ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 2033 by gezelter, Sat Nov 1 14:12:16 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/UniformField.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 < /*
64 <  struct BendOrderStruct {
65 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
68 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 >                                               initialized_(false) {
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 >    thermo = new Thermo(info_);
76    }
77  
78 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
79 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80 >    
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85    }
86 <  */
87 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
86 >  
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
102 >   *                        SHIFTED_POTENTIAL, or EWALD_FULL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120 >    
121 >    Globals* simParams_ = info_->getSimParams();
122 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 >    int mdFileVersion;
124 >    rCut_ = 0.0; //Needs a value for a later max() call;  
125 >    
126 >    if (simParams_->haveMDfileVersion())
127 >      mdFileVersion = simParams_->getMDfileVersion();
128 >    else
129 >      mdFileVersion = 0;
130 >  
131 >    // We need the list of simulated atom types to figure out cutoffs
132 >    // as well as long range corrections.
133  
134 <    if (!info_->isFortranInitialized()) {
135 <      info_->update();
134 >    set<AtomType*>::iterator i;
135 >    set<AtomType*> atomTypes_;
136 >    atomTypes_ = info_->getSimulatedAtomTypes();
137 >
138 >    if (simParams_->haveCutoffRadius()) {
139 >      rCut_ = simParams_->getCutoffRadius();
140 >    } else {      
141 >      if (info_->usesElectrostaticAtoms()) {
142 >        sprintf(painCave.errMsg,
143 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 >                "\tOpenMD will use a default value of 12.0 angstroms"
145 >                "\tfor the cutoffRadius.\n");
146 >        painCave.isFatal = 0;
147 >        painCave.severity = OPENMD_INFO;
148 >        simError();
149 >        rCut_ = 12.0;
150 >      } else {
151 >        RealType thisCut;
152 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 >          rCut_ = max(thisCut, rCut_);
155 >        }
156 >        sprintf(painCave.errMsg,
157 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 >                "\tOpenMD will use %lf angstroms.\n",
159 >                rCut_);
160 >        painCave.isFatal = 0;
161 >        painCave.severity = OPENMD_INFO;
162 >        simError();
163 >      }
164      }
165  
166 <    preCalculation();
167 <    
86 <    calcShortRangeInteraction();
166 >    fDecomp_->setUserCutoff(rCut_);
167 >    interactionMan_->setCutoffRadius(rCut_);
168  
169 <    calcLongRangeInteraction(needPotential, needStress);
169 >    map<string, CutoffMethod> stringToCutoffMethod;
170 >    stringToCutoffMethod["HARD"] = HARD;
171 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
175 >    stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL;
176 >  
177 >    if (simParams_->haveCutoffMethod()) {
178 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
179 >      map<string, CutoffMethod>::iterator i;
180 >      i = stringToCutoffMethod.find(cutMeth);
181 >      if (i == stringToCutoffMethod.end()) {
182 >        sprintf(painCave.errMsg,
183 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
184 >                "\tShould be one of: "
185 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
186 >                "\tSHIFTED_FORCE, or EWALD_FULL\n",
187 >                cutMeth.c_str());
188 >        painCave.isFatal = 1;
189 >        painCave.severity = OPENMD_ERROR;
190 >        simError();
191 >      } else {
192 >        cutoffMethod_ = i->second;
193 >      }
194 >    } else {
195 >      if (mdFileVersion > 1) {
196 >        sprintf(painCave.errMsg,
197 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
198 >                "\tOpenMD will use SHIFTED_FORCE.\n");
199 >        painCave.isFatal = 0;
200 >        painCave.severity = OPENMD_INFO;
201 >        simError();
202 >        cutoffMethod_ = SHIFTED_FORCE;        
203 >      } else {
204 >        // handle the case where the old file version was in play
205 >        // (there should be no cutoffMethod, so we have to deduce it
206 >        // from other data).        
207  
208 <    postCalculation();
208 >        sprintf(painCave.errMsg,
209 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
210 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
211 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
212 >                "\tbehavior of the older (version 1) code.  To remove this\n"
213 >                "\twarning, add an explicit cutoffMethod and change the top\n"
214 >                "\tof the file so that it begins with <OpenMD version=2>\n");
215 >        painCave.isFatal = 0;
216 >        painCave.severity = OPENMD_WARNING;
217 >        simError();            
218 >                
219 >        // The old file version tethered the shifting behavior to the
220 >        // electrostaticSummationMethod keyword.
221 >        
222 >        if (simParams_->haveElectrostaticSummationMethod()) {
223 >          string myMethod = simParams_->getElectrostaticSummationMethod();
224 >          toUpper(myMethod);
225 >        
226 >          if (myMethod == "SHIFTED_POTENTIAL") {
227 >            cutoffMethod_ = SHIFTED_POTENTIAL;
228 >          } else if (myMethod == "SHIFTED_FORCE") {
229 >            cutoffMethod_ = SHIFTED_FORCE;
230 >          } else if (myMethod == "TAYLOR_SHIFTED") {
231 >            cutoffMethod_ = TAYLOR_SHIFTED;
232 >          } else if (myMethod == "EWALD_FULL") {
233 >            cutoffMethod_ = EWALD_FULL;
234 >          }
235 >        
236 >          if (simParams_->haveSwitchingRadius())
237 >            rSwitch_ = simParams_->getSwitchingRadius();
238  
239 < /*
240 <    std::vector<BendOrderStruct> bendOrderStruct;
241 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
242 <        BendOrderStruct tmp;
243 <        tmp.bend= const_cast<Bend*>(i->first);
244 <        tmp.dataSet = i->second;
245 <        bendOrderStruct.push_back(tmp);
239 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
240 >              myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") {
241 >            if (simParams_->haveSwitchingRadius()){
242 >              sprintf(painCave.errMsg,
243 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
244 >                      "\tA value was set for the switchingRadius\n"
245 >                      "\teven though the electrostaticSummationMethod was\n"
246 >                      "\tset to %s\n", myMethod.c_str());
247 >              painCave.severity = OPENMD_WARNING;
248 >              painCave.isFatal = 1;
249 >              simError();            
250 >            }
251 >          }
252 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
253 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
254 >              sprintf(painCave.errMsg,
255 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
256 >                      "\tcutoffRadius and switchingRadius are set to the\n"
257 >                      "\tsame value.  OpenMD will use shifted force\n"
258 >                      "\tpotentials instead of switching functions.\n");
259 >              painCave.isFatal = 0;
260 >              painCave.severity = OPENMD_WARNING;
261 >              simError();            
262 >            } else {
263 >              cutoffMethod_ = SHIFTED_POTENTIAL;
264 >              sprintf(painCave.errMsg,
265 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
266 >                      "\tcutoffRadius and switchingRadius are set to the\n"
267 >                      "\tsame value.  OpenMD will use shifted potentials\n"
268 >                      "\tinstead of switching functions.\n");
269 >              painCave.isFatal = 0;
270 >              painCave.severity = OPENMD_WARNING;
271 >              simError();            
272 >            }
273 >          }
274 >        }
275 >      }
276      }
277  
278 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
279 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
280 <        TorsionOrderStruct tmp;
281 <        tmp.torsion = const_cast<Torsion*>(j->first);
282 <        tmp.dataSet = j->second;
283 <        torsionOrderStruct.push_back(tmp);
278 >    map<string, CutoffPolicy> stringToCutoffPolicy;
279 >    stringToCutoffPolicy["MIX"] = MIX;
280 >    stringToCutoffPolicy["MAX"] = MAX;
281 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
282 >
283 >    string cutPolicy;
284 >    if (forceFieldOptions_.haveCutoffPolicy()){
285 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
286 >    }else if (simParams_->haveCutoffPolicy()) {
287 >      cutPolicy = simParams_->getCutoffPolicy();
288      }
289 <    
290 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
291 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
292 <    std::cout << "bend" << std::endl;
293 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
294 <        Bend* bend = k->bend;
295 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
296 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
289 >
290 >    if (!cutPolicy.empty()){
291 >      toUpper(cutPolicy);
292 >      map<string, CutoffPolicy>::iterator i;
293 >      i = stringToCutoffPolicy.find(cutPolicy);
294 >
295 >      if (i == stringToCutoffPolicy.end()) {
296 >        sprintf(painCave.errMsg,
297 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
298 >                "\tShould be one of: "
299 >                "MIX, MAX, or TRADITIONAL\n",
300 >                cutPolicy.c_str());
301 >        painCave.isFatal = 1;
302 >        painCave.severity = OPENMD_ERROR;
303 >        simError();
304 >      } else {
305 >        cutoffPolicy_ = i->second;
306 >      }
307 >    } else {
308 >      sprintf(painCave.errMsg,
309 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
310 >              "\tOpenMD will use TRADITIONAL.\n");
311 >      painCave.isFatal = 0;
312 >      painCave.severity = OPENMD_INFO;
313 >      simError();
314 >      cutoffPolicy_ = TRADITIONAL;        
315      }
316 <    std::cout << "torsio" << std::endl;
317 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
318 <        Torsion* torsion = l->torsion;
319 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
320 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
316 >
317 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
318 >        
319 >    // create the switching function object:
320 >
321 >    switcher_ = new SwitchingFunction();
322 >  
323 >    if (cutoffMethod_ == SWITCHED) {
324 >      if (simParams_->haveSwitchingRadius()) {
325 >        rSwitch_ = simParams_->getSwitchingRadius();
326 >        if (rSwitch_ > rCut_) {        
327 >          sprintf(painCave.errMsg,
328 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
329 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
330 >          painCave.isFatal = 1;
331 >          painCave.severity = OPENMD_ERROR;
332 >          simError();
333 >        }
334 >      } else {      
335 >        rSwitch_ = 0.85 * rCut_;
336 >        sprintf(painCave.errMsg,
337 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
338 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
339 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
340 >        painCave.isFatal = 0;
341 >        painCave.severity = OPENMD_WARNING;
342 >        simError();
343 >      }
344 >    } else {
345 >      if (mdFileVersion > 1) {
346 >        // throw an error if we define a switching radius and don't need one.
347 >        // older file versions should not do this.
348 >        if (simParams_->haveSwitchingRadius()) {
349 >          map<string, CutoffMethod>::const_iterator it;
350 >          string theMeth;
351 >          for (it = stringToCutoffMethod.begin();
352 >               it != stringToCutoffMethod.end(); ++it) {
353 >            if (it->second == cutoffMethod_) {
354 >              theMeth = it->first;
355 >              break;
356 >            }
357 >          }
358 >          sprintf(painCave.errMsg,
359 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
360 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
361 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
362 >          painCave.isFatal = 0;
363 >          painCave.severity = OPENMD_WARNING;
364 >          simError();
365 >        }
366 >      }
367 >      rSwitch_ = rCut_;
368      }
369 <   */
369 >    
370 >    // Default to cubic switching function.
371 >    sft_ = cubic;
372 >    if (simParams_->haveSwitchingFunctionType()) {
373 >      string funcType = simParams_->getSwitchingFunctionType();
374 >      toUpper(funcType);
375 >      if (funcType == "CUBIC") {
376 >        sft_ = cubic;
377 >      } else {
378 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
379 >          sft_ = fifth_order_poly;
380 >        } else {
381 >          // throw error        
382 >          sprintf( painCave.errMsg,
383 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
384 >                   "\tswitchingFunctionType must be one of: "
385 >                   "\"cubic\" or \"fifth_order_polynomial\".",
386 >                   funcType.c_str() );
387 >          painCave.isFatal = 1;
388 >          painCave.severity = OPENMD_ERROR;
389 >          simError();
390 >        }          
391 >      }
392 >    }
393 >    switcher_->setSwitchType(sft_);
394 >    switcher_->setSwitch(rSwitch_, rCut_);
395    }
396  
397 +  void ForceManager::initialize() {
398 +
399 +    if (!info_->isTopologyDone()) {
400 +
401 +      info_->update();
402 +      interactionMan_->setSimInfo(info_);
403 +      interactionMan_->initialize();
404 +
405 +      //! We want to delay the cutoffs until after the interaction
406 +      //! manager has set up the atom-atom interactions so that we can
407 +      //! query them for suggested cutoff values
408 +      setupCutoffs();
409 +
410 +      info_->prepareTopology();      
411 +
412 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
413 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
414 +      if (doHeatFlux_) doParticlePot_ = true;
415 +
416 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
417 +      doSitePotential_ = info_->getSimParams()->getOutputSitePotential();
418 +  
419 +    }
420 +
421 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
422 +    
423 +    //! Force fields can set options on how to scale van der Waals and
424 +    //! electrostatic interactions for atoms connected via bonds, bends
425 +    //! and torsions in this case the topological distance between
426 +    //! atoms is:
427 +    //! 0 = topologically unconnected
428 +    //! 1 = bonded together
429 +    //! 2 = connected via a bend
430 +    //! 3 = connected via a torsion
431 +    
432 +    vdwScale_.reserve(4);
433 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
434 +
435 +    electrostaticScale_.reserve(4);
436 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
437 +
438 +    vdwScale_[0] = 1.0;
439 +    vdwScale_[1] = fopts.getvdw12scale();
440 +    vdwScale_[2] = fopts.getvdw13scale();
441 +    vdwScale_[3] = fopts.getvdw14scale();
442 +    
443 +    electrostaticScale_[0] = 1.0;
444 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
445 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
446 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
447 +    
448 +    if (info_->getSimParams()->haveUniformField()) {
449 +      UniformField* eField = new UniformField(info_);
450 +      perturbations_.push_back(eField);
451 +    }
452 +
453 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
454 +    
455 +    fDecomp_->distributeInitialData();
456 +    
457 +    initialized_ = true;
458 +    
459 +  }
460 +  
461 +  void ForceManager::calcForces() {
462 +    
463 +    if (!initialized_) initialize();
464 +    
465 +    preCalculation();  
466 +    shortRangeInteractions();
467 +    longRangeInteractions();
468 +    postCalculation();    
469 +  }
470 +  
471    void ForceManager::preCalculation() {
472      SimInfo::MoleculeIterator mi;
473      Molecule* mol;
# Line 130 | Line 475 | namespace oopse {
475      Atom* atom;
476      Molecule::RigidBodyIterator rbIter;
477      RigidBody* rb;
478 +    Molecule::CutoffGroupIterator ci;
479 +    CutoffGroup* cg;
480      
481 <    // forces are zeroed here, before any are accumulated.
482 <    // NOTE: do not rezero the forces in Fortran.
483 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
484 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
481 >    // forces and potentials are zeroed here, before any are
482 >    // accumulated.
483 >    
484 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
485 >
486 >    snap->setBondPotential(0.0);
487 >    snap->setBendPotential(0.0);
488 >    snap->setTorsionPotential(0.0);
489 >    snap->setInversionPotential(0.0);
490 >
491 >    potVec zeroPot(0.0);
492 >    snap->setLongRangePotential(zeroPot);
493 >    snap->setExcludedPotentials(zeroPot);
494 >
495 >    snap->setRestraintPotential(0.0);
496 >    snap->setRawPotential(0.0);
497 >
498 >    for (mol = info_->beginMolecule(mi); mol != NULL;
499 >         mol = info_->nextMolecule(mi)) {
500 >      for(atom = mol->beginAtom(ai); atom != NULL;
501 >          atom = mol->nextAtom(ai)) {
502          atom->zeroForcesAndTorques();
503        }
504 <        
504 >      
505        //change the positions of atoms which belong to the rigidbodies
506 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
506 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
507 >           rb = mol->nextRigidBody(rbIter)) {
508          rb->zeroForcesAndTorques();
509        }        
510 +      
511 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
512 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
513 +            cg = mol->nextCutoffGroup(ci)) {
514 +          //calculate the center of mass of cutoff group
515 +          cg->updateCOM();
516 +        }
517 +      }      
518      }
519      
520 +    // Zero out the stress tensor
521 +    stressTensor *= 0.0;
522 +    // Zero out the heatFlux
523 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
524    }
525 <
526 <  void ForceManager::calcShortRangeInteraction() {
525 >  
526 >  void ForceManager::shortRangeInteractions() {
527      Molecule* mol;
528      RigidBody* rb;
529      Bond* bond;
530      Bend* bend;
531      Torsion* torsion;
532 +    Inversion* inversion;
533      SimInfo::MoleculeIterator mi;
534      Molecule::RigidBodyIterator rbIter;
535      Molecule::BondIterator bondIter;;
536      Molecule::BendIterator  bendIter;
537      Molecule::TorsionIterator  torsionIter;
538 <    double bondPotential = 0.0;
539 <    double bendPotential = 0.0;
540 <    double torsionPotential = 0.0;
538 >    Molecule::InversionIterator  inversionIter;
539 >    RealType bondPotential = 0.0;
540 >    RealType bendPotential = 0.0;
541 >    RealType torsionPotential = 0.0;
542 >    RealType inversionPotential = 0.0;
543  
544      //calculate short range interactions    
545 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
545 >    for (mol = info_->beginMolecule(mi); mol != NULL;
546 >         mol = info_->nextMolecule(mi)) {
547  
548        //change the positions of atoms which belong to the rigidbodies
549 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
550 <          rb->updateAtoms();
549 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
550 >           rb = mol->nextRigidBody(rbIter)) {
551 >        rb->updateAtoms();
552        }
553  
554 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
555 <        bond->calcForce();
554 >      for (bond = mol->beginBond(bondIter); bond != NULL;
555 >           bond = mol->nextBond(bondIter)) {
556 >        bond->calcForce(doParticlePot_);
557          bondPotential += bond->getPotential();
558        }
559  
560 <
561 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
562 <
563 <          double angle;
564 <            bend->calcForce(angle);
565 <          double currBendPot = bend->getPotential();          
566 <            bendPotential += bend->getPotential();
567 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
568 <          if (i == bendDataSets.end()) {
569 <            BendDataSet dataSet;
570 <            dataSet.prev.angle = dataSet.curr.angle = angle;
571 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
572 <            dataSet.deltaV = 0.0;
573 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
574 <          }else {
575 <            i->second.prev.angle = i->second.curr.angle;
576 <            i->second.prev.potential = i->second.curr.potential;
577 <            i->second.curr.angle = angle;
578 <            i->second.curr.potential = currBendPot;
579 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
580 <          }
581 <      }
582 <
583 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
201 <        double angle;
202 <          torsion->calcForce(angle);
203 <        double currTorsionPot = torsion->getPotential();
204 <          torsionPotential += torsion->getPotential();
205 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
206 <          if (i == torsionDataSets.end()) {
207 <            TorsionDataSet dataSet;
208 <            dataSet.prev.angle = dataSet.curr.angle = angle;
209 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
210 <            dataSet.deltaV = 0.0;
211 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
212 <          }else {
213 <            i->second.prev.angle = i->second.curr.angle;
214 <            i->second.prev.potential = i->second.curr.potential;
215 <            i->second.curr.angle = angle;
216 <            i->second.curr.potential = currTorsionPot;
217 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
218 <          }      
560 >      for (bend = mol->beginBend(bendIter); bend != NULL;
561 >           bend = mol->nextBend(bendIter)) {
562 >        
563 >        RealType angle;
564 >        bend->calcForce(angle, doParticlePot_);
565 >        RealType currBendPot = bend->getPotential();          
566 >        
567 >        bendPotential += bend->getPotential();
568 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
569 >        if (i == bendDataSets.end()) {
570 >          BendDataSet dataSet;
571 >          dataSet.prev.angle = dataSet.curr.angle = angle;
572 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
573 >          dataSet.deltaV = 0.0;
574 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
575 >                                                                  dataSet));
576 >        }else {
577 >          i->second.prev.angle = i->second.curr.angle;
578 >          i->second.prev.potential = i->second.curr.potential;
579 >          i->second.curr.angle = angle;
580 >          i->second.curr.potential = currBendPot;
581 >          i->second.deltaV =  fabs(i->second.curr.potential -  
582 >                                   i->second.prev.potential);
583 >        }
584        }
585 <
585 >      
586 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
587 >           torsion = mol->nextTorsion(torsionIter)) {
588 >        RealType angle;
589 >        torsion->calcForce(angle, doParticlePot_);
590 >        RealType currTorsionPot = torsion->getPotential();
591 >        torsionPotential += torsion->getPotential();
592 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
593 >        if (i == torsionDataSets.end()) {
594 >          TorsionDataSet dataSet;
595 >          dataSet.prev.angle = dataSet.curr.angle = angle;
596 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
597 >          dataSet.deltaV = 0.0;
598 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
599 >        }else {
600 >          i->second.prev.angle = i->second.curr.angle;
601 >          i->second.prev.potential = i->second.curr.potential;
602 >          i->second.curr.angle = angle;
603 >          i->second.curr.potential = currTorsionPot;
604 >          i->second.deltaV =  fabs(i->second.curr.potential -  
605 >                                   i->second.prev.potential);
606 >        }      
607 >      }      
608 >      
609 >      for (inversion = mol->beginInversion(inversionIter);
610 >           inversion != NULL;
611 >           inversion = mol->nextInversion(inversionIter)) {
612 >        RealType angle;
613 >        inversion->calcForce(angle, doParticlePot_);
614 >        RealType currInversionPot = inversion->getPotential();
615 >        inversionPotential += inversion->getPotential();
616 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
617 >        if (i == inversionDataSets.end()) {
618 >          InversionDataSet dataSet;
619 >          dataSet.prev.angle = dataSet.curr.angle = angle;
620 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
621 >          dataSet.deltaV = 0.0;
622 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
623 >        }else {
624 >          i->second.prev.angle = i->second.curr.angle;
625 >          i->second.prev.potential = i->second.curr.potential;
626 >          i->second.curr.angle = angle;
627 >          i->second.curr.potential = currInversionPot;
628 >          i->second.deltaV =  fabs(i->second.curr.potential -  
629 >                                   i->second.prev.potential);
630 >        }      
631 >      }      
632      }
633 <    
634 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
633 >
634 > #ifdef IS_MPI
635 >    // Collect from all nodes.  This should eventually be moved into a
636 >    // SystemDecomposition, but this is a better place than in
637 >    // Thermo to do the collection.
638 >
639 >    MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE,
640 >                  MPI_SUM, MPI_COMM_WORLD);
641 >    MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE,
642 >                  MPI_SUM, MPI_COMM_WORLD);
643 >    MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1,
644 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
645 >    MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1,
646 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
647 > #endif
648 >
649      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
650 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
651 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
652 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
653 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
650 >
651 >    curSnapshot->setBondPotential(bondPotential);
652 >    curSnapshot->setBendPotential(bendPotential);
653 >    curSnapshot->setTorsionPotential(torsionPotential);
654 >    curSnapshot->setInversionPotential(inversionPotential);
655      
656 +    // RealType shortRangePotential = bondPotential + bendPotential +
657 +    //   torsionPotential +  inversionPotential;    
658 +
659 +    // curSnapshot->setShortRangePotential(shortRangePotential);
660    }
661 +  
662 +  void ForceManager::longRangeInteractions() {
663  
664 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
665 <    Snapshot* curSnapshot;
666 <    DataStorage* config;
235 <    double* frc;
236 <    double* pos;
237 <    double* trq;
238 <    double* A;
239 <    double* electroFrame;
240 <    double* rc;
241 <    
242 <    //get current snapshot from SimInfo
243 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
664 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
665 >    DataStorage* config = &(curSnapshot->atomData);
666 >    DataStorage* cgConfig = &(curSnapshot->cgData);
667  
245    //get array pointers
246    config = &(curSnapshot->atomData);
247    frc = config->getArrayPointer(DataStorage::dslForce);
248    pos = config->getArrayPointer(DataStorage::dslPosition);
249    trq = config->getArrayPointer(DataStorage::dslTorque);
250    A   = config->getArrayPointer(DataStorage::dslAmat);
251    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
668  
669      //calculate the center of mass of cutoff group
670 +
671      SimInfo::MoleculeIterator mi;
672      Molecule* mol;
673      Molecule::CutoffGroupIterator ci;
674      CutoffGroup* cg;
258    Vector3d com;
259    std::vector<Vector3d> rcGroup;
675  
676 <    if(info_->getNCutoffGroups() > 0){
677 <
678 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
679 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
680 <          cg->getCOM(com);
681 <          rcGroup.push_back(com);
676 >    if(info_->getNCutoffGroups() > 0){      
677 >      for (mol = info_->beginMolecule(mi); mol != NULL;
678 >           mol = info_->nextMolecule(mi)) {
679 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
680 >            cg = mol->nextCutoffGroup(ci)) {
681 >          cg->updateCOM();
682          }
683 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
683 >      }      
684      } else {
685 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
686 <      rc = pos;
685 >      // center of mass of the group is the same as position of the atom  
686 >      // if cutoff group does not exist
687 >      cgConfig->position = config->position;
688 >      cgConfig->velocity = config->velocity;
689      }
690 <  
691 <    //initialize data before passing to fortran
692 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
690 >
691 >    fDecomp_->zeroWorkArrays();
692 >    fDecomp_->distributeData();
693      
694 <    Mat3x3d tau;
695 <    short int passedCalcPot = needPotential;
696 <    short int passedCalcStress = needStress;
697 <    int isError = 0;
694 >    int cg1, cg2, atom1, atom2, topoDist;
695 >    Vector3d d_grp, dag, d, gvel2, vel2;
696 >    RealType rgrpsq, rgrp, r2, r;
697 >    RealType electroMult, vdwMult;
698 >    RealType vij;
699 >    Vector3d fij, fg, f1;
700 >    tuple3<RealType, RealType, RealType> cuts;
701 >    RealType rCut, rCutSq, rListSq;
702 >    bool in_switching_region;
703 >    RealType sw, dswdr, swderiv;
704 >    vector<int> atomListColumn, atomListRow;
705 >    InteractionData idat;
706 >    SelfData sdat;
707 >    RealType mf;
708 >    RealType vpair;
709 >    RealType dVdFQ1(0.0);
710 >    RealType dVdFQ2(0.0);
711 >    potVec longRangePotential(0.0);
712 >    RealType reciprocalPotential(0.0);
713 >    potVec workPot(0.0);
714 >    potVec exPot(0.0);
715 >    Vector3d eField1(0.0);
716 >    Vector3d eField2(0.0);
717 >    RealType sPot1(0.0);
718 >    RealType sPot2(0.0);
719 >                  
720 >    vector<int>::iterator ia, jb;
721  
722 <    for (int i=0; i<LR_POT_TYPES;i++){
723 <      longRangePotential[i]=0.0; //Initialize array
722 >    int loopStart, loopEnd;
723 >    
724 >    idat.rcut = &rCut;
725 >    idat.vdwMult = &vdwMult;
726 >    idat.electroMult = &electroMult;
727 >    idat.pot = &workPot;
728 >    idat.excludedPot = &exPot;
729 >    sdat.pot = fDecomp_->getEmbeddingPotential();
730 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
731 >    idat.vpair = &vpair;
732 >    idat.dVdFQ1 = &dVdFQ1;
733 >    idat.dVdFQ2 = &dVdFQ2;
734 >    idat.eField1 = &eField1;
735 >    idat.eField2 = &eField2;
736 >    idat.sPot1 = &sPot1;
737 >    idat.sPot2 = &sPot2;
738 >    idat.f1 = &f1;
739 >    idat.sw = &sw;
740 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
741 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE ||
742 >                         cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
743 >    idat.doParticlePot = doParticlePot_;
744 >    idat.doElectricField = doElectricField_;
745 >    idat.doSitePotential = doSitePotential_;
746 >    sdat.doParticlePot = doParticlePot_;
747 >    
748 >    loopEnd = PAIR_LOOP;
749 >    if (info_->requiresPrepair() ) {
750 >      loopStart = PREPAIR_LOOP;
751 >    } else {
752 >      loopStart = PAIR_LOOP;
753      }
754 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
755 +    
756 +      if (iLoop == loopStart) {
757 +        bool update_nlist = fDecomp_->checkNeighborList();
758 +        if (update_nlist) {
759 +          if (!usePeriodicBoundaryConditions_)
760 +            Mat3x3d bbox = thermo->getBoundingBox();
761 +          fDecomp_->buildNeighborList(neighborList_);
762 +        }
763 +      }
764  
765 <    doForceLoop( pos,
766 <                 rc,
767 <                 A,
768 <                 electroFrame,
769 <                 frc,
770 <                 trq,
771 <                 tau.getArrayPointer(),
296 <                 longRangePotential,
297 <                 &passedCalcPot,
298 <                 &passedCalcStress,
299 <                 &isError );
765 >      for (vector<pair<int, int> >::iterator it = neighborList_.begin();
766 >           it != neighborList_.end(); ++it) {
767 >                
768 >        cg1 = (*it).first;
769 >        cg2 = (*it).second;
770 >        
771 >        fDecomp_->getGroupCutoffs(cg1, cg2, rCut, rCutSq, rListSq);
772  
773 <    if( isError ){
774 <      sprintf( painCave.errMsg,
775 <               "Error returned from the fortran force calculation.\n" );
776 <      painCave.isFatal = 1;
777 <      simError();
773 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
774 >
775 >        // already wrapped in the getIntergroupVector call:
776 >        // curSnapshot->wrapVector(d_grp);        
777 >        rgrpsq = d_grp.lengthSquare();
778 >
779 >        if (rgrpsq < rCutSq) {
780 >          if (iLoop == PAIR_LOOP) {
781 >            vij = 0.0;
782 >            fij.zero();
783 >            eField1.zero();
784 >            eField2.zero();
785 >            sPot1 = 0.0;
786 >            sPot2 = 0.0;
787 >          }
788 >          
789 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
790 >                                                     rgrp);
791 >
792 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
793 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
794 >
795 >          if (doHeatFlux_)
796 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
797 >
798 >          for (ia = atomListRow.begin();
799 >               ia != atomListRow.end(); ++ia) {            
800 >            atom1 = (*ia);
801 >
802 >            for (jb = atomListColumn.begin();
803 >                 jb != atomListColumn.end(); ++jb) {              
804 >              atom2 = (*jb);
805 >
806 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
807 >
808 >                vpair = 0.0;
809 >                workPot = 0.0;
810 >                exPot = 0.0;
811 >                f1.zero();
812 >                dVdFQ1 = 0.0;
813 >                dVdFQ2 = 0.0;
814 >
815 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
816 >
817 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
818 >                vdwMult = vdwScale_[topoDist];
819 >                electroMult = electrostaticScale_[topoDist];
820 >
821 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
822 >                  idat.d = &d_grp;
823 >                  idat.r2 = &rgrpsq;
824 >                  if (doHeatFlux_)
825 >                    vel2 = gvel2;
826 >                } else {
827 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
828 >                  curSnapshot->wrapVector( d );
829 >                  r2 = d.lengthSquare();
830 >                  idat.d = &d;
831 >                  idat.r2 = &r2;
832 >                  if (doHeatFlux_)
833 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
834 >                }
835 >              
836 >                r = sqrt( *(idat.r2) );
837 >                idat.rij = &r;
838 >
839 >                if (iLoop == PREPAIR_LOOP) {
840 >                  interactionMan_->doPrePair(idat);
841 >                } else {
842 >                  interactionMan_->doPair(idat);
843 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
844 >                  vij += vpair;
845 >                  fij += f1;
846 >                  stressTensor -= outProduct( *(idat.d), f1);
847 >                  if (doHeatFlux_)
848 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
849 >                }
850 >              }
851 >            }
852 >          }
853 >
854 >          if (iLoop == PAIR_LOOP) {
855 >            if (in_switching_region) {
856 >              swderiv = vij * dswdr / rgrp;
857 >              fg = swderiv * d_grp;
858 >              fij += fg;
859 >
860 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
861 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
862 >                                            atomListColumn[0],
863 >                                            cg1, cg2)) {
864 >                  stressTensor -= outProduct( *(idat.d), fg);
865 >                  if (doHeatFlux_)
866 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
867 >                }                
868 >              }
869 >          
870 >              for (ia = atomListRow.begin();
871 >                   ia != atomListRow.end(); ++ia) {            
872 >                atom1 = (*ia);                
873 >                mf = fDecomp_->getMassFactorRow(atom1);
874 >                // fg is the force on atom ia due to cutoff group's
875 >                // presence in switching region
876 >                fg = swderiv * d_grp * mf;
877 >                fDecomp_->addForceToAtomRow(atom1, fg);
878 >                if (atomListRow.size() > 1) {
879 >                  if (info_->usesAtomicVirial()) {
880 >                    // find the distance between the atom
881 >                    // and the center of the cutoff group:
882 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
883 >                    stressTensor -= outProduct(dag, fg);
884 >                    if (doHeatFlux_)
885 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
886 >                  }
887 >                }
888 >              }
889 >              for (jb = atomListColumn.begin();
890 >                   jb != atomListColumn.end(); ++jb) {              
891 >                atom2 = (*jb);
892 >                mf = fDecomp_->getMassFactorColumn(atom2);
893 >                // fg is the force on atom jb due to cutoff group's
894 >                // presence in switching region
895 >                fg = -swderiv * d_grp * mf;
896 >                fDecomp_->addForceToAtomColumn(atom2, fg);
897 >
898 >                if (atomListColumn.size() > 1) {
899 >                  if (info_->usesAtomicVirial()) {
900 >                    // find the distance between the atom
901 >                    // and the center of the cutoff group:
902 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
903 >                    stressTensor -= outProduct(dag, fg);
904 >                    if (doHeatFlux_)
905 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
906 >                  }
907 >                }
908 >              }
909 >            }
910 >            //if (!info_->usesAtomicVirial()) {
911 >            //  stressTensor -= outProduct(d_grp, fij);
912 >            //  if (doHeatFlux_)
913 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
914 >            //}
915 >          }
916 >        }
917 >      }
918 >
919 >      if (iLoop == PREPAIR_LOOP) {
920 >        if (info_->requiresPrepair()) {
921 >
922 >          fDecomp_->collectIntermediateData();
923 >
924 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
925 >            fDecomp_->fillSelfData(sdat, atom1);
926 >            interactionMan_->doPreForce(sdat);
927 >          }
928 >
929 >          fDecomp_->distributeIntermediateData();
930 >
931 >        }
932 >      }
933      }
934 <    for (int i=0; i<LR_POT_TYPES;i++){
935 <      lrPot += longRangePotential[i]; //Quick hack
934 >    
935 >    // collects pairwise information
936 >    fDecomp_->collectData();
937 >    if (cutoffMethod_ == EWALD_FULL) {
938 >      interactionMan_->doReciprocalSpaceSum(reciprocalPotential);
939 >
940 >      curSnapshot->setReciprocalPotential(reciprocalPotential);
941      }
942 +        
943 +    if (info_->requiresSelfCorrection()) {
944 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
945 +        fDecomp_->fillSelfData(sdat, atom1);
946 +        interactionMan_->doSelfCorrection(sdat);
947 +      }
948 +    }
949  
950 <    //store the tau and long range potential    
951 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
313 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
314 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
950 >    // collects single-atom information
951 >    fDecomp_->collectSelfData();
952  
953 <    curSnapshot->statData.setTau(tau);
954 <  }
953 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
954 >      *(fDecomp_->getPairwisePotential());
955  
956 +    curSnapshot->setLongRangePotential(longRangePotential);
957 +    
958 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
959 +                                       *(fDecomp_->getExcludedPotential()));
960  
961 +  }
962 +
963    void ForceManager::postCalculation() {
964 +
965 +    vector<Perturbation*>::iterator pi;
966 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
967 +      (*pi)->applyPerturbation();
968 +    }
969 +
970      SimInfo::MoleculeIterator mi;
971      Molecule* mol;
972      Molecule::RigidBodyIterator rbIter;
973      RigidBody* rb;
974 <    
974 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
975 >  
976      // collect the atomic forces onto rigid bodies
977 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
978 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
979 <        rb->calcForcesAndTorques();
977 >    
978 >    for (mol = info_->beginMolecule(mi); mol != NULL;
979 >         mol = info_->nextMolecule(mi)) {
980 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
981 >           rb = mol->nextRigidBody(rbIter)) {
982 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
983 >        stressTensor += rbTau;
984        }
985      }
986 +    
987 + #ifdef IS_MPI
988 +    MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9,
989 +                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
990 + #endif
991 +    curSnapshot->setStressTensor(stressTensor);
992 +    
993 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
994 +      /*
995 +        RealType vol = curSnapshot->getVolume();
996 +        RealType Elrc(0.0);
997 +        RealType Wlrc(0.0);
998  
999 <  }
999 >        set<AtomType*>::iterator i;
1000 >        set<AtomType*>::iterator j;
1001 >    
1002 >        RealType n_i, n_j;
1003 >        RealType rho_i, rho_j;
1004 >        pair<RealType, RealType> LRI;
1005 >      
1006 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
1007 >        n_i = RealType(info_->getGlobalCountOfType(*i));
1008 >        rho_i = n_i /  vol;
1009 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
1010 >        n_j = RealType(info_->getGlobalCountOfType(*j));
1011 >        rho_j = n_j / vol;
1012 >          
1013 >        LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
1014  
1015 < } //end namespace oopse
1015 >        Elrc += n_i   * rho_j * LRI.first;
1016 >        Wlrc -= rho_i * rho_j * LRI.second;
1017 >        }
1018 >        }
1019 >        Elrc *= 2.0 * NumericConstant::PI;
1020 >        Wlrc *= 2.0 * NumericConstant::PI;
1021 >
1022 >        RealType lrp = curSnapshot->getLongRangePotential();
1023 >        curSnapshot->setLongRangePotential(lrp + Elrc);
1024 >        stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1025 >        curSnapshot->setStressTensor(stressTensor);
1026 >      */
1027 >    
1028 >    }
1029 >  }
1030 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 2033 by gezelter, Sat Nov 1 14:12:16 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines