ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
Revision 2047 by gezelter, Thu Dec 11 16:16:43 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/UniformField.hpp"
61 > #include "perturbations/UniformGradient.hpp"
62 > #include "parallel/ForceMatrixDecomposition.hpp"
63  
64 < /*
65 <  struct BendOrderStruct {
66 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
64 > #include <cstdio>
65 > #include <iostream>
66 > #include <iomanip>
67  
68 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
69 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
72 >                                               initialized_(false) {
73 >    forceField_ = info_->getForceField();
74 >    interactionMan_ = new InteractionManager();
75 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
76 >    thermo = new Thermo(info_);
77    }
78  
79 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
80 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
79 >  ForceManager::~ForceManager() {
80 >    perturbations_.clear();
81 >    
82 >    delete switcher_;
83 >    delete interactionMan_;
84 >    delete fDecomp_;
85 >    delete thermo;
86    }
87 <  */
88 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
87 >  
88 >  /**
89 >   * setupCutoffs
90 >   *
91 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
92 >   * and cutoffPolicy
93 >   *
94 >   * cutoffRadius : realType
95 >   *  If the cutoffRadius was explicitly set, use that value.
96 >   *  If the cutoffRadius was not explicitly set:
97 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
98 >   *      No electrostatic atoms?  Poll the atom types present in the
99 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
100 >   *      Use the maximum suggested value that was found.
101 >   *
102 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
103 >   *                        SHIFTED_POTENTIAL, or EWALD_FULL)
104 >   *      If cutoffMethod was explicitly set, use that choice.
105 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
106 >   *
107 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
108 >   *      If cutoffPolicy was explicitly set, use that choice.
109 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
110 >   *
111 >   * switchingRadius : realType
112 >   *  If the cutoffMethod was set to SWITCHED:
113 >   *      If the switchingRadius was explicitly set, use that value
114 >   *          (but do a sanity check first).
115 >   *      If the switchingRadius was not explicitly set: use 0.85 *
116 >   *      cutoffRadius_
117 >   *  If the cutoffMethod was not set to SWITCHED:
118 >   *      Set switchingRadius equal to cutoffRadius for safety.
119 >   */
120 >  void ForceManager::setupCutoffs() {
121 >    
122 >    Globals* simParams_ = info_->getSimParams();
123 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
124 >    int mdFileVersion;
125 >    rCut_ = 0.0; //Needs a value for a later max() call;  
126 >    
127 >    if (simParams_->haveMDfileVersion())
128 >      mdFileVersion = simParams_->getMDfileVersion();
129 >    else
130 >      mdFileVersion = 0;
131 >  
132 >    // We need the list of simulated atom types to figure out cutoffs
133 >    // as well as long range corrections.
134  
135 <    if (!info_->isFortranInitialized()) {
136 <      info_->update();
135 >    set<AtomType*>::iterator i;
136 >    set<AtomType*> atomTypes_;
137 >    atomTypes_ = info_->getSimulatedAtomTypes();
138 >
139 >    if (simParams_->haveCutoffRadius()) {
140 >      rCut_ = simParams_->getCutoffRadius();
141 >    } else {      
142 >      if (info_->usesElectrostaticAtoms()) {
143 >        sprintf(painCave.errMsg,
144 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
145 >                "\tOpenMD will use a default value of 12.0 angstroms"
146 >                "\tfor the cutoffRadius.\n");
147 >        painCave.isFatal = 0;
148 >        painCave.severity = OPENMD_INFO;
149 >        simError();
150 >        rCut_ = 12.0;
151 >      } else {
152 >        RealType thisCut;
153 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
154 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
155 >          rCut_ = max(thisCut, rCut_);
156 >        }
157 >        sprintf(painCave.errMsg,
158 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
159 >                "\tOpenMD will use %lf angstroms.\n",
160 >                rCut_);
161 >        painCave.isFatal = 0;
162 >        painCave.severity = OPENMD_INFO;
163 >        simError();
164 >      }
165      }
166  
167 <    preCalculation();
168 <    
86 <    calcShortRangeInteraction();
167 >    fDecomp_->setUserCutoff(rCut_);
168 >    interactionMan_->setCutoffRadius(rCut_);
169  
170 <    calcLongRangeInteraction(needPotential, needStress);
170 >    map<string, CutoffMethod> stringToCutoffMethod;
171 >    stringToCutoffMethod["HARD"] = HARD;
172 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
173 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
174 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
175 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
176 >    stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL;
177 >  
178 >    if (simParams_->haveCutoffMethod()) {
179 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
180 >      map<string, CutoffMethod>::iterator i;
181 >      i = stringToCutoffMethod.find(cutMeth);
182 >      if (i == stringToCutoffMethod.end()) {
183 >        sprintf(painCave.errMsg,
184 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
185 >                "\tShould be one of: "
186 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
187 >                "\tSHIFTED_FORCE, or EWALD_FULL\n",
188 >                cutMeth.c_str());
189 >        painCave.isFatal = 1;
190 >        painCave.severity = OPENMD_ERROR;
191 >        simError();
192 >      } else {
193 >        cutoffMethod_ = i->second;
194 >      }
195 >    } else {
196 >      if (mdFileVersion > 1) {
197 >        sprintf(painCave.errMsg,
198 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
199 >                "\tOpenMD will use SHIFTED_FORCE.\n");
200 >        painCave.isFatal = 0;
201 >        painCave.severity = OPENMD_INFO;
202 >        simError();
203 >        cutoffMethod_ = SHIFTED_FORCE;        
204 >      } else {
205 >        // handle the case where the old file version was in play
206 >        // (there should be no cutoffMethod, so we have to deduce it
207 >        // from other data).        
208  
209 <    postCalculation();
209 >        sprintf(painCave.errMsg,
210 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
211 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
212 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
213 >                "\tbehavior of the older (version 1) code.  To remove this\n"
214 >                "\twarning, add an explicit cutoffMethod and change the top\n"
215 >                "\tof the file so that it begins with <OpenMD version=2>\n");
216 >        painCave.isFatal = 0;
217 >        painCave.severity = OPENMD_WARNING;
218 >        simError();            
219 >                
220 >        // The old file version tethered the shifting behavior to the
221 >        // electrostaticSummationMethod keyword.
222 >        
223 >        if (simParams_->haveElectrostaticSummationMethod()) {
224 >          string myMethod = simParams_->getElectrostaticSummationMethod();
225 >          toUpper(myMethod);
226 >        
227 >          if (myMethod == "SHIFTED_POTENTIAL") {
228 >            cutoffMethod_ = SHIFTED_POTENTIAL;
229 >          } else if (myMethod == "SHIFTED_FORCE") {
230 >            cutoffMethod_ = SHIFTED_FORCE;
231 >          } else if (myMethod == "TAYLOR_SHIFTED") {
232 >            cutoffMethod_ = TAYLOR_SHIFTED;
233 >          } else if (myMethod == "EWALD_FULL") {
234 >            cutoffMethod_ = EWALD_FULL;
235 >          }
236 >        
237 >          if (simParams_->haveSwitchingRadius())
238 >            rSwitch_ = simParams_->getSwitchingRadius();
239  
240 < /*
241 <    std::vector<BendOrderStruct> bendOrderStruct;
242 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
243 <        BendOrderStruct tmp;
244 <        tmp.bend= const_cast<Bend*>(i->first);
245 <        tmp.dataSet = i->second;
246 <        bendOrderStruct.push_back(tmp);
240 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
241 >              myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") {
242 >            if (simParams_->haveSwitchingRadius()){
243 >              sprintf(painCave.errMsg,
244 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
245 >                      "\tA value was set for the switchingRadius\n"
246 >                      "\teven though the electrostaticSummationMethod was\n"
247 >                      "\tset to %s\n", myMethod.c_str());
248 >              painCave.severity = OPENMD_WARNING;
249 >              painCave.isFatal = 1;
250 >              simError();            
251 >            }
252 >          }
253 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
254 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
255 >              sprintf(painCave.errMsg,
256 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
257 >                      "\tcutoffRadius and switchingRadius are set to the\n"
258 >                      "\tsame value.  OpenMD will use shifted force\n"
259 >                      "\tpotentials instead of switching functions.\n");
260 >              painCave.isFatal = 0;
261 >              painCave.severity = OPENMD_WARNING;
262 >              simError();            
263 >            } else {
264 >              cutoffMethod_ = SHIFTED_POTENTIAL;
265 >              sprintf(painCave.errMsg,
266 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
267 >                      "\tcutoffRadius and switchingRadius are set to the\n"
268 >                      "\tsame value.  OpenMD will use shifted potentials\n"
269 >                      "\tinstead of switching functions.\n");
270 >              painCave.isFatal = 0;
271 >              painCave.severity = OPENMD_WARNING;
272 >              simError();            
273 >            }
274 >          }
275 >        }
276 >      }
277      }
278  
279 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
280 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
281 <        TorsionOrderStruct tmp;
282 <        tmp.torsion = const_cast<Torsion*>(j->first);
283 <        tmp.dataSet = j->second;
284 <        torsionOrderStruct.push_back(tmp);
279 >    map<string, CutoffPolicy> stringToCutoffPolicy;
280 >    stringToCutoffPolicy["MIX"] = MIX;
281 >    stringToCutoffPolicy["MAX"] = MAX;
282 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
283 >
284 >    string cutPolicy;
285 >    if (forceFieldOptions_.haveCutoffPolicy()){
286 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
287 >    }else if (simParams_->haveCutoffPolicy()) {
288 >      cutPolicy = simParams_->getCutoffPolicy();
289      }
290 <    
291 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
292 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
293 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
294 <        Bend* bend = k->bend;
295 <        std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
296 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
290 >
291 >    if (!cutPolicy.empty()){
292 >      toUpper(cutPolicy);
293 >      map<string, CutoffPolicy>::iterator i;
294 >      i = stringToCutoffPolicy.find(cutPolicy);
295 >
296 >      if (i == stringToCutoffPolicy.end()) {
297 >        sprintf(painCave.errMsg,
298 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
299 >                "\tShould be one of: "
300 >                "MIX, MAX, or TRADITIONAL\n",
301 >                cutPolicy.c_str());
302 >        painCave.isFatal = 1;
303 >        painCave.severity = OPENMD_ERROR;
304 >        simError();
305 >      } else {
306 >        cutoffPolicy_ = i->second;
307 >      }
308 >    } else {
309 >      sprintf(painCave.errMsg,
310 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
311 >              "\tOpenMD will use TRADITIONAL.\n");
312 >      painCave.isFatal = 0;
313 >      painCave.severity = OPENMD_INFO;
314 >      simError();
315 >      cutoffPolicy_ = TRADITIONAL;        
316      }
317 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
318 <        Torsion* torsion = l->torsion;
319 <        std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
320 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
317 >
318 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
319 >        
320 >    // create the switching function object:
321 >
322 >    switcher_ = new SwitchingFunction();
323 >  
324 >    if (cutoffMethod_ == SWITCHED) {
325 >      if (simParams_->haveSwitchingRadius()) {
326 >        rSwitch_ = simParams_->getSwitchingRadius();
327 >        if (rSwitch_ > rCut_) {        
328 >          sprintf(painCave.errMsg,
329 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
330 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
331 >          painCave.isFatal = 1;
332 >          painCave.severity = OPENMD_ERROR;
333 >          simError();
334 >        }
335 >      } else {      
336 >        rSwitch_ = 0.85 * rCut_;
337 >        sprintf(painCave.errMsg,
338 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
339 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
340 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
341 >        painCave.isFatal = 0;
342 >        painCave.severity = OPENMD_WARNING;
343 >        simError();
344 >      }
345 >    } else {
346 >      if (mdFileVersion > 1) {
347 >        // throw an error if we define a switching radius and don't need one.
348 >        // older file versions should not do this.
349 >        if (simParams_->haveSwitchingRadius()) {
350 >          map<string, CutoffMethod>::const_iterator it;
351 >          string theMeth;
352 >          for (it = stringToCutoffMethod.begin();
353 >               it != stringToCutoffMethod.end(); ++it) {
354 >            if (it->second == cutoffMethod_) {
355 >              theMeth = it->first;
356 >              break;
357 >            }
358 >          }
359 >          sprintf(painCave.errMsg,
360 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
361 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
362 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
363 >          painCave.isFatal = 0;
364 >          painCave.severity = OPENMD_WARNING;
365 >          simError();
366 >        }
367 >      }
368 >      rSwitch_ = rCut_;
369      }
370 <   */
370 >    
371 >    // Default to cubic switching function.
372 >    sft_ = cubic;
373 >    if (simParams_->haveSwitchingFunctionType()) {
374 >      string funcType = simParams_->getSwitchingFunctionType();
375 >      toUpper(funcType);
376 >      if (funcType == "CUBIC") {
377 >        sft_ = cubic;
378 >      } else {
379 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
380 >          sft_ = fifth_order_poly;
381 >        } else {
382 >          // throw error        
383 >          sprintf( painCave.errMsg,
384 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
385 >                   "\tswitchingFunctionType must be one of: "
386 >                   "\"cubic\" or \"fifth_order_polynomial\".",
387 >                   funcType.c_str() );
388 >          painCave.isFatal = 1;
389 >          painCave.severity = OPENMD_ERROR;
390 >          simError();
391 >        }          
392 >      }
393 >    }
394 >    switcher_->setSwitchType(sft_);
395 >    switcher_->setSwitch(rSwitch_, rCut_);
396    }
397  
398 +  void ForceManager::initialize() {
399 +
400 +    if (!info_->isTopologyDone()) {
401 +
402 +      info_->update();
403 +      interactionMan_->setSimInfo(info_);
404 +      interactionMan_->initialize();
405 +
406 +      //! We want to delay the cutoffs until after the interaction
407 +      //! manager has set up the atom-atom interactions so that we can
408 +      //! query them for suggested cutoff values
409 +      setupCutoffs();
410 +
411 +      info_->prepareTopology();      
412 +
413 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
414 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
415 +      if (doHeatFlux_) doParticlePot_ = true;
416 +
417 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
418 +      doSitePotential_ = info_->getSimParams()->getOutputSitePotential();
419 +  
420 +    }
421 +
422 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
423 +    
424 +    //! Force fields can set options on how to scale van der Waals and
425 +    //! electrostatic interactions for atoms connected via bonds, bends
426 +    //! and torsions in this case the topological distance between
427 +    //! atoms is:
428 +    //! 0 = topologically unconnected
429 +    //! 1 = bonded together
430 +    //! 2 = connected via a bend
431 +    //! 3 = connected via a torsion
432 +    
433 +    vdwScale_.reserve(4);
434 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
435 +
436 +    electrostaticScale_.reserve(4);
437 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
438 +
439 +    vdwScale_[0] = 1.0;
440 +    vdwScale_[1] = fopts.getvdw12scale();
441 +    vdwScale_[2] = fopts.getvdw13scale();
442 +    vdwScale_[3] = fopts.getvdw14scale();
443 +    
444 +    electrostaticScale_[0] = 1.0;
445 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
446 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
447 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
448 +    
449 +    if (info_->getSimParams()->haveUniformField()) {
450 +      UniformField* eField = new UniformField(info_);
451 +      perturbations_.push_back(eField);
452 +    }
453 +    if (info_->getSimParams()->haveUniformGradientStrength() ||
454 +        info_->getSimParams()->haveUniformGradientDirection1() ||
455 +        info_->getSimParams()->haveUniformGradientDirection2() ) {
456 +      UniformGradient* eGrad = new UniformGradient(info_);
457 +      perturbations_.push_back(eGrad);
458 +    }
459 +    
460 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
461 +    
462 +    fDecomp_->distributeInitialData();
463 +    
464 +    initialized_ = true;
465 +    
466 +  }
467 +  
468 +  void ForceManager::calcForces() {
469 +    
470 +    if (!initialized_) initialize();
471 +    
472 +    preCalculation();  
473 +    shortRangeInteractions();
474 +    longRangeInteractions();
475 +    postCalculation();    
476 +  }
477 +  
478    void ForceManager::preCalculation() {
479      SimInfo::MoleculeIterator mi;
480      Molecule* mol;
# Line 128 | Line 482 | namespace oopse {
482      Atom* atom;
483      Molecule::RigidBodyIterator rbIter;
484      RigidBody* rb;
485 +    Molecule::CutoffGroupIterator ci;
486 +    CutoffGroup* cg;
487      
488 <    // forces are zeroed here, before any are accumulated.
489 <    // NOTE: do not rezero the forces in Fortran.
490 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
491 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
488 >    // forces and potentials are zeroed here, before any are
489 >    // accumulated.
490 >    
491 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
492 >
493 >    snap->setBondPotential(0.0);
494 >    snap->setBendPotential(0.0);
495 >    snap->setTorsionPotential(0.0);
496 >    snap->setInversionPotential(0.0);
497 >
498 >    potVec zeroPot(0.0);
499 >    snap->setLongRangePotential(zeroPot);
500 >    snap->setExcludedPotentials(zeroPot);
501 >
502 >    snap->setRestraintPotential(0.0);
503 >    snap->setRawPotential(0.0);
504 >
505 >    for (mol = info_->beginMolecule(mi); mol != NULL;
506 >         mol = info_->nextMolecule(mi)) {
507 >      for(atom = mol->beginAtom(ai); atom != NULL;
508 >          atom = mol->nextAtom(ai)) {
509          atom->zeroForcesAndTorques();
510        }
511 <        
511 >      
512        //change the positions of atoms which belong to the rigidbodies
513 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
513 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
514 >           rb = mol->nextRigidBody(rbIter)) {
515          rb->zeroForcesAndTorques();
516        }        
517 +      
518 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
519 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
520 +            cg = mol->nextCutoffGroup(ci)) {
521 +          //calculate the center of mass of cutoff group
522 +          cg->updateCOM();
523 +        }
524 +      }      
525      }
526      
527 +    // Zero out the stress tensor
528 +    stressTensor *= 0.0;
529 +    // Zero out the heatFlux
530 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
531    }
532 <
533 <  void ForceManager::calcShortRangeInteraction() {
532 >  
533 >  void ForceManager::shortRangeInteractions() {
534      Molecule* mol;
535      RigidBody* rb;
536      Bond* bond;
537      Bend* bend;
538      Torsion* torsion;
539 +    Inversion* inversion;
540      SimInfo::MoleculeIterator mi;
541      Molecule::RigidBodyIterator rbIter;
542      Molecule::BondIterator bondIter;;
543      Molecule::BendIterator  bendIter;
544      Molecule::TorsionIterator  torsionIter;
545 +    Molecule::InversionIterator  inversionIter;
546      RealType bondPotential = 0.0;
547      RealType bendPotential = 0.0;
548      RealType torsionPotential = 0.0;
549 +    RealType inversionPotential = 0.0;
550  
551      //calculate short range interactions    
552 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
552 >    for (mol = info_->beginMolecule(mi); mol != NULL;
553 >         mol = info_->nextMolecule(mi)) {
554  
555        //change the positions of atoms which belong to the rigidbodies
556 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
557 <          rb->updateAtoms();
556 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
557 >           rb = mol->nextRigidBody(rbIter)) {
558 >        rb->updateAtoms();
559        }
560  
561 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
562 <        bond->calcForce();
561 >      for (bond = mol->beginBond(bondIter); bond != NULL;
562 >           bond = mol->nextBond(bondIter)) {
563 >        bond->calcForce(doParticlePot_);
564          bondPotential += bond->getPotential();
173      }
174
175
176      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
177
178          RealType angle;
179            bend->calcForce(angle);
180          RealType currBendPot = bend->getPotential();          
181            bendPotential += bend->getPotential();
182          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
183          if (i == bendDataSets.end()) {
184            BendDataSet dataSet;
185            dataSet.prev.angle = dataSet.curr.angle = angle;
186            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
187            dataSet.deltaV = 0.0;
188            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
189          }else {
190            i->second.prev.angle = i->second.curr.angle;
191            i->second.prev.potential = i->second.curr.potential;
192            i->second.curr.angle = angle;
193            i->second.curr.potential = currBendPot;
194            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
195          }
565        }
566  
567 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
567 >      for (bend = mol->beginBend(bendIter); bend != NULL;
568 >           bend = mol->nextBend(bendIter)) {
569 >        
570          RealType angle;
571 <          torsion->calcForce(angle);
572 <        RealType currTorsionPot = torsion->getPotential();
573 <          torsionPotential += torsion->getPotential();
574 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
575 <          if (i == torsionDataSets.end()) {
576 <            TorsionDataSet dataSet;
577 <            dataSet.prev.angle = dataSet.curr.angle = angle;
578 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
579 <            dataSet.deltaV = 0.0;
580 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
581 <          }else {
582 <            i->second.prev.angle = i->second.curr.angle;
583 <            i->second.prev.potential = i->second.curr.potential;
584 <            i->second.curr.angle = angle;
585 <            i->second.curr.potential = currTorsionPot;
586 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
587 <          }      
571 >        bend->calcForce(angle, doParticlePot_);
572 >        RealType currBendPot = bend->getPotential();          
573 >        
574 >        bendPotential += bend->getPotential();
575 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
576 >        if (i == bendDataSets.end()) {
577 >          BendDataSet dataSet;
578 >          dataSet.prev.angle = dataSet.curr.angle = angle;
579 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
580 >          dataSet.deltaV = 0.0;
581 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
582 >                                                                  dataSet));
583 >        }else {
584 >          i->second.prev.angle = i->second.curr.angle;
585 >          i->second.prev.potential = i->second.curr.potential;
586 >          i->second.curr.angle = angle;
587 >          i->second.curr.potential = currBendPot;
588 >          i->second.deltaV =  fabs(i->second.curr.potential -  
589 >                                   i->second.prev.potential);
590 >        }
591        }
592 <
592 >      
593 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
594 >           torsion = mol->nextTorsion(torsionIter)) {
595 >        RealType angle;
596 >        torsion->calcForce(angle, doParticlePot_);
597 >        RealType currTorsionPot = torsion->getPotential();
598 >        torsionPotential += torsion->getPotential();
599 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
600 >        if (i == torsionDataSets.end()) {
601 >          TorsionDataSet dataSet;
602 >          dataSet.prev.angle = dataSet.curr.angle = angle;
603 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
604 >          dataSet.deltaV = 0.0;
605 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
606 >        }else {
607 >          i->second.prev.angle = i->second.curr.angle;
608 >          i->second.prev.potential = i->second.curr.potential;
609 >          i->second.curr.angle = angle;
610 >          i->second.curr.potential = currTorsionPot;
611 >          i->second.deltaV =  fabs(i->second.curr.potential -  
612 >                                   i->second.prev.potential);
613 >        }      
614 >      }      
615 >      
616 >      for (inversion = mol->beginInversion(inversionIter);
617 >           inversion != NULL;
618 >           inversion = mol->nextInversion(inversionIter)) {
619 >        RealType angle;
620 >        inversion->calcForce(angle, doParticlePot_);
621 >        RealType currInversionPot = inversion->getPotential();
622 >        inversionPotential += inversion->getPotential();
623 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
624 >        if (i == inversionDataSets.end()) {
625 >          InversionDataSet dataSet;
626 >          dataSet.prev.angle = dataSet.curr.angle = angle;
627 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
628 >          dataSet.deltaV = 0.0;
629 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
630 >        }else {
631 >          i->second.prev.angle = i->second.curr.angle;
632 >          i->second.prev.potential = i->second.curr.potential;
633 >          i->second.curr.angle = angle;
634 >          i->second.curr.potential = currInversionPot;
635 >          i->second.deltaV =  fabs(i->second.curr.potential -  
636 >                                   i->second.prev.potential);
637 >        }      
638 >      }      
639      }
640 <    
641 <    RealType  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
640 >
641 > #ifdef IS_MPI
642 >    // Collect from all nodes.  This should eventually be moved into a
643 >    // SystemDecomposition, but this is a better place than in
644 >    // Thermo to do the collection.
645 >
646 >    MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE,
647 >                  MPI_SUM, MPI_COMM_WORLD);
648 >    MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE,
649 >                  MPI_SUM, MPI_COMM_WORLD);
650 >    MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1,
651 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
652 >    MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1,
653 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
654 > #endif
655 >
656      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
657 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
658 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
659 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
660 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
657 >
658 >    curSnapshot->setBondPotential(bondPotential);
659 >    curSnapshot->setBendPotential(bendPotential);
660 >    curSnapshot->setTorsionPotential(torsionPotential);
661 >    curSnapshot->setInversionPotential(inversionPotential);
662      
663 +    // RealType shortRangePotential = bondPotential + bendPotential +
664 +    //   torsionPotential +  inversionPotential;    
665 +
666 +    // curSnapshot->setShortRangePotential(shortRangePotential);
667    }
668 +  
669 +  void ForceManager::longRangeInteractions() {
670  
671 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
672 <    Snapshot* curSnapshot;
673 <    DataStorage* config;
233 <    RealType* frc;
234 <    RealType* pos;
235 <    RealType* trq;
236 <    RealType* A;
237 <    RealType* electroFrame;
238 <    RealType* rc;
239 <    
240 <    //get current snapshot from SimInfo
241 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
671 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
672 >    DataStorage* config = &(curSnapshot->atomData);
673 >    DataStorage* cgConfig = &(curSnapshot->cgData);
674  
243    //get array pointers
244    config = &(curSnapshot->atomData);
245    frc = config->getArrayPointer(DataStorage::dslForce);
246    pos = config->getArrayPointer(DataStorage::dslPosition);
247    trq = config->getArrayPointer(DataStorage::dslTorque);
248    A   = config->getArrayPointer(DataStorage::dslAmat);
249    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
675  
676      //calculate the center of mass of cutoff group
677 +
678      SimInfo::MoleculeIterator mi;
679      Molecule* mol;
680      Molecule::CutoffGroupIterator ci;
681      CutoffGroup* cg;
256    Vector3d com;
257    std::vector<Vector3d> rcGroup;
682  
683 <    if(info_->getNCutoffGroups() > 0){
684 <
685 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
686 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
687 <          cg->getCOM(com);
688 <          rcGroup.push_back(com);
683 >    if(info_->getNCutoffGroups() > 0){      
684 >      for (mol = info_->beginMolecule(mi); mol != NULL;
685 >           mol = info_->nextMolecule(mi)) {
686 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
687 >            cg = mol->nextCutoffGroup(ci)) {
688 >          cg->updateCOM();
689          }
690 <      }// end for (mol)
267 <      
268 <      rc = rcGroup[0].getArrayPointer();
690 >      }      
691      } else {
692 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
693 <      rc = pos;
692 >      // center of mass of the group is the same as position of the atom  
693 >      // if cutoff group does not exist
694 >      cgConfig->position = config->position;
695 >      cgConfig->velocity = config->velocity;
696      }
697 <  
698 <    //initialize data before passing to fortran
699 <    RealType longRangePotential[LR_POT_TYPES];
276 <    RealType lrPot = 0.0;
697 >
698 >    fDecomp_->zeroWorkArrays();
699 >    fDecomp_->distributeData();
700      
701 <    Mat3x3d tau;
702 <    short int passedCalcPot = needPotential;
703 <    short int passedCalcStress = needStress;
704 <    int isError = 0;
701 >    int cg1, cg2, atom1, atom2, topoDist;
702 >    Vector3d d_grp, dag, d, gvel2, vel2;
703 >    RealType rgrpsq, rgrp, r2, r;
704 >    RealType electroMult, vdwMult;
705 >    RealType vij;
706 >    Vector3d fij, fg, f1;
707 >    tuple3<RealType, RealType, RealType> cuts;
708 >    RealType rCut, rCutSq, rListSq;
709 >    bool in_switching_region;
710 >    RealType sw, dswdr, swderiv;
711 >    vector<int> atomListColumn, atomListRow;
712 >    InteractionData idat;
713 >    SelfData sdat;
714 >    RealType mf;
715 >    RealType vpair;
716 >    RealType dVdFQ1(0.0);
717 >    RealType dVdFQ2(0.0);
718 >    potVec longRangePotential(0.0);
719 >    RealType reciprocalPotential(0.0);
720 >    potVec workPot(0.0);
721 >    potVec exPot(0.0);
722 >    Vector3d eField1(0.0);
723 >    Vector3d eField2(0.0);
724 >    RealType sPot1(0.0);
725 >    RealType sPot2(0.0);
726 >                  
727 >    vector<int>::iterator ia, jb;
728  
729 <    for (int i=0; i<LR_POT_TYPES;i++){
730 <      longRangePotential[i]=0.0; //Initialize array
729 >    int loopStart, loopEnd;
730 >    
731 >    idat.rcut = &rCut;
732 >    idat.vdwMult = &vdwMult;
733 >    idat.electroMult = &electroMult;
734 >    idat.pot = &workPot;
735 >    idat.excludedPot = &exPot;
736 >    sdat.pot = fDecomp_->getEmbeddingPotential();
737 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
738 >    idat.vpair = &vpair;
739 >    idat.dVdFQ1 = &dVdFQ1;
740 >    idat.dVdFQ2 = &dVdFQ2;
741 >    idat.eField1 = &eField1;
742 >    idat.eField2 = &eField2;
743 >    idat.sPot1 = &sPot1;
744 >    idat.sPot2 = &sPot2;
745 >    idat.f1 = &f1;
746 >    idat.sw = &sw;
747 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
748 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE ||
749 >                         cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
750 >    idat.doParticlePot = doParticlePot_;
751 >    idat.doElectricField = doElectricField_;
752 >    idat.doSitePotential = doSitePotential_;
753 >    sdat.doParticlePot = doParticlePot_;
754 >    
755 >    loopEnd = PAIR_LOOP;
756 >    if (info_->requiresPrepair() ) {
757 >      loopStart = PREPAIR_LOOP;
758 >    } else {
759 >      loopStart = PAIR_LOOP;
760      }
761 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
762 +    
763 +      if (iLoop == loopStart) {
764 +        bool update_nlist = fDecomp_->checkNeighborList();
765 +        if (update_nlist) {
766 +          if (!usePeriodicBoundaryConditions_)
767 +            Mat3x3d bbox = thermo->getBoundingBox();
768 +          fDecomp_->buildNeighborList(neighborList_);
769 +        }
770 +      }
771  
772 <    doForceLoop( pos,
773 <                 rc,
774 <                 A,
775 <                 electroFrame,
776 <                 frc,
777 <                 trq,
778 <                 tau.getArrayPointer(),
294 <                 longRangePotential,
295 <                 &passedCalcPot,
296 <                 &passedCalcStress,
297 <                 &isError );
772 >      for (vector<pair<int, int> >::iterator it = neighborList_.begin();
773 >           it != neighborList_.end(); ++it) {
774 >                
775 >        cg1 = (*it).first;
776 >        cg2 = (*it).second;
777 >        
778 >        fDecomp_->getGroupCutoffs(cg1, cg2, rCut, rCutSq, rListSq);
779  
780 <    if( isError ){
781 <      sprintf( painCave.errMsg,
782 <               "Error returned from the fortran force calculation.\n" );
783 <      painCave.isFatal = 1;
784 <      simError();
780 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
781 >
782 >        // already wrapped in the getIntergroupVector call:
783 >        // curSnapshot->wrapVector(d_grp);        
784 >        rgrpsq = d_grp.lengthSquare();
785 >
786 >        if (rgrpsq < rCutSq) {
787 >          if (iLoop == PAIR_LOOP) {
788 >            vij = 0.0;
789 >            fij.zero();
790 >            eField1.zero();
791 >            eField2.zero();
792 >            sPot1 = 0.0;
793 >            sPot2 = 0.0;
794 >          }
795 >          
796 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
797 >                                                     rgrp);
798 >
799 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
800 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
801 >
802 >          if (doHeatFlux_)
803 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
804 >
805 >          for (ia = atomListRow.begin();
806 >               ia != atomListRow.end(); ++ia) {            
807 >            atom1 = (*ia);
808 >
809 >            for (jb = atomListColumn.begin();
810 >                 jb != atomListColumn.end(); ++jb) {              
811 >              atom2 = (*jb);
812 >
813 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
814 >
815 >                vpair = 0.0;
816 >                workPot = 0.0;
817 >                exPot = 0.0;
818 >                f1.zero();
819 >                dVdFQ1 = 0.0;
820 >                dVdFQ2 = 0.0;
821 >
822 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
823 >
824 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
825 >                vdwMult = vdwScale_[topoDist];
826 >                electroMult = electrostaticScale_[topoDist];
827 >
828 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
829 >                  idat.d = &d_grp;
830 >                  idat.r2 = &rgrpsq;
831 >                  if (doHeatFlux_)
832 >                    vel2 = gvel2;
833 >                } else {
834 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
835 >                  curSnapshot->wrapVector( d );
836 >                  r2 = d.lengthSquare();
837 >                  idat.d = &d;
838 >                  idat.r2 = &r2;
839 >                  if (doHeatFlux_)
840 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
841 >                }
842 >              
843 >                r = sqrt( *(idat.r2) );
844 >                idat.rij = &r;
845 >
846 >                if (iLoop == PREPAIR_LOOP) {
847 >                  interactionMan_->doPrePair(idat);
848 >                } else {
849 >                  interactionMan_->doPair(idat);
850 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
851 >                  vij += vpair;
852 >                  fij += f1;
853 >                  stressTensor -= outProduct( *(idat.d), f1);
854 >                  if (doHeatFlux_)
855 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
856 >                }
857 >              }
858 >            }
859 >          }
860 >
861 >          if (iLoop == PAIR_LOOP) {
862 >            if (in_switching_region) {
863 >              swderiv = vij * dswdr / rgrp;
864 >              fg = swderiv * d_grp;
865 >              fij += fg;
866 >
867 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
868 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
869 >                                            atomListColumn[0],
870 >                                            cg1, cg2)) {
871 >                  stressTensor -= outProduct( *(idat.d), fg);
872 >                  if (doHeatFlux_)
873 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
874 >                }                
875 >              }
876 >          
877 >              for (ia = atomListRow.begin();
878 >                   ia != atomListRow.end(); ++ia) {            
879 >                atom1 = (*ia);                
880 >                mf = fDecomp_->getMassFactorRow(atom1);
881 >                // fg is the force on atom ia due to cutoff group's
882 >                // presence in switching region
883 >                fg = swderiv * d_grp * mf;
884 >                fDecomp_->addForceToAtomRow(atom1, fg);
885 >                if (atomListRow.size() > 1) {
886 >                  if (info_->usesAtomicVirial()) {
887 >                    // find the distance between the atom
888 >                    // and the center of the cutoff group:
889 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
890 >                    stressTensor -= outProduct(dag, fg);
891 >                    if (doHeatFlux_)
892 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
893 >                  }
894 >                }
895 >              }
896 >              for (jb = atomListColumn.begin();
897 >                   jb != atomListColumn.end(); ++jb) {              
898 >                atom2 = (*jb);
899 >                mf = fDecomp_->getMassFactorColumn(atom2);
900 >                // fg is the force on atom jb due to cutoff group's
901 >                // presence in switching region
902 >                fg = -swderiv * d_grp * mf;
903 >                fDecomp_->addForceToAtomColumn(atom2, fg);
904 >
905 >                if (atomListColumn.size() > 1) {
906 >                  if (info_->usesAtomicVirial()) {
907 >                    // find the distance between the atom
908 >                    // and the center of the cutoff group:
909 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
910 >                    stressTensor -= outProduct(dag, fg);
911 >                    if (doHeatFlux_)
912 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
913 >                  }
914 >                }
915 >              }
916 >            }
917 >            //if (!info_->usesAtomicVirial()) {
918 >            //  stressTensor -= outProduct(d_grp, fij);
919 >            //  if (doHeatFlux_)
920 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
921 >            //}
922 >          }
923 >        }
924 >      }
925 >
926 >      if (iLoop == PREPAIR_LOOP) {
927 >        if (info_->requiresPrepair()) {
928 >
929 >          fDecomp_->collectIntermediateData();
930 >
931 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
932 >            fDecomp_->fillSelfData(sdat, atom1);
933 >            interactionMan_->doPreForce(sdat);
934 >          }
935 >
936 >          fDecomp_->distributeIntermediateData();
937 >
938 >        }
939 >      }
940      }
941 <    for (int i=0; i<LR_POT_TYPES;i++){
942 <      lrPot += longRangePotential[i]; //Quick hack
941 >    
942 >    // collects pairwise information
943 >    fDecomp_->collectData();
944 >    if (cutoffMethod_ == EWALD_FULL) {
945 >      interactionMan_->doReciprocalSpaceSum(reciprocalPotential);
946 >
947 >      curSnapshot->setReciprocalPotential(reciprocalPotential);
948      }
949 +        
950 +    if (info_->requiresSelfCorrection()) {
951 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
952 +        fDecomp_->fillSelfData(sdat, atom1);
953 +        interactionMan_->doSelfCorrection(sdat);
954 +      }
955 +    }
956  
957 <    //store the tau and long range potential    
958 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
311 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
312 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
957 >    // collects single-atom information
958 >    fDecomp_->collectSelfData();
959  
960 <    curSnapshot->statData.setTau(tau);
961 <  }
960 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
961 >      *(fDecomp_->getPairwisePotential());
962  
963 +    curSnapshot->setLongRangePotential(longRangePotential);
964 +    
965 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
966 +                                       *(fDecomp_->getExcludedPotential()));
967  
968 +  }
969 +
970    void ForceManager::postCalculation() {
971 +
972 +    vector<Perturbation*>::iterator pi;
973 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
974 +      (*pi)->applyPerturbation();
975 +    }
976 +
977      SimInfo::MoleculeIterator mi;
978      Molecule* mol;
979      Molecule::RigidBodyIterator rbIter;
980      RigidBody* rb;
981 <    
981 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
982 >  
983      // collect the atomic forces onto rigid bodies
984 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
985 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
986 <        rb->calcForcesAndTorques();
984 >    
985 >    for (mol = info_->beginMolecule(mi); mol != NULL;
986 >         mol = info_->nextMolecule(mi)) {
987 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
988 >           rb = mol->nextRigidBody(rbIter)) {
989 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
990 >        stressTensor += rbTau;
991        }
992      }
993 +    
994 + #ifdef IS_MPI
995 +    MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9,
996 +                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
997 + #endif
998 +    curSnapshot->setStressTensor(stressTensor);
999 +    
1000 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
1001 +      /*
1002 +        RealType vol = curSnapshot->getVolume();
1003 +        RealType Elrc(0.0);
1004 +        RealType Wlrc(0.0);
1005  
1006 <  }
1006 >        set<AtomType*>::iterator i;
1007 >        set<AtomType*>::iterator j;
1008 >    
1009 >        RealType n_i, n_j;
1010 >        RealType rho_i, rho_j;
1011 >        pair<RealType, RealType> LRI;
1012 >      
1013 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
1014 >        n_i = RealType(info_->getGlobalCountOfType(*i));
1015 >        rho_i = n_i /  vol;
1016 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
1017 >        n_j = RealType(info_->getGlobalCountOfType(*j));
1018 >        rho_j = n_j / vol;
1019 >          
1020 >        LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
1021  
1022 < } //end namespace oopse
1022 >        Elrc += n_i   * rho_j * LRI.first;
1023 >        Wlrc -= rho_i * rho_j * LRI.second;
1024 >        }
1025 >        }
1026 >        Elrc *= 2.0 * NumericConstant::PI;
1027 >        Wlrc *= 2.0 * NumericConstant::PI;
1028 >
1029 >        RealType lrp = curSnapshot->getLongRangePotential();
1030 >        curSnapshot->setLongRangePotential(lrp + Elrc);
1031 >        stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1032 >        curSnapshot->setStressTensor(stressTensor);
1033 >      */
1034 >    
1035 >    }
1036 >  }
1037 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
Revision 2047 by gezelter, Thu Dec 11 16:16:43 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines