1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "UseTheForce/doForces_interface.h" |
53 |
#define __OOPSE_C |
54 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
#include "utils/simError.h" |
56 |
#include "primitives/Bond.hpp" |
57 |
#include "primitives/Bend.hpp" |
58 |
#include "primitives/Torsion.hpp" |
59 |
#include "primitives/Inversion.hpp" |
60 |
namespace oopse { |
61 |
|
62 |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
63 |
|
64 |
if (!info_->isFortranInitialized()) { |
65 |
info_->update(); |
66 |
} |
67 |
|
68 |
preCalculation(); |
69 |
|
70 |
calcShortRangeInteraction(); |
71 |
|
72 |
calcLongRangeInteraction(needPotential, needStress); |
73 |
|
74 |
postCalculation(needStress); |
75 |
|
76 |
} |
77 |
|
78 |
void ForceManager::preCalculation() { |
79 |
SimInfo::MoleculeIterator mi; |
80 |
Molecule* mol; |
81 |
Molecule::AtomIterator ai; |
82 |
Atom* atom; |
83 |
Molecule::RigidBodyIterator rbIter; |
84 |
RigidBody* rb; |
85 |
|
86 |
// forces are zeroed here, before any are accumulated. |
87 |
// NOTE: do not rezero the forces in Fortran. |
88 |
|
89 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
90 |
mol = info_->nextMolecule(mi)) { |
91 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
92 |
atom->zeroForcesAndTorques(); |
93 |
} |
94 |
|
95 |
//change the positions of atoms which belong to the rigidbodies |
96 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
97 |
rb = mol->nextRigidBody(rbIter)) { |
98 |
rb->zeroForcesAndTorques(); |
99 |
} |
100 |
|
101 |
} |
102 |
|
103 |
// Zero out the stress tensor |
104 |
tau *= 0.0; |
105 |
|
106 |
} |
107 |
|
108 |
void ForceManager::calcShortRangeInteraction() { |
109 |
Molecule* mol; |
110 |
RigidBody* rb; |
111 |
Bond* bond; |
112 |
Bend* bend; |
113 |
Torsion* torsion; |
114 |
Inversion* inversion; |
115 |
SimInfo::MoleculeIterator mi; |
116 |
Molecule::RigidBodyIterator rbIter; |
117 |
Molecule::BondIterator bondIter;; |
118 |
Molecule::BendIterator bendIter; |
119 |
Molecule::TorsionIterator torsionIter; |
120 |
Molecule::InversionIterator inversionIter; |
121 |
RealType bondPotential = 0.0; |
122 |
RealType bendPotential = 0.0; |
123 |
RealType torsionPotential = 0.0; |
124 |
RealType inversionPotential = 0.0; |
125 |
|
126 |
//calculate short range interactions |
127 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
128 |
mol = info_->nextMolecule(mi)) { |
129 |
|
130 |
//change the positions of atoms which belong to the rigidbodies |
131 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
132 |
rb = mol->nextRigidBody(rbIter)) { |
133 |
rb->updateAtoms(); |
134 |
} |
135 |
|
136 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
137 |
bond = mol->nextBond(bondIter)) { |
138 |
bond->calcForce(); |
139 |
bondPotential += bond->getPotential(); |
140 |
} |
141 |
|
142 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
143 |
bend = mol->nextBend(bendIter)) { |
144 |
|
145 |
RealType angle; |
146 |
bend->calcForce(angle); |
147 |
RealType currBendPot = bend->getPotential(); |
148 |
bendPotential += bend->getPotential(); |
149 |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
150 |
if (i == bendDataSets.end()) { |
151 |
BendDataSet dataSet; |
152 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
153 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
154 |
dataSet.deltaV = 0.0; |
155 |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
156 |
}else { |
157 |
i->second.prev.angle = i->second.curr.angle; |
158 |
i->second.prev.potential = i->second.curr.potential; |
159 |
i->second.curr.angle = angle; |
160 |
i->second.curr.potential = currBendPot; |
161 |
i->second.deltaV = fabs(i->second.curr.potential - |
162 |
i->second.prev.potential); |
163 |
} |
164 |
} |
165 |
|
166 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
167 |
torsion = mol->nextTorsion(torsionIter)) { |
168 |
RealType angle; |
169 |
torsion->calcForce(angle); |
170 |
RealType currTorsionPot = torsion->getPotential(); |
171 |
torsionPotential += torsion->getPotential(); |
172 |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
173 |
if (i == torsionDataSets.end()) { |
174 |
TorsionDataSet dataSet; |
175 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
176 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
177 |
dataSet.deltaV = 0.0; |
178 |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
179 |
}else { |
180 |
i->second.prev.angle = i->second.curr.angle; |
181 |
i->second.prev.potential = i->second.curr.potential; |
182 |
i->second.curr.angle = angle; |
183 |
i->second.curr.potential = currTorsionPot; |
184 |
i->second.deltaV = fabs(i->second.curr.potential - |
185 |
i->second.prev.potential); |
186 |
} |
187 |
} |
188 |
|
189 |
for (inversion = mol->beginInversion(inversionIter); |
190 |
inversion != NULL; |
191 |
inversion = mol->nextInversion(inversionIter)) { |
192 |
RealType angle; |
193 |
inversion->calcForce(angle); |
194 |
RealType currInversionPot = inversion->getPotential(); |
195 |
inversionPotential += inversion->getPotential(); |
196 |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
197 |
if (i == inversionDataSets.end()) { |
198 |
InversionDataSet dataSet; |
199 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
200 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
201 |
dataSet.deltaV = 0.0; |
202 |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
203 |
}else { |
204 |
i->second.prev.angle = i->second.curr.angle; |
205 |
i->second.prev.potential = i->second.curr.potential; |
206 |
i->second.curr.angle = angle; |
207 |
i->second.curr.potential = currInversionPot; |
208 |
i->second.deltaV = fabs(i->second.curr.potential - |
209 |
i->second.prev.potential); |
210 |
} |
211 |
} |
212 |
} |
213 |
|
214 |
RealType shortRangePotential = bondPotential + bendPotential + |
215 |
torsionPotential + inversionPotential; |
216 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
217 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
218 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
219 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
220 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
221 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
222 |
|
223 |
} |
224 |
|
225 |
void ForceManager::calcLongRangeInteraction(bool needPotential, |
226 |
bool needStress) { |
227 |
Snapshot* curSnapshot; |
228 |
DataStorage* config; |
229 |
RealType* frc; |
230 |
RealType* pos; |
231 |
RealType* trq; |
232 |
RealType* A; |
233 |
RealType* electroFrame; |
234 |
RealType* rc; |
235 |
RealType* particlePot; |
236 |
|
237 |
//get current snapshot from SimInfo |
238 |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
239 |
|
240 |
//get array pointers |
241 |
config = &(curSnapshot->atomData); |
242 |
frc = config->getArrayPointer(DataStorage::dslForce); |
243 |
pos = config->getArrayPointer(DataStorage::dslPosition); |
244 |
trq = config->getArrayPointer(DataStorage::dslTorque); |
245 |
A = config->getArrayPointer(DataStorage::dslAmat); |
246 |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
247 |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
248 |
|
249 |
//calculate the center of mass of cutoff group |
250 |
SimInfo::MoleculeIterator mi; |
251 |
Molecule* mol; |
252 |
Molecule::CutoffGroupIterator ci; |
253 |
CutoffGroup* cg; |
254 |
Vector3d com; |
255 |
std::vector<Vector3d> rcGroup; |
256 |
|
257 |
if(info_->getNCutoffGroups() > 0){ |
258 |
|
259 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
260 |
mol = info_->nextMolecule(mi)) { |
261 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
262 |
cg = mol->nextCutoffGroup(ci)) { |
263 |
cg->getCOM(com); |
264 |
rcGroup.push_back(com); |
265 |
} |
266 |
}// end for (mol) |
267 |
|
268 |
rc = rcGroup[0].getArrayPointer(); |
269 |
} else { |
270 |
// center of mass of the group is the same as position of the atom |
271 |
// if cutoff group does not exist |
272 |
rc = pos; |
273 |
} |
274 |
|
275 |
//initialize data before passing to fortran |
276 |
RealType longRangePotential[LR_POT_TYPES]; |
277 |
RealType lrPot = 0.0; |
278 |
Vector3d totalDipole; |
279 |
short int passedCalcPot = needPotential; |
280 |
short int passedCalcStress = needStress; |
281 |
int isError = 0; |
282 |
|
283 |
for (int i=0; i<LR_POT_TYPES;i++){ |
284 |
longRangePotential[i]=0.0; //Initialize array |
285 |
} |
286 |
|
287 |
doForceLoop(pos, |
288 |
rc, |
289 |
A, |
290 |
electroFrame, |
291 |
frc, |
292 |
trq, |
293 |
tau.getArrayPointer(), |
294 |
longRangePotential, |
295 |
particlePot, |
296 |
&passedCalcPot, |
297 |
&passedCalcStress, |
298 |
&isError ); |
299 |
|
300 |
if( isError ){ |
301 |
sprintf( painCave.errMsg, |
302 |
"Error returned from the fortran force calculation.\n" ); |
303 |
painCave.isFatal = 1; |
304 |
simError(); |
305 |
} |
306 |
for (int i=0; i<LR_POT_TYPES;i++){ |
307 |
lrPot += longRangePotential[i]; //Quick hack |
308 |
} |
309 |
|
310 |
// grab the simulation box dipole moment if specified |
311 |
if (info_->getCalcBoxDipole()){ |
312 |
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
313 |
|
314 |
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
315 |
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
316 |
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
317 |
} |
318 |
|
319 |
//store the tau and long range potential |
320 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
321 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
322 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
323 |
} |
324 |
|
325 |
|
326 |
void ForceManager::postCalculation(bool needStress) { |
327 |
SimInfo::MoleculeIterator mi; |
328 |
Molecule* mol; |
329 |
Molecule::RigidBodyIterator rbIter; |
330 |
RigidBody* rb; |
331 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
332 |
|
333 |
// collect the atomic forces onto rigid bodies |
334 |
|
335 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
336 |
mol = info_->nextMolecule(mi)) { |
337 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
338 |
rb = mol->nextRigidBody(rbIter)) { |
339 |
if (needStress) { |
340 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
341 |
tau += rbTau; |
342 |
} else{ |
343 |
rb->calcForcesAndTorques(); |
344 |
} |
345 |
} |
346 |
} |
347 |
|
348 |
if (needStress) { |
349 |
#ifdef IS_MPI |
350 |
Mat3x3d tmpTau(tau); |
351 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
352 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
353 |
#endif |
354 |
curSnapshot->statData.setTau(tau); |
355 |
} |
356 |
} |
357 |
|
358 |
} //end namespace oopse |