ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
Revision: 1245
Committed: Tue May 27 16:39:06 2008 UTC (16 years, 11 months ago) by chuckv
File size: 11528 byte(s)
Log Message:
Checking in changes for Hefland moment calculations

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50 #include "brains/ForceManager.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53 #define __C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 #include "utils/simError.h"
56 #include "primitives/Bond.hpp"
57 #include "primitives/Bend.hpp"
58 namespace oopse {
59
60 void ForceManager::calcForces(bool needPotential, bool needStress) {
61
62 if (!info_->isFortranInitialized()) {
63 info_->update();
64 }
65
66 preCalculation();
67
68 calcShortRangeInteraction();
69
70 calcLongRangeInteraction(needPotential, needStress);
71
72 postCalculation(needStress);
73
74 }
75
76 void ForceManager::preCalculation() {
77 SimInfo::MoleculeIterator mi;
78 Molecule* mol;
79 Molecule::AtomIterator ai;
80 Atom* atom;
81 Molecule::RigidBodyIterator rbIter;
82 RigidBody* rb;
83
84 // forces are zeroed here, before any are accumulated.
85 // NOTE: do not rezero the forces in Fortran.
86
87 for (mol = info_->beginMolecule(mi); mol != NULL;
88 mol = info_->nextMolecule(mi)) {
89 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
90 atom->zeroForcesAndTorques();
91 }
92
93 //change the positions of atoms which belong to the rigidbodies
94 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
95 rb = mol->nextRigidBody(rbIter)) {
96 rb->zeroForcesAndTorques();
97 }
98
99 }
100
101 // Zero out the stress tensor
102 tau *= 0.0;
103
104 }
105
106 void ForceManager::calcShortRangeInteraction() {
107 Molecule* mol;
108 RigidBody* rb;
109 Bond* bond;
110 Bend* bend;
111 Torsion* torsion;
112 SimInfo::MoleculeIterator mi;
113 Molecule::RigidBodyIterator rbIter;
114 Molecule::BondIterator bondIter;;
115 Molecule::BendIterator bendIter;
116 Molecule::TorsionIterator torsionIter;
117 RealType bondPotential = 0.0;
118 RealType bendPotential = 0.0;
119 RealType torsionPotential = 0.0;
120
121 //calculate short range interactions
122 for (mol = info_->beginMolecule(mi); mol != NULL;
123 mol = info_->nextMolecule(mi)) {
124
125 //change the positions of atoms which belong to the rigidbodies
126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
127 rb = mol->nextRigidBody(rbIter)) {
128 rb->updateAtoms();
129 }
130
131 for (bond = mol->beginBond(bondIter); bond != NULL;
132 bond = mol->nextBond(bondIter)) {
133 bond->calcForce();
134 bondPotential += bond->getPotential();
135 }
136
137 for (bend = mol->beginBend(bendIter); bend != NULL;
138 bend = mol->nextBend(bendIter)) {
139
140 RealType angle;
141 bend->calcForce(angle);
142 RealType currBendPot = bend->getPotential();
143 bendPotential += bend->getPotential();
144 std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
145 if (i == bendDataSets.end()) {
146 BendDataSet dataSet;
147 dataSet.prev.angle = dataSet.curr.angle = angle;
148 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
149 dataSet.deltaV = 0.0;
150 bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
151 }else {
152 i->second.prev.angle = i->second.curr.angle;
153 i->second.prev.potential = i->second.curr.potential;
154 i->second.curr.angle = angle;
155 i->second.curr.potential = currBendPot;
156 i->second.deltaV = fabs(i->second.curr.potential -
157 i->second.prev.potential);
158 }
159 }
160
161 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
162 torsion = mol->nextTorsion(torsionIter)) {
163 RealType angle;
164 torsion->calcForce(angle);
165 RealType currTorsionPot = torsion->getPotential();
166 torsionPotential += torsion->getPotential();
167 std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
168 if (i == torsionDataSets.end()) {
169 TorsionDataSet dataSet;
170 dataSet.prev.angle = dataSet.curr.angle = angle;
171 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
172 dataSet.deltaV = 0.0;
173 torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
174 }else {
175 i->second.prev.angle = i->second.curr.angle;
176 i->second.prev.potential = i->second.curr.potential;
177 i->second.curr.angle = angle;
178 i->second.curr.potential = currTorsionPot;
179 i->second.deltaV = fabs(i->second.curr.potential -
180 i->second.prev.potential);
181 }
182 }
183 }
184
185 RealType shortRangePotential = bondPotential + bendPotential +
186 torsionPotential;
187 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
188 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
189 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
190 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
191 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
192
193 }
194
195 void ForceManager::calcLongRangeInteraction(bool needPotential,
196 bool needStress) {
197 Snapshot* curSnapshot;
198 DataStorage* config;
199 RealType* frc;
200 RealType* pos;
201 RealType* trq;
202 RealType* A;
203 RealType* electroFrame;
204 RealType* rc;
205 RealType* particlePot;
206
207 //get current snapshot from SimInfo
208 curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
209
210 //get array pointers
211 config = &(curSnapshot->atomData);
212 frc = config->getArrayPointer(DataStorage::dslForce);
213 pos = config->getArrayPointer(DataStorage::dslPosition);
214 trq = config->getArrayPointer(DataStorage::dslTorque);
215 A = config->getArrayPointer(DataStorage::dslAmat);
216 electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
217 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
218
219 //calculate the center of mass of cutoff group
220 SimInfo::MoleculeIterator mi;
221 Molecule* mol;
222 Molecule::CutoffGroupIterator ci;
223 CutoffGroup* cg;
224 Vector3d com;
225 std::vector<Vector3d> rcGroup;
226
227 if(info_->getNCutoffGroups() > 0){
228
229 for (mol = info_->beginMolecule(mi); mol != NULL;
230 mol = info_->nextMolecule(mi)) {
231 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
232 cg = mol->nextCutoffGroup(ci)) {
233 cg->getCOM(com);
234 rcGroup.push_back(com);
235 }
236 }// end for (mol)
237
238 rc = rcGroup[0].getArrayPointer();
239 } else {
240 // center of mass of the group is the same as position of the atom
241 // if cutoff group does not exist
242 rc = pos;
243 }
244
245 //initialize data before passing to fortran
246 RealType longRangePotential[LR_POT_TYPES];
247 RealType lrPot = 0.0;
248 Vector3d totalDipole;
249 short int passedCalcPot = needPotential;
250 short int passedCalcStress = needStress;
251 int isError = 0;
252
253 for (int i=0; i<LR_POT_TYPES;i++){
254 longRangePotential[i]=0.0; //Initialize array
255 }
256
257 doForceLoop(pos,
258 rc,
259 A,
260 electroFrame,
261 frc,
262 trq,
263 tau.getArrayPointer(),
264 longRangePotential,
265 particlePot,
266 &passedCalcPot,
267 &passedCalcStress,
268 &isError );
269
270 if( isError ){
271 sprintf( painCave.errMsg,
272 "Error returned from the fortran force calculation.\n" );
273 painCave.isFatal = 1;
274 simError();
275 }
276 for (int i=0; i<LR_POT_TYPES;i++){
277 lrPot += longRangePotential[i]; //Quick hack
278 }
279
280 // grab the simulation box dipole moment if specified
281 if (info_->getCalcBoxDipole()){
282 getAccumulatedBoxDipole(totalDipole.getArrayPointer());
283
284 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
285 curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
286 curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
287 }
288
289 //store the tau and long range potential
290 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
291 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
292 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
293 }
294
295
296 void ForceManager::postCalculation(bool needStress) {
297 SimInfo::MoleculeIterator mi;
298 Molecule* mol;
299 Molecule::RigidBodyIterator rbIter;
300 RigidBody* rb;
301 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
302
303 // collect the atomic forces onto rigid bodies
304
305 for (mol = info_->beginMolecule(mi); mol != NULL;
306 mol = info_->nextMolecule(mi)) {
307 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
308 rb = mol->nextRigidBody(rbIter)) {
309 if (needStress) {
310 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
311 tau += rbTau;
312 } else{
313 rb->calcForcesAndTorques();
314 }
315 }
316 }
317
318 if (needStress) {
319 #ifdef IS_MPI
320 Mat3x3d tmpTau(tau);
321 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
322 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
323 #endif
324 curSnapshot->statData.setTau(tau);
325 }
326 }
327
328 } //end namespace oopse

Properties

Name Value
svn:executable *