ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 691 by chrisfen, Wed Oct 19 19:24:40 2005 UTC vs.
Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 < namespace oopse {
55 > #include "primitives/Bond.hpp"
56 > #include "primitives/Bend.hpp"
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/UniformField.hpp"
61 > #include "perturbations/UniformGradient.hpp"
62 > #include "parallel/ForceMatrixDecomposition.hpp"
63  
64 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
64 > #include <cstdio>
65 > #include <iostream>
66 > #include <iomanip>
67  
68 <    if (!info_->isFortranInitialized()) {
69 <      info_->update();
70 <    }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
72 >                                               initialized_(false) {
73 >    forceField_ = info_->getForceField();
74 >    interactionMan_ = new InteractionManager();
75 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
76 >    thermo = new Thermo(info_);
77 >  }
78  
79 <    preCalculation();
79 >  ForceManager::~ForceManager() {
80 >    perturbations_.clear();
81      
82 <    calcShortRangeInteraction();
82 >    delete switcher_;
83 >    delete interactionMan_;
84 >    delete fDecomp_;
85 >    delete thermo;
86 >  }
87 >  
88 >  /**
89 >   * setupCutoffs
90 >   *
91 >   * Sets the values of cutoffRadius, switchingRadius, and cutoffMethod
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
102 >   *                        SHIFTED_POTENTIAL, or EWALD_FULL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * switchingRadius : realType
107 >   *  If the cutoffMethod was set to SWITCHED:
108 >   *      If the switchingRadius was explicitly set, use that value
109 >   *          (but do a sanity check first).
110 >   *      If the switchingRadius was not explicitly set: use 0.85 *
111 >   *      cutoffRadius_
112 >   *  If the cutoffMethod was not set to SWITCHED:
113 >   *      Set switchingRadius equal to cutoffRadius for safety.
114 >   */
115 >  void ForceManager::setupCutoffs() {
116 >    
117 >    Globals* simParams_ = info_->getSimParams();
118 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
119 >    int mdFileVersion;
120 >    rCut_ = 0.0; //Needs a value for a later max() call;  
121 >    
122 >    if (simParams_->haveMDfileVersion())
123 >      mdFileVersion = simParams_->getMDfileVersion();
124 >    else
125 >      mdFileVersion = 0;
126 >  
127 >    // We need the list of simulated atom types to figure out cutoffs
128 >    // as well as long range corrections.
129  
130 <    calcLongRangeInteraction(needPotential, needStress);
130 >    set<AtomType*>::iterator i;
131 >    set<AtomType*> atomTypes_;
132 >    atomTypes_ = info_->getSimulatedAtomTypes();
133  
134 <    postCalculation();
134 >    if (simParams_->haveCutoffRadius()) {
135 >      rCut_ = simParams_->getCutoffRadius();
136 >    } else {      
137 >      if (info_->usesElectrostaticAtoms()) {
138 >        sprintf(painCave.errMsg,
139 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
140 >                "\tOpenMD will use a default value of 12.0 angstroms"
141 >                "\tfor the cutoffRadius.\n");
142 >        painCave.isFatal = 0;
143 >        painCave.severity = OPENMD_INFO;
144 >        simError();
145 >        rCut_ = 12.0;
146 >      } else {
147 >        RealType thisCut;
148 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
149 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
150 >          rCut_ = max(thisCut, rCut_);
151 >        }
152 >        sprintf(painCave.errMsg,
153 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
154 >                "\tOpenMD will use %lf angstroms.\n",
155 >                rCut_);
156 >        painCave.isFatal = 0;
157 >        painCave.severity = OPENMD_INFO;
158 >        simError();
159 >      }
160 >    }
161 >
162 >    fDecomp_->setCutoffRadius(rCut_);
163 >    interactionMan_->setCutoffRadius(rCut_);
164 >    rCutSq_ = rCut_ * rCut_;
165 >
166 >    map<string, CutoffMethod> stringToCutoffMethod;
167 >    stringToCutoffMethod["HARD"] = HARD;
168 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
169 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
170 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
171 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
172 >    stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL;
173 >  
174 >    if (simParams_->haveCutoffMethod()) {
175 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
176 >      map<string, CutoffMethod>::iterator i;
177 >      i = stringToCutoffMethod.find(cutMeth);
178 >      if (i == stringToCutoffMethod.end()) {
179 >        sprintf(painCave.errMsg,
180 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
181 >                "\tShould be one of: "
182 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
183 >                "\tSHIFTED_FORCE, or EWALD_FULL\n",
184 >                cutMeth.c_str());
185 >        painCave.isFatal = 1;
186 >        painCave.severity = OPENMD_ERROR;
187 >        simError();
188 >      } else {
189 >        cutoffMethod_ = i->second;
190 >      }
191 >    } else {
192 >      if (mdFileVersion > 1) {
193 >        sprintf(painCave.errMsg,
194 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
195 >                "\tOpenMD will use SHIFTED_FORCE.\n");
196 >        painCave.isFatal = 0;
197 >        painCave.severity = OPENMD_INFO;
198 >        simError();
199 >        cutoffMethod_ = SHIFTED_FORCE;        
200 >      } else {
201 >        // handle the case where the old file version was in play
202 >        // (there should be no cutoffMethod, so we have to deduce it
203 >        // from other data).        
204 >
205 >        sprintf(painCave.errMsg,
206 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
207 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
208 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
209 >                "\tbehavior of the older (version 1) code.  To remove this\n"
210 >                "\twarning, add an explicit cutoffMethod and change the top\n"
211 >                "\tof the file so that it begins with <OpenMD version=2>\n");
212 >        painCave.isFatal = 0;
213 >        painCave.severity = OPENMD_WARNING;
214 >        simError();            
215 >                
216 >        // The old file version tethered the shifting behavior to the
217 >        // electrostaticSummationMethod keyword.
218          
219 +        if (simParams_->haveElectrostaticSummationMethod()) {
220 +          string myMethod = simParams_->getElectrostaticSummationMethod();
221 +          toUpper(myMethod);
222 +        
223 +          if (myMethod == "SHIFTED_POTENTIAL") {
224 +            cutoffMethod_ = SHIFTED_POTENTIAL;
225 +          } else if (myMethod == "SHIFTED_FORCE") {
226 +            cutoffMethod_ = SHIFTED_FORCE;
227 +          } else if (myMethod == "TAYLOR_SHIFTED") {
228 +            cutoffMethod_ = TAYLOR_SHIFTED;
229 +          } else if (myMethod == "EWALD_FULL") {
230 +            cutoffMethod_ = EWALD_FULL;
231 +          }
232 +        
233 +          if (simParams_->haveSwitchingRadius())
234 +            rSwitch_ = simParams_->getSwitchingRadius();
235 +
236 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
237 +              myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") {
238 +            if (simParams_->haveSwitchingRadius()){
239 +              sprintf(painCave.errMsg,
240 +                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
241 +                      "\tA value was set for the switchingRadius\n"
242 +                      "\teven though the electrostaticSummationMethod was\n"
243 +                      "\tset to %s\n", myMethod.c_str());
244 +              painCave.severity = OPENMD_WARNING;
245 +              painCave.isFatal = 1;
246 +              simError();            
247 +            }
248 +          }
249 +          if (abs(rCut_ - rSwitch_) < 0.0001) {
250 +            if (cutoffMethod_ == SHIFTED_FORCE) {              
251 +              sprintf(painCave.errMsg,
252 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
253 +                      "\tcutoffRadius and switchingRadius are set to the\n"
254 +                      "\tsame value.  OpenMD will use shifted force\n"
255 +                      "\tpotentials instead of switching functions.\n");
256 +              painCave.isFatal = 0;
257 +              painCave.severity = OPENMD_WARNING;
258 +              simError();            
259 +            } else {
260 +              cutoffMethod_ = SHIFTED_POTENTIAL;
261 +              sprintf(painCave.errMsg,
262 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
263 +                      "\tcutoffRadius and switchingRadius are set to the\n"
264 +                      "\tsame value.  OpenMD will use shifted potentials\n"
265 +                      "\tinstead of switching functions.\n");
266 +              painCave.isFatal = 0;
267 +              painCave.severity = OPENMD_WARNING;
268 +              simError();            
269 +            }
270 +          }
271 +        }
272 +      }
273 +    }
274 +        
275 +    // create the switching function object:
276 +
277 +    switcher_ = new SwitchingFunction();
278 +  
279 +    if (cutoffMethod_ == SWITCHED) {
280 +      if (simParams_->haveSwitchingRadius()) {
281 +        rSwitch_ = simParams_->getSwitchingRadius();
282 +        if (rSwitch_ > rCut_) {        
283 +          sprintf(painCave.errMsg,
284 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
285 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
286 +          painCave.isFatal = 1;
287 +          painCave.severity = OPENMD_ERROR;
288 +          simError();
289 +        }
290 +      } else {      
291 +        rSwitch_ = 0.85 * rCut_;
292 +        sprintf(painCave.errMsg,
293 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
294 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
295 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
296 +        painCave.isFatal = 0;
297 +        painCave.severity = OPENMD_WARNING;
298 +        simError();
299 +      }
300 +    } else {
301 +      if (mdFileVersion > 1) {
302 +        // throw an error if we define a switching radius and don't need one.
303 +        // older file versions should not do this.
304 +        if (simParams_->haveSwitchingRadius()) {
305 +          map<string, CutoffMethod>::const_iterator it;
306 +          string theMeth;
307 +          for (it = stringToCutoffMethod.begin();
308 +               it != stringToCutoffMethod.end(); ++it) {
309 +            if (it->second == cutoffMethod_) {
310 +              theMeth = it->first;
311 +              break;
312 +            }
313 +          }
314 +          sprintf(painCave.errMsg,
315 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
316 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
317 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
318 +          painCave.isFatal = 0;
319 +          painCave.severity = OPENMD_WARNING;
320 +          simError();
321 +        }
322 +      }
323 +      rSwitch_ = rCut_;
324 +    }
325 +    
326 +    // Default to cubic switching function.
327 +    sft_ = cubic;
328 +    if (simParams_->haveSwitchingFunctionType()) {
329 +      string funcType = simParams_->getSwitchingFunctionType();
330 +      toUpper(funcType);
331 +      if (funcType == "CUBIC") {
332 +        sft_ = cubic;
333 +      } else {
334 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
335 +          sft_ = fifth_order_poly;
336 +        } else {
337 +          // throw error        
338 +          sprintf( painCave.errMsg,
339 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
340 +                   "\tswitchingFunctionType must be one of: "
341 +                   "\"cubic\" or \"fifth_order_polynomial\".",
342 +                   funcType.c_str() );
343 +          painCave.isFatal = 1;
344 +          painCave.severity = OPENMD_ERROR;
345 +          simError();
346 +        }          
347 +      }
348 +    }
349 +    switcher_->setSwitchType(sft_);
350 +    switcher_->setSwitch(rSwitch_, rCut_);
351    }
352  
353 +  void ForceManager::initialize() {
354 +
355 +    if (!info_->isTopologyDone()) {
356 +
357 +      info_->update();
358 +      interactionMan_->setSimInfo(info_);
359 +      interactionMan_->initialize();
360 +
361 +      //! We want to delay the cutoffs until after the interaction
362 +      //! manager has set up the atom-atom interactions so that we can
363 +      //! query them for suggested cutoff values
364 +      setupCutoffs();
365 +
366 +      info_->prepareTopology();      
367 +
368 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
369 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
370 +      if (doHeatFlux_) doParticlePot_ = true;
371 +
372 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
373 +      doSitePotential_ = info_->getSimParams()->getOutputSitePotential();
374 +  
375 +    }
376 +
377 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
378 +    
379 +    //! Force fields can set options on how to scale van der Waals and
380 +    //! electrostatic interactions for atoms connected via bonds, bends
381 +    //! and torsions in this case the topological distance between
382 +    //! atoms is:
383 +    //! 0 = topologically unconnected
384 +    //! 1 = bonded together
385 +    //! 2 = connected via a bend
386 +    //! 3 = connected via a torsion
387 +    
388 +    vdwScale_.reserve(4);
389 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
390 +
391 +    electrostaticScale_.reserve(4);
392 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
393 +
394 +    vdwScale_[0] = 1.0;
395 +    vdwScale_[1] = fopts.getvdw12scale();
396 +    vdwScale_[2] = fopts.getvdw13scale();
397 +    vdwScale_[3] = fopts.getvdw14scale();
398 +    
399 +    electrostaticScale_[0] = 1.0;
400 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
401 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
402 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
403 +    
404 +    if (info_->getSimParams()->haveUniformField()) {
405 +      UniformField* eField = new UniformField(info_);
406 +      perturbations_.push_back(eField);
407 +    }
408 +    if (info_->getSimParams()->haveUniformGradientStrength() ||
409 +        info_->getSimParams()->haveUniformGradientDirection1() ||
410 +        info_->getSimParams()->haveUniformGradientDirection2() ) {
411 +      UniformGradient* eGrad = new UniformGradient(info_);
412 +      perturbations_.push_back(eGrad);
413 +    }
414 +    
415 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
416 +    
417 +    fDecomp_->distributeInitialData();
418 +    
419 +    initialized_ = true;
420 +    
421 +  }
422 +  
423 +  void ForceManager::calcForces() {
424 +    
425 +    if (!initialized_) initialize();
426 +    
427 +    preCalculation();  
428 +    shortRangeInteractions();
429 +    longRangeInteractions();
430 +    postCalculation();    
431 +  }
432 +  
433    void ForceManager::preCalculation() {
434      SimInfo::MoleculeIterator mi;
435      Molecule* mol;
# Line 78 | Line 437 | namespace oopse {
437      Atom* atom;
438      Molecule::RigidBodyIterator rbIter;
439      RigidBody* rb;
440 +    Molecule::CutoffGroupIterator ci;
441 +    CutoffGroup* cg;
442      
443 <    // forces are zeroed here, before any are accumulated.
444 <    // NOTE: do not rezero the forces in Fortran.
445 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
446 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
443 >    // forces and potentials are zeroed here, before any are
444 >    // accumulated.
445 >    
446 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
447 >
448 >    snap->setBondPotential(0.0);
449 >    snap->setBendPotential(0.0);
450 >    snap->setTorsionPotential(0.0);
451 >    snap->setInversionPotential(0.0);
452 >
453 >    potVec zeroPot(0.0);
454 >    snap->setLongRangePotential(zeroPot);
455 >    snap->setExcludedPotentials(zeroPot);
456 >
457 >    snap->setRestraintPotential(0.0);
458 >    snap->setRawPotential(0.0);
459 >
460 >    for (mol = info_->beginMolecule(mi); mol != NULL;
461 >         mol = info_->nextMolecule(mi)) {
462 >      for(atom = mol->beginAtom(ai); atom != NULL;
463 >          atom = mol->nextAtom(ai)) {
464          atom->zeroForcesAndTorques();
465        }
466 <        
466 >      
467        //change the positions of atoms which belong to the rigidbodies
468 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
468 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
469 >           rb = mol->nextRigidBody(rbIter)) {
470          rb->zeroForcesAndTorques();
471        }        
472 +      
473 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
474 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
475 +            cg = mol->nextCutoffGroup(ci)) {
476 +          //calculate the center of mass of cutoff group
477 +          cg->updateCOM();
478 +        }
479 +      }      
480      }
481      
482 +    // Zero out the stress tensor
483 +    stressTensor *= 0.0;
484 +    // Zero out the heatFlux
485 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
486    }
487 <
488 <  void ForceManager::calcShortRangeInteraction() {
487 >  
488 >  void ForceManager::shortRangeInteractions() {
489      Molecule* mol;
490      RigidBody* rb;
491      Bond* bond;
492      Bend* bend;
493      Torsion* torsion;
494 +    Inversion* inversion;
495      SimInfo::MoleculeIterator mi;
496      Molecule::RigidBodyIterator rbIter;
497      Molecule::BondIterator bondIter;;
498      Molecule::BendIterator  bendIter;
499      Molecule::TorsionIterator  torsionIter;
500 +    Molecule::InversionIterator  inversionIter;
501 +    RealType bondPotential = 0.0;
502 +    RealType bendPotential = 0.0;
503 +    RealType torsionPotential = 0.0;
504 +    RealType inversionPotential = 0.0;
505  
506      //calculate short range interactions    
507 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
507 >    for (mol = info_->beginMolecule(mi); mol != NULL;
508 >         mol = info_->nextMolecule(mi)) {
509  
510        //change the positions of atoms which belong to the rigidbodies
511 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
512 <        rb->updateAtoms();
511 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
512 >           rb = mol->nextRigidBody(rbIter)) {
513 >        rb->updateAtoms();
514        }
515  
516 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
517 <        bond->calcForce();
516 >      for (bond = mol->beginBond(bondIter); bond != NULL;
517 >           bond = mol->nextBond(bondIter)) {
518 >        bond->calcForce(doParticlePot_);
519 >        bondPotential += bond->getPotential();
520        }
521  
522 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
523 <        bend->calcForce();
524 <      }
525 <
526 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
527 <        torsion->calcForce();
528 <      }
529 <
530 <    }
531 <    
532 <
533 <    double bondPotential = 0.0;
534 <    double bendPotential = 0.0;
535 <    double torsionPotential = 0.0;
536 <
537 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
538 <
539 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
540 <          bondPotential += bond->getPotential();
541 <      }
542 <
543 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
544 <          bendPotential += bend->getPotential();
545 <      }
546 <
547 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
548 <          torsionPotential += torsion->getPotential();
549 <      }
550 <
551 <    }    
552 <
553 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
554 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
555 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
556 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
557 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
558 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
559 <    
560 <  }
522 >      for (bend = mol->beginBend(bendIter); bend != NULL;
523 >           bend = mol->nextBend(bendIter)) {
524 >        
525 >        RealType angle;
526 >        bend->calcForce(angle, doParticlePot_);
527 >        RealType currBendPot = bend->getPotential();          
528 >        
529 >        bendPotential += bend->getPotential();
530 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
531 >        if (i == bendDataSets.end()) {
532 >          BendDataSet dataSet;
533 >          dataSet.prev.angle = dataSet.curr.angle = angle;
534 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
535 >          dataSet.deltaV = 0.0;
536 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
537 >                                                                  dataSet));
538 >        }else {
539 >          i->second.prev.angle = i->second.curr.angle;
540 >          i->second.prev.potential = i->second.curr.potential;
541 >          i->second.curr.angle = angle;
542 >          i->second.curr.potential = currBendPot;
543 >          i->second.deltaV =  fabs(i->second.curr.potential -  
544 >                                   i->second.prev.potential);
545 >        }
546 >      }
547 >      
548 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
549 >           torsion = mol->nextTorsion(torsionIter)) {
550 >        RealType angle;
551 >        torsion->calcForce(angle, doParticlePot_);
552 >        RealType currTorsionPot = torsion->getPotential();
553 >        torsionPotential += torsion->getPotential();
554 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
555 >        if (i == torsionDataSets.end()) {
556 >          TorsionDataSet dataSet;
557 >          dataSet.prev.angle = dataSet.curr.angle = angle;
558 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
559 >          dataSet.deltaV = 0.0;
560 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
561 >        }else {
562 >          i->second.prev.angle = i->second.curr.angle;
563 >          i->second.prev.potential = i->second.curr.potential;
564 >          i->second.curr.angle = angle;
565 >          i->second.curr.potential = currTorsionPot;
566 >          i->second.deltaV =  fabs(i->second.curr.potential -  
567 >                                   i->second.prev.potential);
568 >        }      
569 >      }      
570 >      
571 >      for (inversion = mol->beginInversion(inversionIter);
572 >           inversion != NULL;
573 >           inversion = mol->nextInversion(inversionIter)) {
574 >        RealType angle;
575 >        inversion->calcForce(angle, doParticlePot_);
576 >        RealType currInversionPot = inversion->getPotential();
577 >        inversionPotential += inversion->getPotential();
578 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
579 >        if (i == inversionDataSets.end()) {
580 >          InversionDataSet dataSet;
581 >          dataSet.prev.angle = dataSet.curr.angle = angle;
582 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
583 >          dataSet.deltaV = 0.0;
584 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
585 >        }else {
586 >          i->second.prev.angle = i->second.curr.angle;
587 >          i->second.prev.potential = i->second.curr.potential;
588 >          i->second.curr.angle = angle;
589 >          i->second.curr.potential = currInversionPot;
590 >          i->second.deltaV =  fabs(i->second.curr.potential -  
591 >                                   i->second.prev.potential);
592 >        }      
593 >      }      
594 >    }
595  
596 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
597 <    Snapshot* curSnapshot;
598 <    DataStorage* config;
599 <    double* frc;
600 <    double* pos;
601 <    double* trq;
602 <    double* A;
603 <    double* electroFrame;
604 <    double* rc;
596 > #ifdef IS_MPI
597 >    // Collect from all nodes.  This should eventually be moved into a
598 >    // SystemDecomposition, but this is a better place than in
599 >    // Thermo to do the collection.
600 >
601 >    MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE,
602 >                  MPI_SUM, MPI_COMM_WORLD);
603 >    MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE,
604 >                  MPI_SUM, MPI_COMM_WORLD);
605 >    MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1,
606 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
607 >    MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1,
608 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
609 > #endif
610 >
611 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
612 >
613 >    curSnapshot->setBondPotential(bondPotential);
614 >    curSnapshot->setBendPotential(bendPotential);
615 >    curSnapshot->setTorsionPotential(torsionPotential);
616 >    curSnapshot->setInversionPotential(inversionPotential);
617      
618 <    //get current snapshot from SimInfo
619 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
618 >    // RealType shortRangePotential = bondPotential + bendPotential +
619 >    //   torsionPotential +  inversionPotential;    
620  
621 <    //get array pointers
622 <    config = &(curSnapshot->atomData);
623 <    frc = config->getArrayPointer(DataStorage::dslForce);
624 <    pos = config->getArrayPointer(DataStorage::dslPosition);
178 <    trq = config->getArrayPointer(DataStorage::dslTorque);
179 <    A   = config->getArrayPointer(DataStorage::dslAmat);
180 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
621 >    // curSnapshot->setShortRangePotential(shortRangePotential);
622 >  }
623 >  
624 >  void ForceManager::longRangeInteractions() {
625  
626 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
627 +    DataStorage* config = &(curSnapshot->atomData);
628 +    DataStorage* cgConfig = &(curSnapshot->cgData);
629 +    int jstart, jend;
630 +
631      //calculate the center of mass of cutoff group
632 +
633      SimInfo::MoleculeIterator mi;
634      Molecule* mol;
635      Molecule::CutoffGroupIterator ci;
636      CutoffGroup* cg;
637 <    Vector3d com;
638 <    std::vector<Vector3d> rcGroup;
639 <
640 <    if(info_->getNCutoffGroups() > 0){
641 <
642 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
643 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
194 <          cg->getCOM(com);
195 <          rcGroup.push_back(com);
637 >    
638 >    if(info_->getNCutoffGroups() != info_->getNAtoms()){
639 >      for (mol = info_->beginMolecule(mi); mol != NULL;
640 >           mol = info_->nextMolecule(mi)) {
641 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
642 >            cg = mol->nextCutoffGroup(ci)) {
643 >          cg->updateCOM();
644          }
645 <      }// end for (mol)
198 <      
199 <      rc = rcGroup[0].getArrayPointer();
645 >      }      
646      } else {
647 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
648 <      rc = pos;
647 >      // center of mass of the group is the same as position of the atom  
648 >      // if cutoff group does not exist
649 >      cgConfig->position = config->position;
650 >      cgConfig->velocity = config->velocity;
651      }
652 <  
653 <    //initialize data before passing to fortran
654 <    double longRangePotential[LR_POT_TYPES];
207 <    double lrPot = 0.0;
652 >
653 >    fDecomp_->zeroWorkArrays();
654 >    fDecomp_->distributeData();
655      
656 <    Mat3x3d tau;
657 <    short int passedCalcPot = needPotential;
658 <    short int passedCalcStress = needStress;
659 <    int isError = 0;
656 >    int cg1, cg2, atom1, atom2, topoDist;
657 >    Vector3d d_grp, dag, d, gvel2, vel2;
658 >    RealType rgrpsq, rgrp, r2, r;
659 >    RealType electroMult, vdwMult;
660 >    RealType vij;
661 >    Vector3d fij, fg, f1;
662 >    tuple3<RealType, RealType, RealType> cuts;
663 >    RealType rCut, rCutSq, rListSq;
664 >    bool in_switching_region;
665 >    RealType sw, dswdr, swderiv;
666 >    vector<int> atomListColumn, atomListRow;
667 >    InteractionData idat;
668 >    SelfData sdat;
669 >    RealType mf;
670 >    RealType vpair;
671 >    RealType dVdFQ1(0.0);
672 >    RealType dVdFQ2(0.0);
673 >    potVec longRangePotential(0.0);
674 >    RealType reciprocalPotential(0.0);
675 >    potVec workPot(0.0);
676 >    potVec exPot(0.0);
677 >    Vector3d eField1(0.0);
678 >    Vector3d eField2(0.0);
679 >    RealType sPot1(0.0);
680 >    RealType sPot2(0.0);
681 >    bool newAtom1;
682 >                  
683 >    vector<int>::iterator ia, jb;
684  
685 <    for (int i=0; i<LR_POT_TYPES;i++){
686 <      longRangePotential[i]=0.0; //Initialize array
685 >    int loopStart, loopEnd;
686 >    
687 >    idat.rcut = &rCut_;
688 >    idat.vdwMult = &vdwMult;
689 >    idat.electroMult = &electroMult;
690 >    idat.pot = &workPot;
691 >    idat.excludedPot = &exPot;
692 >    sdat.pot = fDecomp_->getEmbeddingPotential();
693 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
694 >    idat.vpair = &vpair;
695 >    idat.dVdFQ1 = &dVdFQ1;
696 >    idat.dVdFQ2 = &dVdFQ2;
697 >    idat.eField1 = &eField1;
698 >    idat.eField2 = &eField2;
699 >    idat.sPot1 = &sPot1;
700 >    idat.sPot2 = &sPot2;
701 >    idat.f1 = &f1;
702 >    idat.sw = &sw;
703 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
704 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE ||
705 >                         cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
706 >    idat.doParticlePot = doParticlePot_;
707 >    idat.doElectricField = doElectricField_;
708 >    idat.doSitePotential = doSitePotential_;
709 >    sdat.doParticlePot = doParticlePot_;
710 >    
711 >    loopEnd = PAIR_LOOP;
712 >    if (info_->requiresPrepair() ) {
713 >      loopStart = PREPAIR_LOOP;
714 >    } else {
715 >      loopStart = PAIR_LOOP;
716      }
717 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
718 +    
719 +      if (iLoop == loopStart) {
720 +        bool update_nlist = fDecomp_->checkNeighborList();
721 +        if (update_nlist) {
722 +          if (!usePeriodicBoundaryConditions_)
723 +            Mat3x3d bbox = thermo->getBoundingBox();
724 +          fDecomp_->buildNeighborList(neighborList_, point_);
725 +        }
726 +      }
727  
728 +      for (unsigned int cg1 = 0; cg1 < point_.size() - 1; cg1++) {
729 +        
730 +        atomListRow = fDecomp_->getAtomsInGroupRow(cg1);        
731 +        newAtom1 = true;
732 +        
733 +        for (int m2 = point_[cg1]; m2 < point_[cg1+1]; m2++) {
734  
735 <
736 <    doForceLoop( pos,
737 <                 rc,
738 <                 A,
739 <                 electroFrame,
740 <                 frc,
741 <                 trq,
742 <                 tau.getArrayPointer(),
743 <                 longRangePotential,
744 <                 &passedCalcPot,
745 <                 &passedCalcStress,
746 <                 &isError );
747 <
748 <    if( isError ){
749 <      sprintf( painCave.errMsg,
750 <               "Error returned from the fortran force calculation.\n" );
751 <      painCave.isFatal = 1;
752 <      simError();
735 >          cg2 = neighborList_[m2];
736 >          
737 >          d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
738 >        
739 >          // already wrapped in the getIntergroupVector call:
740 >          // curSnapshot->wrapVector(d_grp);        
741 >          rgrpsq = d_grp.lengthSquare();
742 >          
743 >          if (rgrpsq < rCutSq_) {
744 >            if (iLoop == PAIR_LOOP) {
745 >              vij = 0.0;
746 >              fij.zero();
747 >              eField1.zero();
748 >              eField2.zero();
749 >              sPot1 = 0.0;
750 >              sPot2 = 0.0;
751 >            }
752 >            
753 >            in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
754 >                                                       rgrp);
755 >            
756 >            atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
757 >            
758 >            if (doHeatFlux_)
759 >              gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
760 >            
761 >            for (ia = atomListRow.begin();
762 >                 ia != atomListRow.end(); ++ia) {            
763 >              atom1 = (*ia);
764 >              
765 >              for (jb = atomListColumn.begin();
766 >                   jb != atomListColumn.end(); ++jb) {              
767 >                atom2 = (*jb);
768 >                
769 >                if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
770 >                  
771 >                  vpair = 0.0;
772 >                  workPot = 0.0;
773 >                  exPot = 0.0;
774 >                  f1.zero();
775 >                  dVdFQ1 = 0.0;
776 >                  dVdFQ2 = 0.0;
777 >                  
778 >                  fDecomp_->fillInteractionData(idat, atom1, atom2, newAtom1);
779 >                  
780 >                  topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
781 >                  vdwMult = vdwScale_[topoDist];
782 >                  electroMult = electrostaticScale_[topoDist];
783 >                  
784 >                  if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
785 >                    idat.d = &d_grp;
786 >                    idat.r2 = &rgrpsq;
787 >                    if (doHeatFlux_)
788 >                      vel2 = gvel2;
789 >                  } else {
790 >                    d = fDecomp_->getInteratomicVector(atom1, atom2);
791 >                    curSnapshot->wrapVector( d );
792 >                    r2 = d.lengthSquare();
793 >                    idat.d = &d;
794 >                    idat.r2 = &r2;
795 >                    if (doHeatFlux_)
796 >                      vel2 = fDecomp_->getAtomVelocityColumn(atom2);
797 >                  }
798 >                  
799 >                  r = sqrt( *(idat.r2) );
800 >                  idat.rij = &r;
801 >                  
802 >                  if (iLoop == PREPAIR_LOOP) {
803 >                    interactionMan_->doPrePair(idat);
804 >                  } else {
805 >                    interactionMan_->doPair(idat);
806 >                    fDecomp_->unpackInteractionData(idat, atom1, atom2);
807 >                    vij += vpair;
808 >                    fij += f1;
809 >                    stressTensor -= outProduct( *(idat.d), f1);
810 >                    if (doHeatFlux_)
811 >                      fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
812 >                  }
813 >                }
814 >              }
815 >            }
816 >            
817 >            if (iLoop == PAIR_LOOP) {
818 >              if (in_switching_region) {
819 >                swderiv = vij * dswdr / rgrp;
820 >                fg = swderiv * d_grp;
821 >                fij += fg;
822 >                
823 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
824 >                  if (!fDecomp_->skipAtomPair(atomListRow[0],
825 >                                              atomListColumn[0],
826 >                                              cg1, cg2)) {
827 >                  stressTensor -= outProduct( *(idat.d), fg);
828 >                  if (doHeatFlux_)
829 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
830 >                  }                
831 >                }
832 >                
833 >                for (ia = atomListRow.begin();
834 >                     ia != atomListRow.end(); ++ia) {            
835 >                  atom1 = (*ia);                
836 >                  mf = fDecomp_->getMassFactorRow(atom1);
837 >                  // fg is the force on atom ia due to cutoff group's
838 >                  // presence in switching region
839 >                  fg = swderiv * d_grp * mf;
840 >                  fDecomp_->addForceToAtomRow(atom1, fg);
841 >                  if (atomListRow.size() > 1) {
842 >                    if (info_->usesAtomicVirial()) {
843 >                      // find the distance between the atom
844 >                      // and the center of the cutoff group:
845 >                      dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
846 >                      stressTensor -= outProduct(dag, fg);
847 >                      if (doHeatFlux_)
848 >                        fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
849 >                    }
850 >                  }
851 >                }
852 >                for (jb = atomListColumn.begin();
853 >                     jb != atomListColumn.end(); ++jb) {              
854 >                  atom2 = (*jb);
855 >                  mf = fDecomp_->getMassFactorColumn(atom2);
856 >                  // fg is the force on atom jb due to cutoff group's
857 >                  // presence in switching region
858 >                  fg = -swderiv * d_grp * mf;
859 >                  fDecomp_->addForceToAtomColumn(atom2, fg);
860 >                  
861 >                  if (atomListColumn.size() > 1) {
862 >                    if (info_->usesAtomicVirial()) {
863 >                      // find the distance between the atom
864 >                      // and the center of the cutoff group:
865 >                      dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
866 >                      stressTensor -= outProduct(dag, fg);
867 >                      if (doHeatFlux_)
868 >                        fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
869 >                    }
870 >                  }
871 >                }
872 >              }
873 >              //if (!info_->usesAtomicVirial()) {
874 >              //  stressTensor -= outProduct(d_grp, fij);
875 >              //  if (doHeatFlux_)
876 >              //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
877 >              //}
878 >            }
879 >          }
880 >        }
881 >        newAtom1 = false;
882 >      }
883 >        
884 >      if (iLoop == PREPAIR_LOOP) {
885 >        if (info_->requiresPrepair()) {
886 >          
887 >          fDecomp_->collectIntermediateData();
888 >          
889 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
890 >            fDecomp_->fillSelfData(sdat, atom1);
891 >            interactionMan_->doPreForce(sdat);
892 >          }
893 >          
894 >          fDecomp_->distributeIntermediateData();
895 >          
896 >        }
897 >      }
898      }
899 <    for (int i=0; i<LR_POT_TYPES;i++){
900 <      lrPot += longRangePotential[i]; //Quick hack
899 >    
900 >    // collects pairwise information
901 >    fDecomp_->collectData();
902 >    if (cutoffMethod_ == EWALD_FULL) {
903 >      interactionMan_->doReciprocalSpaceSum(reciprocalPotential);
904 >
905 >      curSnapshot->setReciprocalPotential(reciprocalPotential);
906      }
907 +        
908 +    if (info_->requiresSelfCorrection()) {
909 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
910 +        fDecomp_->fillSelfData(sdat, atom1);
911 +        interactionMan_->doSelfCorrection(sdat);
912 +      }
913 +    }
914  
915 <    //store the tau and long range potential    
916 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
244 <    //    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
245 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
246 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
915 >    // collects single-atom information
916 >    fDecomp_->collectSelfData();
917  
918 <    curSnapshot->statData.setTau(tau);
919 <  }
918 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
919 >      *(fDecomp_->getPairwisePotential());
920  
921 +    curSnapshot->setLongRangePotential(longRangePotential);
922 +    
923 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
924 +                                       *(fDecomp_->getExcludedPotential()));
925  
926 +  }
927 +
928    void ForceManager::postCalculation() {
929 +
930 +    vector<Perturbation*>::iterator pi;
931 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
932 +      (*pi)->applyPerturbation();
933 +    }
934 +
935      SimInfo::MoleculeIterator mi;
936      Molecule* mol;
937      Molecule::RigidBodyIterator rbIter;
938      RigidBody* rb;
939 <    
939 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
940 >  
941      // collect the atomic forces onto rigid bodies
942 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
943 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
944 <        rb->calcForcesAndTorques();
942 >    
943 >    for (mol = info_->beginMolecule(mi); mol != NULL;
944 >         mol = info_->nextMolecule(mi)) {
945 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
946 >           rb = mol->nextRigidBody(rbIter)) {
947 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
948 >        stressTensor += rbTau;
949        }
950      }
951 +    
952 + #ifdef IS_MPI
953 +    MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9,
954 +                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
955 + #endif
956 +    curSnapshot->setStressTensor(stressTensor);
957 +    
958 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
959 +      /*
960 +        RealType vol = curSnapshot->getVolume();
961 +        RealType Elrc(0.0);
962 +        RealType Wlrc(0.0);
963  
964 <  }
964 >        set<AtomType*>::iterator i;
965 >        set<AtomType*>::iterator j;
966 >    
967 >        RealType n_i, n_j;
968 >        RealType rho_i, rho_j;
969 >        pair<RealType, RealType> LRI;
970 >      
971 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
972 >        n_i = RealType(info_->getGlobalCountOfType(*i));
973 >        rho_i = n_i /  vol;
974 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
975 >        n_j = RealType(info_->getGlobalCountOfType(*j));
976 >        rho_j = n_j / vol;
977 >          
978 >        LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
979  
980 < } //end namespace oopse
980 >        Elrc += n_i   * rho_j * LRI.first;
981 >        Wlrc -= rho_i * rho_j * LRI.second;
982 >        }
983 >        }
984 >        Elrc *= 2.0 * NumericConstant::PI;
985 >        Wlrc *= 2.0 * NumericConstant::PI;
986 >
987 >        RealType lrp = curSnapshot->getLongRangePotential();
988 >        curSnapshot->setLongRangePotential(lrp + Elrc);
989 >        stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
990 >        curSnapshot->setStressTensor(stressTensor);
991 >      */
992 >    
993 >    }
994 >  }
995 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 691 by chrisfen, Wed Oct 19 19:24:40 2005 UTC vs.
Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines