ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 2066 by gezelter, Thu Mar 5 15:22:54 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/UniformField.hpp"
61 > #include "perturbations/UniformGradient.hpp"
62 > #include "parallel/ForceMatrixDecomposition.hpp"
63  
64 < /*
65 <  struct BendOrderStruct {
66 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
64 > #include <cstdio>
65 > #include <iostream>
66 > #include <iomanip>
67  
68 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
69 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  ForceManager::ForceManager(SimInfo * info) : info_(info),
72 >                                               initialized_(false),
73 >                                               switcher_(NULL) {
74 >    forceField_ = info_->getForceField();
75 >    interactionMan_ = new InteractionManager();
76 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
77 >    thermo = new Thermo(info_);
78    }
79  
80 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
81 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
80 >  ForceManager::~ForceManager() {
81 >    perturbations_.clear();
82 >    
83 >    delete switcher_;
84 >    delete interactionMan_;
85 >    delete fDecomp_;
86 >    delete thermo;
87    }
88 <  */
89 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
88 >  
89 >  /**
90 >   * setupCutoffs
91 >   *
92 >   * Sets the values of cutoffRadius, switchingRadius, and cutoffMethod
93 >   *
94 >   * cutoffRadius : realType
95 >   *  If the cutoffRadius was explicitly set, use that value.
96 >   *  If the cutoffRadius was not explicitly set:
97 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
98 >   *      No electrostatic atoms?  Poll the atom types present in the
99 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
100 >   *      Use the maximum suggested value that was found.
101 >   *
102 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
103 >   *                        SHIFTED_POTENTIAL, or EWALD_FULL)
104 >   *      If cutoffMethod was explicitly set, use that choice.
105 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
106 >   *
107 >   * switchingRadius : realType
108 >   *  If the cutoffMethod was set to SWITCHED:
109 >   *      If the switchingRadius was explicitly set, use that value
110 >   *          (but do a sanity check first).
111 >   *      If the switchingRadius was not explicitly set: use 0.85 *
112 >   *      cutoffRadius_
113 >   *  If the cutoffMethod was not set to SWITCHED:
114 >   *      Set switchingRadius equal to cutoffRadius for safety.
115 >   */
116 >  void ForceManager::setupCutoffs() {
117 >    
118 >    Globals* simParams_ = info_->getSimParams();
119 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
120 >    int mdFileVersion;
121 >    rCut_ = 0.0; //Needs a value for a later max() call;  
122 >    
123 >    if (simParams_->haveMDfileVersion())
124 >      mdFileVersion = simParams_->getMDfileVersion();
125 >    else
126 >      mdFileVersion = 0;
127 >  
128 >    // We need the list of simulated atom types to figure out cutoffs
129 >    // as well as long range corrections.
130  
131 <    if (!info_->isFortranInitialized()) {
132 <      info_->update();
131 >    set<AtomType*>::iterator i;
132 >    set<AtomType*> atomTypes_;
133 >    atomTypes_ = info_->getSimulatedAtomTypes();
134 >
135 >    if (simParams_->haveCutoffRadius()) {
136 >      rCut_ = simParams_->getCutoffRadius();
137 >    } else {      
138 >      if (info_->usesElectrostaticAtoms()) {
139 >        sprintf(painCave.errMsg,
140 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
141 >                "\tOpenMD will use a default value of 12.0 angstroms"
142 >                "\tfor the cutoffRadius.\n");
143 >        painCave.isFatal = 0;
144 >        painCave.severity = OPENMD_INFO;
145 >        simError();
146 >        rCut_ = 12.0;
147 >      } else {
148 >        RealType thisCut;
149 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
150 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
151 >          rCut_ = max(thisCut, rCut_);
152 >        }
153 >        sprintf(painCave.errMsg,
154 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
155 >                "\tOpenMD will use %lf angstroms.\n",
156 >                rCut_);
157 >        painCave.isFatal = 0;
158 >        painCave.severity = OPENMD_INFO;
159 >        simError();
160 >      }
161      }
162  
163 <    preCalculation();
164 <    
165 <    calcShortRangeInteraction();
163 >    fDecomp_->setCutoffRadius(rCut_);
164 >    interactionMan_->setCutoffRadius(rCut_);
165 >    rCutSq_ = rCut_ * rCut_;
166  
167 <    calcLongRangeInteraction(needPotential, needStress);
167 >    map<string, CutoffMethod> stringToCutoffMethod;
168 >    stringToCutoffMethod["HARD"] = HARD;
169 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
170 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
171 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
172 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
173 >    stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL;
174 >  
175 >    if (simParams_->haveCutoffMethod()) {
176 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
177 >      map<string, CutoffMethod>::iterator i;
178 >      i = stringToCutoffMethod.find(cutMeth);
179 >      if (i == stringToCutoffMethod.end()) {
180 >        sprintf(painCave.errMsg,
181 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
182 >                "\tShould be one of: "
183 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
184 >                "\tSHIFTED_FORCE, or EWALD_FULL\n",
185 >                cutMeth.c_str());
186 >        painCave.isFatal = 1;
187 >        painCave.severity = OPENMD_ERROR;
188 >        simError();
189 >      } else {
190 >        cutoffMethod_ = i->second;
191 >      }
192 >    } else {
193 >      if (mdFileVersion > 1) {
194 >        sprintf(painCave.errMsg,
195 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
196 >                "\tOpenMD will use SHIFTED_FORCE.\n");
197 >        painCave.isFatal = 0;
198 >        painCave.severity = OPENMD_INFO;
199 >        simError();
200 >        cutoffMethod_ = SHIFTED_FORCE;        
201 >      } else {
202 >        // handle the case where the old file version was in play
203 >        // (there should be no cutoffMethod, so we have to deduce it
204 >        // from other data).        
205  
206 <    postCalculation();
206 >        sprintf(painCave.errMsg,
207 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
208 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
209 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
210 >                "\tbehavior of the older (version 1) code.  To remove this\n"
211 >                "\twarning, add an explicit cutoffMethod and change the top\n"
212 >                "\tof the file so that it begins with <OpenMD version=2>\n");
213 >        painCave.isFatal = 0;
214 >        painCave.severity = OPENMD_WARNING;
215 >        simError();            
216 >                
217 >        // The old file version tethered the shifting behavior to the
218 >        // electrostaticSummationMethod keyword.
219 >        
220 >        if (simParams_->haveElectrostaticSummationMethod()) {
221 >          string myMethod = simParams_->getElectrostaticSummationMethod();
222 >          toUpper(myMethod);
223 >        
224 >          if (myMethod == "SHIFTED_POTENTIAL") {
225 >            cutoffMethod_ = SHIFTED_POTENTIAL;
226 >          } else if (myMethod == "SHIFTED_FORCE") {
227 >            cutoffMethod_ = SHIFTED_FORCE;
228 >          } else if (myMethod == "TAYLOR_SHIFTED") {
229 >            cutoffMethod_ = TAYLOR_SHIFTED;
230 >          } else if (myMethod == "EWALD_FULL") {
231 >            cutoffMethod_ = EWALD_FULL;
232 >          }
233 >        
234 >          if (simParams_->haveSwitchingRadius())
235 >            rSwitch_ = simParams_->getSwitchingRadius();
236  
237 < /*
238 <    std::vector<BendOrderStruct> bendOrderStruct;
239 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
240 <        BendOrderStruct tmp;
241 <        tmp.bend= const_cast<Bend*>(i->first);
242 <        tmp.dataSet = i->second;
243 <        bendOrderStruct.push_back(tmp);
237 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
238 >              myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") {
239 >            if (simParams_->haveSwitchingRadius()){
240 >              sprintf(painCave.errMsg,
241 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
242 >                      "\tA value was set for the switchingRadius\n"
243 >                      "\teven though the electrostaticSummationMethod was\n"
244 >                      "\tset to %s\n", myMethod.c_str());
245 >              painCave.severity = OPENMD_WARNING;
246 >              painCave.isFatal = 1;
247 >              simError();            
248 >            }
249 >          }
250 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
251 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
252 >              sprintf(painCave.errMsg,
253 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
254 >                      "\tcutoffRadius and switchingRadius are set to the\n"
255 >                      "\tsame value.  OpenMD will use shifted force\n"
256 >                      "\tpotentials instead of switching functions.\n");
257 >              painCave.isFatal = 0;
258 >              painCave.severity = OPENMD_WARNING;
259 >              simError();            
260 >            } else {
261 >              cutoffMethod_ = SHIFTED_POTENTIAL;
262 >              sprintf(painCave.errMsg,
263 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
264 >                      "\tcutoffRadius and switchingRadius are set to the\n"
265 >                      "\tsame value.  OpenMD will use shifted potentials\n"
266 >                      "\tinstead of switching functions.\n");
267 >              painCave.isFatal = 0;
268 >              painCave.severity = OPENMD_WARNING;
269 >              simError();            
270 >            }
271 >          }
272 >        }
273 >      }
274      }
275 +        
276 +    // create the switching function object:
277  
278 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
279 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
280 <        TorsionOrderStruct tmp;
281 <        tmp.torsion = const_cast<Torsion*>(j->first);
282 <        tmp.dataSet = j->second;
283 <        torsionOrderStruct.push_back(tmp);
278 >    switcher_ = new SwitchingFunction();
279 >  
280 >    if (cutoffMethod_ == SWITCHED) {
281 >      if (simParams_->haveSwitchingRadius()) {
282 >        rSwitch_ = simParams_->getSwitchingRadius();
283 >        if (rSwitch_ > rCut_) {        
284 >          sprintf(painCave.errMsg,
285 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
286 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
287 >          painCave.isFatal = 1;
288 >          painCave.severity = OPENMD_ERROR;
289 >          simError();
290 >        }
291 >      } else {      
292 >        rSwitch_ = 0.85 * rCut_;
293 >        sprintf(painCave.errMsg,
294 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
295 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
296 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
297 >        painCave.isFatal = 0;
298 >        painCave.severity = OPENMD_WARNING;
299 >        simError();
300 >      }
301 >    } else {
302 >      if (mdFileVersion > 1) {
303 >        // throw an error if we define a switching radius and don't need one.
304 >        // older file versions should not do this.
305 >        if (simParams_->haveSwitchingRadius()) {
306 >          map<string, CutoffMethod>::const_iterator it;
307 >          string theMeth;
308 >          for (it = stringToCutoffMethod.begin();
309 >               it != stringToCutoffMethod.end(); ++it) {
310 >            if (it->second == cutoffMethod_) {
311 >              theMeth = it->first;
312 >              break;
313 >            }
314 >          }
315 >          sprintf(painCave.errMsg,
316 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
317 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
318 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
319 >          painCave.isFatal = 0;
320 >          painCave.severity = OPENMD_WARNING;
321 >          simError();
322 >        }
323 >      }
324 >      rSwitch_ = rCut_;
325      }
326      
327 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
328 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
329 <    std::cout << "bend" << std::endl;
330 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
331 <        Bend* bend = k->bend;
332 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
333 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
327 >    // Default to cubic switching function.
328 >    sft_ = cubic;
329 >    if (simParams_->haveSwitchingFunctionType()) {
330 >      string funcType = simParams_->getSwitchingFunctionType();
331 >      toUpper(funcType);
332 >      if (funcType == "CUBIC") {
333 >        sft_ = cubic;
334 >      } else {
335 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
336 >          sft_ = fifth_order_poly;
337 >        } else {
338 >          // throw error        
339 >          sprintf( painCave.errMsg,
340 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
341 >                   "\tswitchingFunctionType must be one of: "
342 >                   "\"cubic\" or \"fifth_order_polynomial\".",
343 >                   funcType.c_str() );
344 >          painCave.isFatal = 1;
345 >          painCave.severity = OPENMD_ERROR;
346 >          simError();
347 >        }          
348 >      }
349      }
350 <    std::cout << "torsio" << std::endl;
351 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
119 <        Torsion* torsion = l->torsion;
120 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
121 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
122 <    }
123 <   */
350 >    switcher_->setSwitchType(sft_);
351 >    switcher_->setSwitch(rSwitch_, rCut_);
352    }
353  
354 +  void ForceManager::initialize() {
355 +
356 +    if (!info_->isTopologyDone()) {
357 +
358 +      info_->update();
359 +      interactionMan_->setSimInfo(info_);
360 +      interactionMan_->initialize();
361 +
362 +      //! We want to delay the cutoffs until after the interaction
363 +      //! manager has set up the atom-atom interactions so that we can
364 +      //! query them for suggested cutoff values
365 +      setupCutoffs();
366 +
367 +      info_->prepareTopology();      
368 +
369 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
370 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
371 +      if (doHeatFlux_) doParticlePot_ = true;
372 +
373 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
374 +      doSitePotential_ = info_->getSimParams()->getOutputSitePotential();
375 +  
376 +    }
377 +
378 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
379 +    
380 +    //! Force fields can set options on how to scale van der Waals and
381 +    //! electrostatic interactions for atoms connected via bonds, bends
382 +    //! and torsions in this case the topological distance between
383 +    //! atoms is:
384 +    //! 0 = topologically unconnected
385 +    //! 1 = bonded together
386 +    //! 2 = connected via a bend
387 +    //! 3 = connected via a torsion
388 +    
389 +    vdwScale_.reserve(4);
390 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
391 +
392 +    electrostaticScale_.reserve(4);
393 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
394 +
395 +    vdwScale_[0] = 1.0;
396 +    vdwScale_[1] = fopts.getvdw12scale();
397 +    vdwScale_[2] = fopts.getvdw13scale();
398 +    vdwScale_[3] = fopts.getvdw14scale();
399 +    
400 +    electrostaticScale_[0] = 1.0;
401 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
402 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
403 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
404 +    
405 +    if (info_->getSimParams()->haveUniformField()) {
406 +      UniformField* eField = new UniformField(info_);
407 +      perturbations_.push_back(eField);
408 +    }
409 +    if (info_->getSimParams()->haveUniformGradientStrength() ||
410 +        info_->getSimParams()->haveUniformGradientDirection1() ||
411 +        info_->getSimParams()->haveUniformGradientDirection2() ) {
412 +      UniformGradient* eGrad = new UniformGradient(info_);
413 +      perturbations_.push_back(eGrad);
414 +    }
415 +    
416 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
417 +    
418 +    fDecomp_->distributeInitialData();
419 +    
420 +    initialized_ = true;
421 +    
422 +  }
423 +  
424 +  void ForceManager::calcForces() {
425 +    
426 +    if (!initialized_) initialize();
427 +    
428 +    preCalculation();  
429 +    shortRangeInteractions();
430 +    longRangeInteractions();
431 +    postCalculation();    
432 +  }
433 +  
434    void ForceManager::preCalculation() {
435      SimInfo::MoleculeIterator mi;
436      Molecule* mol;
# Line 130 | Line 438 | namespace oopse {
438      Atom* atom;
439      Molecule::RigidBodyIterator rbIter;
440      RigidBody* rb;
441 +    Molecule::CutoffGroupIterator ci;
442 +    CutoffGroup* cg;
443      
444 <    // forces are zeroed here, before any are accumulated.
445 <    // NOTE: do not rezero the forces in Fortran.
446 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
447 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
444 >    // forces and potentials are zeroed here, before any are
445 >    // accumulated.
446 >    
447 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
448 >
449 >    snap->setBondPotential(0.0);
450 >    snap->setBendPotential(0.0);
451 >    snap->setTorsionPotential(0.0);
452 >    snap->setInversionPotential(0.0);
453 >
454 >    potVec zeroPot(0.0);
455 >    snap->setLongRangePotential(zeroPot);
456 >    snap->setExcludedPotentials(zeroPot);
457 >
458 >    snap->setRestraintPotential(0.0);
459 >    snap->setRawPotential(0.0);
460 >
461 >    for (mol = info_->beginMolecule(mi); mol != NULL;
462 >         mol = info_->nextMolecule(mi)) {
463 >      for(atom = mol->beginAtom(ai); atom != NULL;
464 >          atom = mol->nextAtom(ai)) {
465          atom->zeroForcesAndTorques();
466        }
467 <        
467 >      
468        //change the positions of atoms which belong to the rigidbodies
469 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
469 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
470 >           rb = mol->nextRigidBody(rbIter)) {
471          rb->zeroForcesAndTorques();
472        }        
473 +      
474 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
475 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
476 +            cg = mol->nextCutoffGroup(ci)) {
477 +          //calculate the center of mass of cutoff group
478 +          cg->updateCOM();
479 +        }
480 +      }      
481      }
482      
483 +    // Zero out the stress tensor
484 +    stressTensor *= 0.0;
485 +    // Zero out the heatFlux
486 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
487    }
488 <
489 <  void ForceManager::calcShortRangeInteraction() {
488 >  
489 >  void ForceManager::shortRangeInteractions() {
490      Molecule* mol;
491      RigidBody* rb;
492      Bond* bond;
493      Bend* bend;
494      Torsion* torsion;
495 +    Inversion* inversion;
496      SimInfo::MoleculeIterator mi;
497      Molecule::RigidBodyIterator rbIter;
498      Molecule::BondIterator bondIter;;
499      Molecule::BendIterator  bendIter;
500      Molecule::TorsionIterator  torsionIter;
501 <    double bondPotential = 0.0;
502 <    double bendPotential = 0.0;
503 <    double torsionPotential = 0.0;
501 >    Molecule::InversionIterator  inversionIter;
502 >    RealType bondPotential = 0.0;
503 >    RealType bendPotential = 0.0;
504 >    RealType torsionPotential = 0.0;
505 >    RealType inversionPotential = 0.0;
506  
507      //calculate short range interactions    
508 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
508 >    for (mol = info_->beginMolecule(mi); mol != NULL;
509 >         mol = info_->nextMolecule(mi)) {
510  
511        //change the positions of atoms which belong to the rigidbodies
512 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
513 <          rb->updateAtoms();
512 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513 >           rb = mol->nextRigidBody(rbIter)) {
514 >        rb->updateAtoms();
515        }
516  
517 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
518 <        bond->calcForce();
517 >      for (bond = mol->beginBond(bondIter); bond != NULL;
518 >           bond = mol->nextBond(bondIter)) {
519 >        bond->calcForce(doParticlePot_);
520          bondPotential += bond->getPotential();
521        }
522  
523 <
524 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
525 <
526 <          double angle;
527 <            bend->calcForce(angle);
528 <          double currBendPot = bend->getPotential();          
529 <            bendPotential += bend->getPotential();
530 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
531 <          if (i == bendDataSets.end()) {
532 <            BendDataSet dataSet;
533 <            dataSet.prev.angle = dataSet.curr.angle = angle;
534 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
535 <            dataSet.deltaV = 0.0;
536 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
537 <          }else {
538 <            i->second.prev.angle = i->second.curr.angle;
539 <            i->second.prev.potential = i->second.curr.potential;
540 <            i->second.curr.angle = angle;
541 <            i->second.curr.potential = currBendPot;
542 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
543 <          }
544 <      }
545 <
546 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
201 <        double angle;
202 <          torsion->calcForce(angle);
203 <        double currTorsionPot = torsion->getPotential();
204 <          torsionPotential += torsion->getPotential();
205 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
206 <          if (i == torsionDataSets.end()) {
207 <            TorsionDataSet dataSet;
208 <            dataSet.prev.angle = dataSet.curr.angle = angle;
209 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
210 <            dataSet.deltaV = 0.0;
211 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
212 <          }else {
213 <            i->second.prev.angle = i->second.curr.angle;
214 <            i->second.prev.potential = i->second.curr.potential;
215 <            i->second.curr.angle = angle;
216 <            i->second.curr.potential = currTorsionPot;
217 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
218 <          }      
523 >      for (bend = mol->beginBend(bendIter); bend != NULL;
524 >           bend = mol->nextBend(bendIter)) {
525 >        
526 >        RealType angle;
527 >        bend->calcForce(angle, doParticlePot_);
528 >        RealType currBendPot = bend->getPotential();          
529 >        
530 >        bendPotential += bend->getPotential();
531 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
532 >        if (i == bendDataSets.end()) {
533 >          BendDataSet dataSet;
534 >          dataSet.prev.angle = dataSet.curr.angle = angle;
535 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
536 >          dataSet.deltaV = 0.0;
537 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
538 >                                                                  dataSet));
539 >        }else {
540 >          i->second.prev.angle = i->second.curr.angle;
541 >          i->second.prev.potential = i->second.curr.potential;
542 >          i->second.curr.angle = angle;
543 >          i->second.curr.potential = currBendPot;
544 >          i->second.deltaV =  fabs(i->second.curr.potential -  
545 >                                   i->second.prev.potential);
546 >        }
547        }
548 <
548 >      
549 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
550 >           torsion = mol->nextTorsion(torsionIter)) {
551 >        RealType angle;
552 >        torsion->calcForce(angle, doParticlePot_);
553 >        RealType currTorsionPot = torsion->getPotential();
554 >        torsionPotential += torsion->getPotential();
555 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
556 >        if (i == torsionDataSets.end()) {
557 >          TorsionDataSet dataSet;
558 >          dataSet.prev.angle = dataSet.curr.angle = angle;
559 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
560 >          dataSet.deltaV = 0.0;
561 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
562 >        }else {
563 >          i->second.prev.angle = i->second.curr.angle;
564 >          i->second.prev.potential = i->second.curr.potential;
565 >          i->second.curr.angle = angle;
566 >          i->second.curr.potential = currTorsionPot;
567 >          i->second.deltaV =  fabs(i->second.curr.potential -  
568 >                                   i->second.prev.potential);
569 >        }      
570 >      }      
571 >      
572 >      for (inversion = mol->beginInversion(inversionIter);
573 >           inversion != NULL;
574 >           inversion = mol->nextInversion(inversionIter)) {
575 >        RealType angle;
576 >        inversion->calcForce(angle, doParticlePot_);
577 >        RealType currInversionPot = inversion->getPotential();
578 >        inversionPotential += inversion->getPotential();
579 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
580 >        if (i == inversionDataSets.end()) {
581 >          InversionDataSet dataSet;
582 >          dataSet.prev.angle = dataSet.curr.angle = angle;
583 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
584 >          dataSet.deltaV = 0.0;
585 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
586 >        }else {
587 >          i->second.prev.angle = i->second.curr.angle;
588 >          i->second.prev.potential = i->second.curr.potential;
589 >          i->second.curr.angle = angle;
590 >          i->second.curr.potential = currInversionPot;
591 >          i->second.deltaV =  fabs(i->second.curr.potential -  
592 >                                   i->second.prev.potential);
593 >        }      
594 >      }      
595      }
596 <    
597 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
596 >
597 > #ifdef IS_MPI
598 >    // Collect from all nodes.  This should eventually be moved into a
599 >    // SystemDecomposition, but this is a better place than in
600 >    // Thermo to do the collection.
601 >
602 >    MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE,
603 >                  MPI_SUM, MPI_COMM_WORLD);
604 >    MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE,
605 >                  MPI_SUM, MPI_COMM_WORLD);
606 >    MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1,
607 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
608 >    MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1,
609 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
610 > #endif
611 >
612      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
225    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
226    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
227    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
228    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
229    
230  }
613  
614 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
615 <    Snapshot* curSnapshot;
616 <    DataStorage* config;
617 <    double* frc;
236 <    double* pos;
237 <    double* trq;
238 <    double* A;
239 <    double* electroFrame;
240 <    double* rc;
614 >    curSnapshot->setBondPotential(bondPotential);
615 >    curSnapshot->setBendPotential(bendPotential);
616 >    curSnapshot->setTorsionPotential(torsionPotential);
617 >    curSnapshot->setInversionPotential(inversionPotential);
618      
619 <    //get current snapshot from SimInfo
620 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
619 >    // RealType shortRangePotential = bondPotential + bendPotential +
620 >    //   torsionPotential +  inversionPotential;    
621  
622 <    //get array pointers
623 <    config = &(curSnapshot->atomData);
624 <    frc = config->getArrayPointer(DataStorage::dslForce);
625 <    pos = config->getArrayPointer(DataStorage::dslPosition);
249 <    trq = config->getArrayPointer(DataStorage::dslTorque);
250 <    A   = config->getArrayPointer(DataStorage::dslAmat);
251 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
622 >    // curSnapshot->setShortRangePotential(shortRangePotential);
623 >  }
624 >  
625 >  void ForceManager::longRangeInteractions() {
626  
627 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
628 +    DataStorage* config = &(curSnapshot->atomData);
629 +    DataStorage* cgConfig = &(curSnapshot->cgData);
630 +
631      //calculate the center of mass of cutoff group
632 +
633      SimInfo::MoleculeIterator mi;
634      Molecule* mol;
635      Molecule::CutoffGroupIterator ci;
636      CutoffGroup* cg;
637 <    Vector3d com;
638 <    std::vector<Vector3d> rcGroup;
639 <
640 <    if(info_->getNCutoffGroups() > 0){
641 <
642 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
643 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
265 <          cg->getCOM(com);
266 <          rcGroup.push_back(com);
637 >    
638 >    if(info_->getNCutoffGroups() != info_->getNAtoms()){
639 >      for (mol = info_->beginMolecule(mi); mol != NULL;
640 >           mol = info_->nextMolecule(mi)) {
641 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
642 >            cg = mol->nextCutoffGroup(ci)) {
643 >          cg->updateCOM();
644          }
645 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
645 >      }      
646      } else {
647 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
648 <      rc = pos;
647 >      // center of mass of the group is the same as position of the atom  
648 >      // if cutoff group does not exist
649 >      cgConfig->position = config->position;
650 >      cgConfig->velocity = config->velocity;
651      }
652 <  
653 <    //initialize data before passing to fortran
654 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
652 >
653 >    fDecomp_->zeroWorkArrays();
654 >    fDecomp_->distributeData();
655      
656 <    Mat3x3d tau;
657 <    short int passedCalcPot = needPotential;
658 <    short int passedCalcStress = needStress;
659 <    int isError = 0;
656 >    int cg1, cg2, atom1, atom2, topoDist;
657 >    Vector3d d_grp, dag, d, gvel2, vel2;
658 >    RealType rgrpsq, rgrp, r2, r;
659 >    RealType electroMult, vdwMult;
660 >    RealType vij;
661 >    Vector3d fij, fg, f1;
662 >    bool in_switching_region;
663 >    RealType sw, dswdr, swderiv;
664 >    vector<int> atomListColumn, atomListRow;
665 >    InteractionData idat;
666 >    SelfData sdat;
667 >    RealType mf;
668 >    RealType vpair;
669 >    RealType dVdFQ1(0.0);
670 >    RealType dVdFQ2(0.0);
671 >    potVec longRangePotential(0.0);
672 >    RealType reciprocalPotential(0.0);
673 >    potVec workPot(0.0);
674 >    potVec exPot(0.0);
675 >    Vector3d eField1(0.0);
676 >    Vector3d eField2(0.0);
677 >    RealType sPot1(0.0);
678 >    RealType sPot2(0.0);
679 >    bool newAtom1;
680 >                  
681 >    vector<int>::iterator ia, jb;
682  
683 <    for (int i=0; i<LR_POT_TYPES;i++){
684 <      longRangePotential[i]=0.0; //Initialize array
683 >    int loopStart, loopEnd;
684 >    
685 >    idat.rcut = &rCut_;
686 >    idat.vdwMult = &vdwMult;
687 >    idat.electroMult = &electroMult;
688 >    idat.pot = &workPot;
689 >    idat.excludedPot = &exPot;
690 >    sdat.pot = fDecomp_->getEmbeddingPotential();
691 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
692 >    idat.vpair = &vpair;
693 >    idat.dVdFQ1 = &dVdFQ1;
694 >    idat.dVdFQ2 = &dVdFQ2;
695 >    idat.eField1 = &eField1;
696 >    idat.eField2 = &eField2;
697 >    idat.sPot1 = &sPot1;
698 >    idat.sPot2 = &sPot2;
699 >    idat.f1 = &f1;
700 >    idat.sw = &sw;
701 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
702 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE ||
703 >                         cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
704 >    idat.doParticlePot = doParticlePot_;
705 >    idat.doElectricField = doElectricField_;
706 >    idat.doSitePotential = doSitePotential_;
707 >    sdat.doParticlePot = doParticlePot_;
708 >    
709 >    loopEnd = PAIR_LOOP;
710 >    if (info_->requiresPrepair() ) {
711 >      loopStart = PREPAIR_LOOP;
712 >    } else {
713 >      loopStart = PAIR_LOOP;
714      }
715 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
716 +    
717 +      if (iLoop == loopStart) {
718 +        bool update_nlist = fDecomp_->checkNeighborList();
719 +        if (update_nlist) {
720 +          if (!usePeriodicBoundaryConditions_)
721 +            Mat3x3d bbox = thermo->getBoundingBox();
722 +          fDecomp_->buildNeighborList(neighborList_, point_);
723 +        }
724 +      }
725  
726 <    doForceLoop( pos,
727 <                 rc,
728 <                 A,
729 <                 electroFrame,
730 <                 frc,
731 <                 trq,
295 <                 tau.getArrayPointer(),
296 <                 longRangePotential,
297 <                 &passedCalcPot,
298 <                 &passedCalcStress,
299 <                 &isError );
726 >      for (cg1 = 0; cg1 < point_.size() - 1; cg1++) {
727 >        
728 >        atomListRow = fDecomp_->getAtomsInGroupRow(cg1);        
729 >        newAtom1 = true;
730 >        
731 >        for (int m2 = point_[cg1]; m2 < point_[cg1+1]; m2++) {
732  
733 <    if( isError ){
734 <      sprintf( painCave.errMsg,
735 <               "Error returned from the fortran force calculation.\n" );
736 <      painCave.isFatal = 1;
737 <      simError();
733 >          cg2 = neighborList_[m2];
734 >          
735 >          d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
736 >        
737 >          // already wrapped in the getIntergroupVector call:
738 >          // curSnapshot->wrapVector(d_grp);        
739 >          rgrpsq = d_grp.lengthSquare();
740 >          
741 >          if (rgrpsq < rCutSq_) {
742 >            if (iLoop == PAIR_LOOP) {
743 >              vij = 0.0;
744 >              fij.zero();
745 >              eField1.zero();
746 >              eField2.zero();
747 >              sPot1 = 0.0;
748 >              sPot2 = 0.0;
749 >            }
750 >            
751 >            in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
752 >                                                       rgrp);
753 >            
754 >            atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
755 >            
756 >            if (doHeatFlux_)
757 >              gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
758 >            
759 >            for (ia = atomListRow.begin();
760 >                 ia != atomListRow.end(); ++ia) {            
761 >              atom1 = (*ia);
762 >              
763 >              for (jb = atomListColumn.begin();
764 >                   jb != atomListColumn.end(); ++jb) {              
765 >                atom2 = (*jb);
766 >                
767 >                if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
768 >                  
769 >                  vpair = 0.0;
770 >                  workPot = 0.0;
771 >                  exPot = 0.0;
772 >                  f1.zero();
773 >                  dVdFQ1 = 0.0;
774 >                  dVdFQ2 = 0.0;
775 >                  
776 >                  fDecomp_->fillInteractionData(idat, atom1, atom2, newAtom1);
777 >                  
778 >                  topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
779 >                  vdwMult = vdwScale_[topoDist];
780 >                  electroMult = electrostaticScale_[topoDist];
781 >                  
782 >                  if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
783 >                    idat.d = &d_grp;
784 >                    idat.r2 = &rgrpsq;
785 >                    if (doHeatFlux_)
786 >                      vel2 = gvel2;
787 >                  } else {
788 >                    d = fDecomp_->getInteratomicVector(atom1, atom2);
789 >                    curSnapshot->wrapVector( d );
790 >                    r2 = d.lengthSquare();
791 >                    idat.d = &d;
792 >                    idat.r2 = &r2;
793 >                    if (doHeatFlux_)
794 >                      vel2 = fDecomp_->getAtomVelocityColumn(atom2);
795 >                  }
796 >                  
797 >                  r = sqrt( *(idat.r2) );
798 >                  idat.rij = &r;
799 >                  
800 >                  if (iLoop == PREPAIR_LOOP) {
801 >                    interactionMan_->doPrePair(idat);
802 >                  } else {
803 >                    interactionMan_->doPair(idat);
804 >                    fDecomp_->unpackInteractionData(idat, atom1, atom2);
805 >                    vij += vpair;
806 >                    fij += f1;
807 >                    stressTensor -= outProduct( *(idat.d), f1);
808 >                    if (doHeatFlux_)
809 >                      fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
810 >                  }
811 >                }
812 >              }
813 >            }
814 >            
815 >            if (iLoop == PAIR_LOOP) {
816 >              if (in_switching_region) {
817 >                swderiv = vij * dswdr / rgrp;
818 >                fg = swderiv * d_grp;
819 >                fij += fg;
820 >                
821 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
822 >                  if (!fDecomp_->skipAtomPair(atomListRow[0],
823 >                                              atomListColumn[0],
824 >                                              cg1, cg2)) {
825 >                  stressTensor -= outProduct( *(idat.d), fg);
826 >                  if (doHeatFlux_)
827 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
828 >                  }                
829 >                }
830 >                
831 >                for (ia = atomListRow.begin();
832 >                     ia != atomListRow.end(); ++ia) {            
833 >                  atom1 = (*ia);                
834 >                  mf = fDecomp_->getMassFactorRow(atom1);
835 >                  // fg is the force on atom ia due to cutoff group's
836 >                  // presence in switching region
837 >                  fg = swderiv * d_grp * mf;
838 >                  fDecomp_->addForceToAtomRow(atom1, fg);
839 >                  if (atomListRow.size() > 1) {
840 >                    if (info_->usesAtomicVirial()) {
841 >                      // find the distance between the atom
842 >                      // and the center of the cutoff group:
843 >                      dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
844 >                      stressTensor -= outProduct(dag, fg);
845 >                      if (doHeatFlux_)
846 >                        fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
847 >                    }
848 >                  }
849 >                }
850 >                for (jb = atomListColumn.begin();
851 >                     jb != atomListColumn.end(); ++jb) {              
852 >                  atom2 = (*jb);
853 >                  mf = fDecomp_->getMassFactorColumn(atom2);
854 >                  // fg is the force on atom jb due to cutoff group's
855 >                  // presence in switching region
856 >                  fg = -swderiv * d_grp * mf;
857 >                  fDecomp_->addForceToAtomColumn(atom2, fg);
858 >                  
859 >                  if (atomListColumn.size() > 1) {
860 >                    if (info_->usesAtomicVirial()) {
861 >                      // find the distance between the atom
862 >                      // and the center of the cutoff group:
863 >                      dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
864 >                      stressTensor -= outProduct(dag, fg);
865 >                      if (doHeatFlux_)
866 >                        fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
867 >                    }
868 >                  }
869 >                }
870 >              }
871 >              //if (!info_->usesAtomicVirial()) {
872 >              //  stressTensor -= outProduct(d_grp, fij);
873 >              //  if (doHeatFlux_)
874 >              //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
875 >              //}
876 >            }
877 >          }
878 >        }
879 >        newAtom1 = false;
880 >      }
881 >        
882 >      if (iLoop == PREPAIR_LOOP) {
883 >        if (info_->requiresPrepair()) {
884 >          
885 >          fDecomp_->collectIntermediateData();
886 >          
887 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
888 >            fDecomp_->fillSelfData(sdat, atom1);
889 >            interactionMan_->doPreForce(sdat);
890 >          }
891 >          
892 >          fDecomp_->distributeIntermediateData();
893 >          
894 >        }
895 >      }
896      }
897 <    for (int i=0; i<LR_POT_TYPES;i++){
898 <      lrPot += longRangePotential[i]; //Quick hack
897 >    
898 >    // collects pairwise information
899 >    fDecomp_->collectData();
900 >    if (cutoffMethod_ == EWALD_FULL) {
901 >      interactionMan_->doReciprocalSpaceSum(reciprocalPotential);
902 >
903 >      curSnapshot->setReciprocalPotential(reciprocalPotential);
904      }
905 +        
906 +    if (info_->requiresSelfCorrection()) {
907 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
908 +        fDecomp_->fillSelfData(sdat, atom1);
909 +        interactionMan_->doSelfCorrection(sdat);
910 +      }
911 +    }
912  
913 <    //store the tau and long range potential    
914 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
313 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
314 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
913 >    // collects single-atom information
914 >    fDecomp_->collectSelfData();
915  
916 <    curSnapshot->statData.setTau(tau);
917 <  }
916 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
917 >      *(fDecomp_->getPairwisePotential());
918  
919 +    curSnapshot->setLongRangePotential(longRangePotential);
920 +    
921 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
922 +                                       *(fDecomp_->getExcludedPotential()));
923  
924 +  }
925 +
926    void ForceManager::postCalculation() {
927 +
928 +    vector<Perturbation*>::iterator pi;
929 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
930 +      (*pi)->applyPerturbation();
931 +    }
932 +
933      SimInfo::MoleculeIterator mi;
934      Molecule* mol;
935      Molecule::RigidBodyIterator rbIter;
936      RigidBody* rb;
937 <    
937 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
938 >  
939      // collect the atomic forces onto rigid bodies
940 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
941 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
942 <        rb->calcForcesAndTorques();
940 >    
941 >    for (mol = info_->beginMolecule(mi); mol != NULL;
942 >         mol = info_->nextMolecule(mi)) {
943 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
944 >           rb = mol->nextRigidBody(rbIter)) {
945 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
946 >        stressTensor += rbTau;
947        }
948      }
949 +    
950 + #ifdef IS_MPI
951 +    MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9,
952 +                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
953 + #endif
954 +    curSnapshot->setStressTensor(stressTensor);
955 +    
956 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
957 +      /*
958 +        RealType vol = curSnapshot->getVolume();
959 +        RealType Elrc(0.0);
960 +        RealType Wlrc(0.0);
961  
962 <  }
962 >        set<AtomType*>::iterator i;
963 >        set<AtomType*>::iterator j;
964 >    
965 >        RealType n_i, n_j;
966 >        RealType rho_i, rho_j;
967 >        pair<RealType, RealType> LRI;
968 >      
969 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
970 >        n_i = RealType(info_->getGlobalCountOfType(*i));
971 >        rho_i = n_i /  vol;
972 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
973 >        n_j = RealType(info_->getGlobalCountOfType(*j));
974 >        rho_j = n_j / vol;
975 >          
976 >        LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
977  
978 < } //end namespace oopse
978 >        Elrc += n_i   * rho_j * LRI.first;
979 >        Wlrc -= rho_i * rho_j * LRI.second;
980 >        }
981 >        }
982 >        Elrc *= 2.0 * NumericConstant::PI;
983 >        Wlrc *= 2.0 * NumericConstant::PI;
984 >
985 >        RealType lrp = curSnapshot->getLongRangePotential();
986 >        curSnapshot->setLongRangePotential(lrp + Elrc);
987 >        stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
988 >        curSnapshot->setStressTensor(stressTensor);
989 >      */
990 >    
991 >    }
992 >  }
993 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 2066 by gezelter, Thu Mar 5 15:22:54 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines