0); |
459 |
> |
|
460 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
461 |
> |
mol = info_->nextMolecule(mi)) { |
462 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
463 |
> |
atom = mol->nextAtom(ai)) { |
464 |
|
atom->zeroForcesAndTorques(); |
465 |
|
} |
466 |
< |
|
466 |
> |
|
467 |
|
//change the positions of atoms which belong to the rigidbodies |
468 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
468 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
469 |
> |
rb = mol->nextRigidBody(rbIter)) { |
470 |
|
rb->zeroForcesAndTorques(); |
471 |
|
} |
472 |
+ |
|
473 |
+ |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
474 |
+ |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
475 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
476 |
+ |
//calculate the center of mass of cutoff group |
477 |
+ |
cg->updateCOM(); |
478 |
+ |
} |
479 |
+ |
} |
480 |
|
} |
481 |
|
|
482 |
+ |
// Zero out the stress tensor |
483 |
+ |
stressTensor *= 0.0; |
484 |
+ |
// Zero out the heatFlux |
485 |
+ |
fDecomp_->setHeatFlux( Vector3d(0.0) ); |
486 |
|
} |
487 |
< |
|
488 |
< |
void ForceManager::calcShortRangeInteraction() { |
487 |
> |
|
488 |
> |
void ForceManager::shortRangeInteractions() { |
489 |
|
Molecule* mol; |
490 |
|
RigidBody* rb; |
491 |
|
Bond* bond; |
492 |
|
Bend* bend; |
493 |
|
Torsion* torsion; |
494 |
+ |
Inversion* inversion; |
495 |
|
SimInfo::MoleculeIterator mi; |
496 |
|
Molecule::RigidBodyIterator rbIter; |
497 |
|
Molecule::BondIterator bondIter;; |
498 |
|
Molecule::BendIterator bendIter; |
499 |
|
Molecule::TorsionIterator torsionIter; |
500 |
< |
double bondPotential = 0.0; |
501 |
< |
double bendPotential = 0.0; |
502 |
< |
double torsionPotential = 0.0; |
500 |
> |
Molecule::InversionIterator inversionIter; |
501 |
> |
RealType bondPotential = 0.0; |
502 |
> |
RealType bendPotential = 0.0; |
503 |
> |
RealType torsionPotential = 0.0; |
504 |
> |
RealType inversionPotential = 0.0; |
505 |
|
|
506 |
|
//calculate short range interactions |
507 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
507 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
508 |
> |
mol = info_->nextMolecule(mi)) { |
509 |
|
|
510 |
|
//change the positions of atoms which belong to the rigidbodies |
511 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
512 |
< |
rb->updateAtoms(); |
511 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
512 |
> |
rb = mol->nextRigidBody(rbIter)) { |
513 |
> |
rb->updateAtoms(); |
514 |
|
} |
515 |
|
|
516 |
< |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
517 |
< |
bond->calcForce(); |
516 |
> |
for (bond = mol->beginBond(bondIter); bond != NULL; |
517 |
> |
bond = mol->nextBond(bondIter)) { |
518 |
> |
bond->calcForce(doParticlePot_); |
519 |
|
bondPotential += bond->getPotential(); |
520 |
|
} |
521 |
|
|
522 |
< |
|
523 |
< |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
524 |
< |
|
525 |
< |
double angle; |
526 |
< |
bend->calcForce(angle); |
527 |
< |
double currBendPot = bend->getPotential(); |
528 |
< |
bendPotential += bend->getPotential(); |
529 |
< |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
530 |
< |
if (i == bendDataSets.end()) { |
531 |
< |
BendDataSet dataSet; |
532 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
533 |
< |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
534 |
< |
dataSet.deltaV = 0.0; |
535 |
< |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
536 |
< |
}else { |
537 |
< |
i->second.prev.angle = i->second.curr.angle; |
538 |
< |
i->second.prev.potential = i->second.curr.potential; |
539 |
< |
i->second.curr.angle = angle; |
540 |
< |
i->second.curr.potential = currBendPot; |
541 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
542 |
< |
} |
543 |
< |
} |
544 |
< |
|
545 |
< |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
199 |
< |
double angle; |
200 |
< |
torsion->calcForce(angle); |
201 |
< |
double currTorsionPot = torsion->getPotential(); |
202 |
< |
torsionPotential += torsion->getPotential(); |
203 |
< |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
204 |
< |
if (i == torsionDataSets.end()) { |
205 |
< |
TorsionDataSet dataSet; |
206 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
207 |
< |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
208 |
< |
dataSet.deltaV = 0.0; |
209 |
< |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
210 |
< |
}else { |
211 |
< |
i->second.prev.angle = i->second.curr.angle; |
212 |
< |
i->second.prev.potential = i->second.curr.potential; |
213 |
< |
i->second.curr.angle = angle; |
214 |
< |
i->second.curr.potential = currTorsionPot; |
215 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
216 |
< |
} |
522 |
> |
for (bend = mol->beginBend(bendIter); bend != NULL; |
523 |
> |
bend = mol->nextBend(bendIter)) { |
524 |
> |
|
525 |
> |
RealType angle; |
526 |
> |
bend->calcForce(angle, doParticlePot_); |
527 |
> |
RealType currBendPot = bend->getPotential(); |
528 |
> |
|
529 |
> |
bendPotential += bend->getPotential(); |
530 |
> |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
531 |
> |
if (i == bendDataSets.end()) { |
532 |
> |
BendDataSet dataSet; |
533 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
534 |
> |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
535 |
> |
dataSet.deltaV = 0.0; |
536 |
> |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
537 |
> |
dataSet)); |
538 |
> |
}else { |
539 |
> |
i->second.prev.angle = i->second.curr.angle; |
540 |
> |
i->second.prev.potential = i->second.curr.potential; |
541 |
> |
i->second.curr.angle = angle; |
542 |
> |
i->second.curr.potential = currBendPot; |
543 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
544 |
> |
i->second.prev.potential); |
545 |
> |
} |
546 |
|
} |
547 |
< |
|
547 |
> |
|
548 |
> |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
549 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
550 |
> |
RealType angle; |
551 |
> |
torsion->calcForce(angle, doParticlePot_); |
552 |
> |
RealType currTorsionPot = torsion->getPotential(); |
553 |
> |
torsionPotential += torsion->getPotential(); |
554 |
> |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
555 |
> |
if (i == torsionDataSets.end()) { |
556 |
> |
TorsionDataSet dataSet; |
557 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
558 |
> |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
559 |
> |
dataSet.deltaV = 0.0; |
560 |
> |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
561 |
> |
}else { |
562 |
> |
i->second.prev.angle = i->second.curr.angle; |
563 |
> |
i->second.prev.potential = i->second.curr.potential; |
564 |
> |
i->second.curr.angle = angle; |
565 |
> |
i->second.curr.potential = currTorsionPot; |
566 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
567 |
> |
i->second.prev.potential); |
568 |
> |
} |
569 |
> |
} |
570 |
> |
|
571 |
> |
for (inversion = mol->beginInversion(inversionIter); |
572 |
> |
inversion != NULL; |
573 |
> |
inversion = mol->nextInversion(inversionIter)) { |
574 |
> |
RealType angle; |
575 |
> |
inversion->calcForce(angle, doParticlePot_); |
576 |
> |
RealType currInversionPot = inversion->getPotential(); |
577 |
> |
inversionPotential += inversion->getPotential(); |
578 |
> |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
579 |
> |
if (i == inversionDataSets.end()) { |
580 |
> |
InversionDataSet dataSet; |
581 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
582 |
> |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
583 |
> |
dataSet.deltaV = 0.0; |
584 |
> |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
585 |
> |
}else { |
586 |
> |
i->second.prev.angle = i->second.curr.angle; |
587 |
> |
i->second.prev.potential = i->second.curr.potential; |
588 |
> |
i->second.curr.angle = angle; |
589 |
> |
i->second.curr.potential = currInversionPot; |
590 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
591 |
> |
i->second.prev.potential); |
592 |
> |
} |
593 |
> |
} |
594 |
|
} |
595 |
< |
|
596 |
< |
double shortRangePotential = bondPotential + bendPotential + torsionPotential; |
595 |
> |
|
596 |
> |
#ifdef IS_MPI |
597 |
> |
// Collect from all nodes. This should eventually be moved into a |
598 |
> |
// SystemDecomposition, but this is a better place than in |
599 |
> |
// Thermo to do the collection. |
600 |
> |
|
601 |
> |
MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE, |
602 |
> |
MPI_SUM, MPI_COMM_WORLD); |
603 |
> |
MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE, |
604 |
> |
MPI_SUM, MPI_COMM_WORLD); |
605 |
> |
MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1, |
606 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
607 |
> |
MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1, |
608 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
609 |
> |
#endif |
610 |
> |
|
611 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
223 |
– |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
224 |
– |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
225 |
– |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
226 |
– |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
227 |
– |
|
228 |
– |
} |
612 |
|
|
613 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
614 |
< |
Snapshot* curSnapshot; |
615 |
< |
DataStorage* config; |
616 |
< |
double* frc; |
234 |
< |
double* pos; |
235 |
< |
double* trq; |
236 |
< |
double* A; |
237 |
< |
double* electroFrame; |
238 |
< |
double* rc; |
613 |
> |
curSnapshot->setBondPotential(bondPotential); |
614 |
> |
curSnapshot->setBendPotential(bendPotential); |
615 |
> |
curSnapshot->setTorsionPotential(torsionPotential); |
616 |
> |
curSnapshot->setInversionPotential(inversionPotential); |
617 |
|
|
618 |
< |
//get current snapshot from SimInfo |
619 |
< |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
618 |
> |
// RealType shortRangePotential = bondPotential + bendPotential + |
619 |
> |
// torsionPotential + inversionPotential; |
620 |
|
|
621 |
< |
//get array pointers |
622 |
< |
config = &(curSnapshot->atomData); |
623 |
< |
frc = config->getArrayPointer(DataStorage::dslForce); |
624 |
< |
pos = config->getArrayPointer(DataStorage::dslPosition); |
247 |
< |
trq = config->getArrayPointer(DataStorage::dslTorque); |
248 |
< |
A = config->getArrayPointer(DataStorage::dslAmat); |
249 |
< |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
621 |
> |
// curSnapshot->setShortRangePotential(shortRangePotential); |
622 |
> |
} |
623 |
> |
|
624 |
> |
void ForceManager::longRangeInteractions() { |
625 |
|
|
626 |
+ |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
627 |
+ |
DataStorage* config = &(curSnapshot->atomData); |
628 |
+ |
DataStorage* cgConfig = &(curSnapshot->cgData); |
629 |
+ |
int jstart, jend; |
630 |
+ |
|
631 |
|
//calculate the center of mass of cutoff group |
632 |
+ |
|
633 |
|
SimInfo::MoleculeIterator mi; |
634 |
|
Molecule* mol; |
635 |
|
Molecule::CutoffGroupIterator ci; |
636 |
|
CutoffGroup* cg; |
637 |
< |
Vector3d com; |
638 |
< |
std::vector<Vector3d> rcGroup; |
639 |
< |
|
640 |
< |
if(info_->getNCutoffGroups() > 0){ |
641 |
< |
|
642 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
643 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
263 |
< |
cg->getCOM(com); |
264 |
< |
rcGroup.push_back(com); |
637 |
> |
|
638 |
> |
if(info_->getNCutoffGroups() != info_->getNAtoms()){ |
639 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
640 |
> |
mol = info_->nextMolecule(mi)) { |
641 |
> |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
642 |
> |
cg = mol->nextCutoffGroup(ci)) { |
643 |
> |
cg->updateCOM(); |
644 |
|
} |
645 |
< |
}// end for (mol) |
267 |
< |
|
268 |
< |
rc = rcGroup[0].getArrayPointer(); |
645 |
> |
} |
646 |
|
} else { |
647 |
< |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
648 |
< |
rc = pos; |
647 |
> |
// center of mass of the group is the same as position of the atom |
648 |
> |
// if cutoff group does not exist |
649 |
> |
cgConfig->position = config->position; |
650 |
> |
cgConfig->velocity = config->velocity; |
651 |
|
} |
652 |
< |
|
653 |
< |
//initialize data before passing to fortran |
654 |
< |
double longRangePotential[LR_POT_TYPES]; |
276 |
< |
double lrPot = 0.0; |
652 |
> |
|
653 |
> |
fDecomp_->zeroWorkArrays(); |
654 |
> |
fDecomp_->distributeData(); |
655 |
|
|
656 |
< |
Mat3x3d tau; |
657 |
< |
short int passedCalcPot = needPotential; |
658 |
< |
short int passedCalcStress = needStress; |
659 |
< |
int isError = 0; |
656 |
> |
int cg1, cg2, atom1, atom2, topoDist; |
657 |
> |
Vector3d d_grp, dag, d, gvel2, vel2; |
658 |
> |
RealType rgrpsq, rgrp, r2, r; |
659 |
> |
RealType electroMult, vdwMult; |
660 |
> |
RealType vij; |
661 |
> |
Vector3d fij, fg, f1; |
662 |
> |
tuple3<RealType, RealType, RealType> cuts; |
663 |
> |
RealType rCut, rCutSq, rListSq; |
664 |
> |
bool in_switching_region; |
665 |
> |
RealType sw, dswdr, swderiv; |
666 |
> |
vector<int> atomListColumn, atomListRow; |
667 |
> |
InteractionData idat; |
668 |
> |
SelfData sdat; |
669 |
> |
RealType mf; |
670 |
> |
RealType vpair; |
671 |
> |
RealType dVdFQ1(0.0); |
672 |
> |
RealType dVdFQ2(0.0); |
673 |
> |
potVec longRangePotential(0.0); |
674 |
> |
RealType reciprocalPotential(0.0); |
675 |
> |
potVec workPot(0.0); |
676 |
> |
potVec exPot(0.0); |
677 |
> |
Vector3d eField1(0.0); |
678 |
> |
Vector3d eField2(0.0); |
679 |
> |
RealType sPot1(0.0); |
680 |
> |
RealType sPot2(0.0); |
681 |
> |
bool newAtom1; |
682 |
> |
|
683 |
> |
vector<int>::iterator ia, jb; |
684 |
|
|
685 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
686 |
< |
longRangePotential[i]=0.0; //Initialize array |
685 |
> |
int loopStart, loopEnd; |
686 |
> |
|
687 |
> |
idat.rcut = &rCut_; |
688 |
> |
idat.vdwMult = &vdwMult; |
689 |
> |
idat.electroMult = &electroMult; |
690 |
> |
idat.pot = &workPot; |
691 |
> |
idat.excludedPot = &exPot; |
692 |
> |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
693 |
> |
sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); |
694 |
> |
idat.vpair = &vpair; |
695 |
> |
idat.dVdFQ1 = &dVdFQ1; |
696 |
> |
idat.dVdFQ2 = &dVdFQ2; |
697 |
> |
idat.eField1 = &eField1; |
698 |
> |
idat.eField2 = &eField2; |
699 |
> |
idat.sPot1 = &sPot1; |
700 |
> |
idat.sPot2 = &sPot2; |
701 |
> |
idat.f1 = &f1; |
702 |
> |
idat.sw = &sw; |
703 |
> |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
704 |
> |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || |
705 |
> |
cutoffMethod_ == TAYLOR_SHIFTED) ? true : false; |
706 |
> |
idat.doParticlePot = doParticlePot_; |
707 |
> |
idat.doElectricField = doElectricField_; |
708 |
> |
idat.doSitePotential = doSitePotential_; |
709 |
> |
sdat.doParticlePot = doParticlePot_; |
710 |
> |
|
711 |
> |
loopEnd = PAIR_LOOP; |
712 |
> |
if (info_->requiresPrepair() ) { |
713 |
> |
loopStart = PREPAIR_LOOP; |
714 |
> |
} else { |
715 |
> |
loopStart = PAIR_LOOP; |
716 |
|
} |
717 |
+ |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
718 |
+ |
|
719 |
+ |
if (iLoop == loopStart) { |
720 |
+ |
bool update_nlist = fDecomp_->checkNeighborList(); |
721 |
+ |
if (update_nlist) { |
722 |
+ |
if (!usePeriodicBoundaryConditions_) |
723 |
+ |
Mat3x3d bbox = thermo->getBoundingBox(); |
724 |
+ |
fDecomp_->buildNeighborList(neighborList_, point_); |
725 |
+ |
} |
726 |
+ |
} |
727 |
|
|
728 |
< |
doForceLoop( pos, |
729 |
< |
rc, |
730 |
< |
A, |
731 |
< |
electroFrame, |
732 |
< |
frc, |
733 |
< |
trq, |
293 |
< |
tau.getArrayPointer(), |
294 |
< |
longRangePotential, |
295 |
< |
&passedCalcPot, |
296 |
< |
&passedCalcStress, |
297 |
< |
&isError ); |
728 |
> |
for (unsigned int cg1 = 0; cg1 < point_.size() - 1; cg1++) { |
729 |
> |
|
730 |
> |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
731 |
> |
newAtom1 = true; |
732 |
> |
|
733 |
> |
for (int m2 = point_[cg1]; m2 < point_[cg1+1]; m2++) { |
734 |
|
|
735 |
< |
if( isError ){ |
736 |
< |
sprintf( painCave.errMsg, |
737 |
< |
"Error returned from the fortran force calculation.\n" ); |
738 |
< |
painCave.isFatal = 1; |
739 |
< |
simError(); |
735 |
> |
cg2 = neighborList_[m2]; |
736 |
> |
|
737 |
> |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
738 |
> |
|
739 |
> |
// already wrapped in the getIntergroupVector call: |
740 |
> |
// curSnapshot->wrapVector(d_grp); |
741 |
> |
rgrpsq = d_grp.lengthSquare(); |
742 |
> |
|
743 |
> |
if (rgrpsq < rCutSq_) { |
744 |
> |
if (iLoop == PAIR_LOOP) { |
745 |
> |
vij = 0.0; |
746 |
> |
fij.zero(); |
747 |
> |
eField1.zero(); |
748 |
> |
eField2.zero(); |
749 |
> |
sPot1 = 0.0; |
750 |
> |
sPot2 = 0.0; |
751 |
> |
} |
752 |
> |
|
753 |
> |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
754 |
> |
rgrp); |
755 |
> |
|
756 |
> |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
757 |
> |
|
758 |
> |
if (doHeatFlux_) |
759 |
> |
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
760 |
> |
|
761 |
> |
for (ia = atomListRow.begin(); |
762 |
> |
ia != atomListRow.end(); ++ia) { |
763 |
> |
atom1 = (*ia); |
764 |
> |
|
765 |
> |
for (jb = atomListColumn.begin(); |
766 |
> |
jb != atomListColumn.end(); ++jb) { |
767 |
> |
atom2 = (*jb); |
768 |
> |
|
769 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { |
770 |
> |
|
771 |
> |
vpair = 0.0; |
772 |
> |
workPot = 0.0; |
773 |
> |
exPot = 0.0; |
774 |
> |
f1.zero(); |
775 |
> |
dVdFQ1 = 0.0; |
776 |
> |
dVdFQ2 = 0.0; |
777 |
> |
|
778 |
> |
fDecomp_->fillInteractionData(idat, atom1, atom2, newAtom1); |
779 |
> |
|
780 |
> |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
781 |
> |
vdwMult = vdwScale_[topoDist]; |
782 |
> |
electroMult = electrostaticScale_[topoDist]; |
783 |
> |
|
784 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
785 |
> |
idat.d = &d_grp; |
786 |
> |
idat.r2 = &rgrpsq; |
787 |
> |
if (doHeatFlux_) |
788 |
> |
vel2 = gvel2; |
789 |
> |
} else { |
790 |
> |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
791 |
> |
curSnapshot->wrapVector( d ); |
792 |
> |
r2 = d.lengthSquare(); |
793 |
> |
idat.d = &d; |
794 |
> |
idat.r2 = &r2; |
795 |
> |
if (doHeatFlux_) |
796 |
> |
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
797 |
> |
} |
798 |
> |
|
799 |
> |
r = sqrt( *(idat.r2) ); |
800 |
> |
idat.rij = &r; |
801 |
> |
|
802 |
> |
if (iLoop == PREPAIR_LOOP) { |
803 |
> |
interactionMan_->doPrePair(idat); |
804 |
> |
} else { |
805 |
> |
interactionMan_->doPair(idat); |
806 |
> |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
807 |
> |
vij += vpair; |
808 |
> |
fij += f1; |
809 |
> |
stressTensor -= outProduct( *(idat.d), f1); |
810 |
> |
if (doHeatFlux_) |
811 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
812 |
> |
} |
813 |
> |
} |
814 |
> |
} |
815 |
> |
} |
816 |
> |
|
817 |
> |
if (iLoop == PAIR_LOOP) { |
818 |
> |
if (in_switching_region) { |
819 |
> |
swderiv = vij * dswdr / rgrp; |
820 |
> |
fg = swderiv * d_grp; |
821 |
> |
fij += fg; |
822 |
> |
|
823 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
824 |
> |
if (!fDecomp_->skipAtomPair(atomListRow[0], |
825 |
> |
atomListColumn[0], |
826 |
> |
cg1, cg2)) { |
827 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
828 |
> |
if (doHeatFlux_) |
829 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
830 |
> |
} |
831 |
> |
} |
832 |
> |
|
833 |
> |
for (ia = atomListRow.begin(); |
834 |
> |
ia != atomListRow.end(); ++ia) { |
835 |
> |
atom1 = (*ia); |
836 |
> |
mf = fDecomp_->getMassFactorRow(atom1); |
837 |
> |
// fg is the force on atom ia due to cutoff group's |
838 |
> |
// presence in switching region |
839 |
> |
fg = swderiv * d_grp * mf; |
840 |
> |
fDecomp_->addForceToAtomRow(atom1, fg); |
841 |
> |
if (atomListRow.size() > 1) { |
842 |
> |
if (info_->usesAtomicVirial()) { |
843 |
> |
// find the distance between the atom |
844 |
> |
// and the center of the cutoff group: |
845 |
> |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
846 |
> |
stressTensor -= outProduct(dag, fg); |
847 |
> |
if (doHeatFlux_) |
848 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
849 |
> |
} |
850 |
> |
} |
851 |
> |
} |
852 |
> |
for (jb = atomListColumn.begin(); |
853 |
> |
jb != atomListColumn.end(); ++jb) { |
854 |
> |
atom2 = (*jb); |
855 |
> |
mf = fDecomp_->getMassFactorColumn(atom2); |
856 |
> |
// fg is the force on atom jb due to cutoff group's |
857 |
> |
// presence in switching region |
858 |
> |
fg = -swderiv * d_grp * mf; |
859 |
> |
fDecomp_->addForceToAtomColumn(atom2, fg); |
860 |
> |
|
861 |
> |
if (atomListColumn.size() > 1) { |
862 |
> |
if (info_->usesAtomicVirial()) { |
863 |
> |
// find the distance between the atom |
864 |
> |
// and the center of the cutoff group: |
865 |
> |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
866 |
> |
stressTensor -= outProduct(dag, fg); |
867 |
> |
if (doHeatFlux_) |
868 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
869 |
> |
} |
870 |
> |
} |
871 |
> |
} |
872 |
> |
} |
873 |
> |
//if (!info_->usesAtomicVirial()) { |
874 |
> |
// stressTensor -= outProduct(d_grp, fij); |
875 |
> |
// if (doHeatFlux_) |
876 |
> |
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
877 |
> |
//} |
878 |
> |
} |
879 |
> |
} |
880 |
> |
} |
881 |
> |
newAtom1 = false; |
882 |
> |
} |
883 |
> |
|
884 |
> |
if (iLoop == PREPAIR_LOOP) { |
885 |
> |
if (info_->requiresPrepair()) { |
886 |
> |
|
887 |
> |
fDecomp_->collectIntermediateData(); |
888 |
> |
|
889 |
> |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
890 |
> |
fDecomp_->fillSelfData(sdat, atom1); |
891 |
> |
interactionMan_->doPreForce(sdat); |
892 |
> |
} |
893 |
> |
|
894 |
> |
fDecomp_->distributeIntermediateData(); |
895 |
> |
|
896 |
> |
} |
897 |
> |
} |
898 |
|
} |
899 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
900 |
< |
lrPot += longRangePotential[i]; //Quick hack |
899 |
> |
|
900 |
> |
// collects pairwise information |
901 |
> |
fDecomp_->collectData(); |
902 |
> |
if (cutoffMethod_ == EWALD_FULL) { |
903 |
> |
interactionMan_->doReciprocalSpaceSum(reciprocalPotential); |
904 |
> |
|
905 |
> |
curSnapshot->setReciprocalPotential(reciprocalPotential); |
906 |
|
} |
907 |
+ |
|
908 |
+ |
if (info_->requiresSelfCorrection()) { |
909 |
+ |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
910 |
+ |
fDecomp_->fillSelfData(sdat, atom1); |
911 |
+ |
interactionMan_->doSelfCorrection(sdat); |
912 |
+ |
} |
913 |
+ |
} |
914 |
|
|
915 |
< |
//store the tau and long range potential |
916 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
311 |
< |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
312 |
< |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
915 |
> |
// collects single-atom information |
916 |
> |
fDecomp_->collectSelfData(); |
917 |
|
|
918 |
< |
curSnapshot->statData.setTau(tau); |
919 |
< |
} |
918 |
> |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
919 |
> |
*(fDecomp_->getPairwisePotential()); |
920 |
|
|
921 |
+ |
curSnapshot->setLongRangePotential(longRangePotential); |
922 |
+ |
|
923 |
+ |
curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + |
924 |
+ |
*(fDecomp_->getExcludedPotential())); |
925 |
|
|
926 |
+ |
} |
927 |
+ |
|
928 |
|
void ForceManager::postCalculation() { |
929 |
+ |
|
930 |
+ |
vector<Perturbation*>::iterator pi; |
931 |
+ |
for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) { |
932 |
+ |
(*pi)->applyPerturbation(); |
933 |
+ |
} |
934 |
+ |
|
935 |
|
SimInfo::MoleculeIterator mi; |
936 |
|
Molecule* mol; |
937 |
|
Molecule::RigidBodyIterator rbIter; |
938 |
|
RigidBody* rb; |
939 |
< |
|
939 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
940 |
> |
|
941 |
|
// collect the atomic forces onto rigid bodies |
942 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
943 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
944 |
< |
rb->calcForcesAndTorques(); |
942 |
> |
|
943 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
944 |
> |
mol = info_->nextMolecule(mi)) { |
945 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
946 |
> |
rb = mol->nextRigidBody(rbIter)) { |
947 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
948 |
> |
stressTensor += rbTau; |
949 |
|
} |
950 |
|
} |
951 |
+ |
|
952 |
+ |
#ifdef IS_MPI |
953 |
+ |
MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9, |
954 |
+ |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
955 |
+ |
#endif |
956 |
+ |
curSnapshot->setStressTensor(stressTensor); |
957 |
+ |
|
958 |
+ |
if (info_->getSimParams()->getUseLongRangeCorrections()) { |
959 |
+ |
/* |
960 |
+ |
RealType vol = curSnapshot->getVolume(); |
961 |
+ |
RealType Elrc(0.0); |
962 |
+ |
RealType Wlrc(0.0); |
963 |
|
|
964 |
< |
} |
964 |
> |
set<AtomType*>::iterator i; |
965 |
> |
set<AtomType*>::iterator j; |
966 |
> |
|
967 |
> |
RealType n_i, n_j; |
968 |
> |
RealType rho_i, rho_j; |
969 |
> |
pair<RealType, RealType> LRI; |
970 |
> |
|
971 |
> |
for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { |
972 |
> |
n_i = RealType(info_->getGlobalCountOfType(*i)); |
973 |
> |
rho_i = n_i / vol; |
974 |
> |
for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) { |
975 |
> |
n_j = RealType(info_->getGlobalCountOfType(*j)); |
976 |
> |
rho_j = n_j / vol; |
977 |
> |
|
978 |
> |
LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) ); |
979 |
|
|
980 |
< |
} //end namespace oopse |
980 |
> |
Elrc += n_i * rho_j * LRI.first; |
981 |
> |
Wlrc -= rho_i * rho_j * LRI.second; |
982 |
> |
} |
983 |
> |
} |
984 |
> |
Elrc *= 2.0 * NumericConstant::PI; |
985 |
> |
Wlrc *= 2.0 * NumericConstant::PI; |
986 |
> |
|
987 |
> |
RealType lrp = curSnapshot->getLongRangePotential(); |
988 |
> |
curSnapshot->setLongRangePotential(lrp + Elrc); |
989 |
> |
stressTensor += Wlrc * SquareMatrix3<RealType>::identity(); |
990 |
> |
curSnapshot->setStressTensor(stressTensor); |
991 |
> |
*/ |
992 |
> |
|
993 |
> |
} |
994 |
> |
} |
995 |
> |
} |