ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 1879 by gezelter, Sun Jun 16 15:15:42 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/ElectricField.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 < /*
64 <  struct BendOrderStruct {
65 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
68 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 >                                               initialized_(false) {
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 >    thermo = new Thermo(info_);
76    }
77  
78 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
79 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80 >    
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85    }
86 <  */
87 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
86 >  
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
102 >   *                        or SHIFTED_POTENTIAL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120 >    
121 >    Globals* simParams_ = info_->getSimParams();
122 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 >    int mdFileVersion;
124 >    rCut_ = 0.0; //Needs a value for a later max() call;  
125 >    
126 >    if (simParams_->haveMDfileVersion())
127 >      mdFileVersion = simParams_->getMDfileVersion();
128 >    else
129 >      mdFileVersion = 0;
130 >  
131 >    // We need the list of simulated atom types to figure out cutoffs
132 >    // as well as long range corrections.
133  
134 <    if (!info_->isFortranInitialized()) {
135 <      info_->update();
134 >    set<AtomType*>::iterator i;
135 >    set<AtomType*> atomTypes_;
136 >    atomTypes_ = info_->getSimulatedAtomTypes();
137 >
138 >    if (simParams_->haveCutoffRadius()) {
139 >      rCut_ = simParams_->getCutoffRadius();
140 >    } else {      
141 >      if (info_->usesElectrostaticAtoms()) {
142 >        sprintf(painCave.errMsg,
143 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 >                "\tOpenMD will use a default value of 12.0 angstroms"
145 >                "\tfor the cutoffRadius.\n");
146 >        painCave.isFatal = 0;
147 >        painCave.severity = OPENMD_INFO;
148 >        simError();
149 >        rCut_ = 12.0;
150 >      } else {
151 >        RealType thisCut;
152 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 >          rCut_ = max(thisCut, rCut_);
155 >        }
156 >        sprintf(painCave.errMsg,
157 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 >                "\tOpenMD will use %lf angstroms.\n",
159 >                rCut_);
160 >        painCave.isFatal = 0;
161 >        painCave.severity = OPENMD_INFO;
162 >        simError();
163 >      }
164      }
165  
166 <    preCalculation();
167 <    
86 <    calcShortRangeInteraction();
166 >    fDecomp_->setUserCutoff(rCut_);
167 >    interactionMan_->setCutoffRadius(rCut_);
168  
169 <    calcLongRangeInteraction(needPotential, needStress);
169 >    map<string, CutoffMethod> stringToCutoffMethod;
170 >    stringToCutoffMethod["HARD"] = HARD;
171 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
175 >  
176 >    if (simParams_->haveCutoffMethod()) {
177 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
178 >      map<string, CutoffMethod>::iterator i;
179 >      i = stringToCutoffMethod.find(cutMeth);
180 >      if (i == stringToCutoffMethod.end()) {
181 >        sprintf(painCave.errMsg,
182 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
183 >                "\tShould be one of: "
184 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
185 >                "\tor SHIFTED_FORCE\n",
186 >                cutMeth.c_str());
187 >        painCave.isFatal = 1;
188 >        painCave.severity = OPENMD_ERROR;
189 >        simError();
190 >      } else {
191 >        cutoffMethod_ = i->second;
192 >      }
193 >    } else {
194 >      if (mdFileVersion > 1) {
195 >        sprintf(painCave.errMsg,
196 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
197 >                "\tOpenMD will use SHIFTED_FORCE.\n");
198 >        painCave.isFatal = 0;
199 >        painCave.severity = OPENMD_INFO;
200 >        simError();
201 >        cutoffMethod_ = SHIFTED_FORCE;        
202 >      } else {
203 >        // handle the case where the old file version was in play
204 >        // (there should be no cutoffMethod, so we have to deduce it
205 >        // from other data).        
206  
207 <    postCalculation();
207 >        sprintf(painCave.errMsg,
208 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
209 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
210 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
211 >                "\tbehavior of the older (version 1) code.  To remove this\n"
212 >                "\twarning, add an explicit cutoffMethod and change the top\n"
213 >                "\tof the file so that it begins with <OpenMD version=2>\n");
214 >        painCave.isFatal = 0;
215 >        painCave.severity = OPENMD_WARNING;
216 >        simError();            
217 >                
218 >        // The old file version tethered the shifting behavior to the
219 >        // electrostaticSummationMethod keyword.
220 >        
221 >        if (simParams_->haveElectrostaticSummationMethod()) {
222 >          string myMethod = simParams_->getElectrostaticSummationMethod();
223 >          toUpper(myMethod);
224 >        
225 >          if (myMethod == "SHIFTED_POTENTIAL") {
226 >            cutoffMethod_ = SHIFTED_POTENTIAL;
227 >          } else if (myMethod == "SHIFTED_FORCE") {
228 >            cutoffMethod_ = SHIFTED_FORCE;
229 >          } else if (myMethod == "TAYLOR_SHIFTED") {
230 >            cutoffMethod_ = TAYLOR_SHIFTED;
231 >          }
232 >        
233 >          if (simParams_->haveSwitchingRadius())
234 >            rSwitch_ = simParams_->getSwitchingRadius();
235  
236 < /*
237 <    std::vector<BendOrderStruct> bendOrderStruct;
238 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
239 <        BendOrderStruct tmp;
240 <        tmp.bend= const_cast<Bend*>(i->first);
241 <        tmp.dataSet = i->second;
242 <        bendOrderStruct.push_back(tmp);
236 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
237 >              myMethod == "TAYLOR_SHIFTED") {
238 >            if (simParams_->haveSwitchingRadius()){
239 >              sprintf(painCave.errMsg,
240 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
241 >                      "\tA value was set for the switchingRadius\n"
242 >                      "\teven though the electrostaticSummationMethod was\n"
243 >                      "\tset to %s\n", myMethod.c_str());
244 >              painCave.severity = OPENMD_WARNING;
245 >              painCave.isFatal = 1;
246 >              simError();            
247 >            }
248 >          }
249 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
250 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
251 >              sprintf(painCave.errMsg,
252 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
253 >                      "\tcutoffRadius and switchingRadius are set to the\n"
254 >                      "\tsame value.  OpenMD will use shifted force\n"
255 >                      "\tpotentials instead of switching functions.\n");
256 >              painCave.isFatal = 0;
257 >              painCave.severity = OPENMD_WARNING;
258 >              simError();            
259 >            } else {
260 >              cutoffMethod_ = SHIFTED_POTENTIAL;
261 >              sprintf(painCave.errMsg,
262 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
263 >                      "\tcutoffRadius and switchingRadius are set to the\n"
264 >                      "\tsame value.  OpenMD will use shifted potentials\n"
265 >                      "\tinstead of switching functions.\n");
266 >              painCave.isFatal = 0;
267 >              painCave.severity = OPENMD_WARNING;
268 >              simError();            
269 >            }
270 >          }
271 >        }
272 >      }
273      }
274  
275 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
276 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
277 <        TorsionOrderStruct tmp;
278 <        tmp.torsion = const_cast<Torsion*>(j->first);
279 <        tmp.dataSet = j->second;
280 <        torsionOrderStruct.push_back(tmp);
275 >    map<string, CutoffPolicy> stringToCutoffPolicy;
276 >    stringToCutoffPolicy["MIX"] = MIX;
277 >    stringToCutoffPolicy["MAX"] = MAX;
278 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
279 >
280 >    string cutPolicy;
281 >    if (forceFieldOptions_.haveCutoffPolicy()){
282 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
283 >    }else if (simParams_->haveCutoffPolicy()) {
284 >      cutPolicy = simParams_->getCutoffPolicy();
285 >    }
286 >
287 >    if (!cutPolicy.empty()){
288 >      toUpper(cutPolicy);
289 >      map<string, CutoffPolicy>::iterator i;
290 >      i = stringToCutoffPolicy.find(cutPolicy);
291 >
292 >      if (i == stringToCutoffPolicy.end()) {
293 >        sprintf(painCave.errMsg,
294 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
295 >                "\tShould be one of: "
296 >                "MIX, MAX, or TRADITIONAL\n",
297 >                cutPolicy.c_str());
298 >        painCave.isFatal = 1;
299 >        painCave.severity = OPENMD_ERROR;
300 >        simError();
301 >      } else {
302 >        cutoffPolicy_ = i->second;
303 >      }
304 >    } else {
305 >      sprintf(painCave.errMsg,
306 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
307 >              "\tOpenMD will use TRADITIONAL.\n");
308 >      painCave.isFatal = 0;
309 >      painCave.severity = OPENMD_INFO;
310 >      simError();
311 >      cutoffPolicy_ = TRADITIONAL;        
312      }
313 +
314 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
315 +        
316 +    // create the switching function object:
317 +
318 +    switcher_ = new SwitchingFunction();
319 +  
320 +    if (cutoffMethod_ == SWITCHED) {
321 +      if (simParams_->haveSwitchingRadius()) {
322 +        rSwitch_ = simParams_->getSwitchingRadius();
323 +        if (rSwitch_ > rCut_) {        
324 +          sprintf(painCave.errMsg,
325 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
326 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
327 +          painCave.isFatal = 1;
328 +          painCave.severity = OPENMD_ERROR;
329 +          simError();
330 +        }
331 +      } else {      
332 +        rSwitch_ = 0.85 * rCut_;
333 +        sprintf(painCave.errMsg,
334 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
335 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
336 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
337 +        painCave.isFatal = 0;
338 +        painCave.severity = OPENMD_WARNING;
339 +        simError();
340 +      }
341 +    } else {
342 +      if (mdFileVersion > 1) {
343 +        // throw an error if we define a switching radius and don't need one.
344 +        // older file versions should not do this.
345 +        if (simParams_->haveSwitchingRadius()) {
346 +          map<string, CutoffMethod>::const_iterator it;
347 +          string theMeth;
348 +          for (it = stringToCutoffMethod.begin();
349 +               it != stringToCutoffMethod.end(); ++it) {
350 +            if (it->second == cutoffMethod_) {
351 +              theMeth = it->first;
352 +              break;
353 +            }
354 +          }
355 +          sprintf(painCave.errMsg,
356 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
357 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
358 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
359 +          painCave.isFatal = 0;
360 +          painCave.severity = OPENMD_WARNING;
361 +          simError();
362 +        }
363 +      }
364 +      rSwitch_ = rCut_;
365 +    }
366      
367 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
368 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
369 <    std::cout << "bend" << std::endl;
370 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
371 <        Bend* bend = k->bend;
372 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
373 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
367 >    // Default to cubic switching function.
368 >    sft_ = cubic;
369 >    if (simParams_->haveSwitchingFunctionType()) {
370 >      string funcType = simParams_->getSwitchingFunctionType();
371 >      toUpper(funcType);
372 >      if (funcType == "CUBIC") {
373 >        sft_ = cubic;
374 >      } else {
375 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
376 >          sft_ = fifth_order_poly;
377 >        } else {
378 >          // throw error        
379 >          sprintf( painCave.errMsg,
380 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
381 >                   "\tswitchingFunctionType must be one of: "
382 >                   "\"cubic\" or \"fifth_order_polynomial\".",
383 >                   funcType.c_str() );
384 >          painCave.isFatal = 1;
385 >          painCave.severity = OPENMD_ERROR;
386 >          simError();
387 >        }          
388 >      }
389      }
390 <    std::cout << "torsio" << std::endl;
391 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
119 <        Torsion* torsion = l->torsion;
120 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
121 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
122 <    }
123 <   */
390 >    switcher_->setSwitchType(sft_);
391 >    switcher_->setSwitch(rSwitch_, rCut_);
392    }
393  
394 +
395 +
396 +  
397 +  void ForceManager::initialize() {
398 +
399 +    if (!info_->isTopologyDone()) {
400 +
401 +      info_->update();
402 +      interactionMan_->setSimInfo(info_);
403 +      interactionMan_->initialize();
404 +
405 +      // We want to delay the cutoffs until after the interaction
406 +      // manager has set up the atom-atom interactions so that we can
407 +      // query them for suggested cutoff values
408 +      setupCutoffs();
409 +
410 +      info_->prepareTopology();      
411 +
412 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
413 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
414 +      if (doHeatFlux_) doParticlePot_ = true;
415 +
416 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
417 +  
418 +    }
419 +
420 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
421 +    
422 +    // Force fields can set options on how to scale van der Waals and
423 +    // electrostatic interactions for atoms connected via bonds, bends
424 +    // and torsions in this case the topological distance between
425 +    // atoms is:
426 +    // 0 = topologically unconnected
427 +    // 1 = bonded together
428 +    // 2 = connected via a bend
429 +    // 3 = connected via a torsion
430 +    
431 +    vdwScale_.reserve(4);
432 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
433 +
434 +    electrostaticScale_.reserve(4);
435 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
436 +
437 +    vdwScale_[0] = 1.0;
438 +    vdwScale_[1] = fopts.getvdw12scale();
439 +    vdwScale_[2] = fopts.getvdw13scale();
440 +    vdwScale_[3] = fopts.getvdw14scale();
441 +    
442 +    electrostaticScale_[0] = 1.0;
443 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
444 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
445 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
446 +    
447 +    if (info_->getSimParams()->haveElectricField()) {
448 +      ElectricField* eField = new ElectricField(info_);
449 +      perturbations_.push_back(eField);
450 +    }
451 +
452 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
453 +    
454 +    fDecomp_->distributeInitialData();
455 +    
456 +    initialized_ = true;
457 +    
458 +  }
459 +  
460 +  void ForceManager::calcForces() {
461 +    
462 +    if (!initialized_) initialize();
463 +    
464 +    preCalculation();  
465 +    shortRangeInteractions();
466 +    longRangeInteractions();
467 +    postCalculation();    
468 +  }
469 +  
470    void ForceManager::preCalculation() {
471      SimInfo::MoleculeIterator mi;
472      Molecule* mol;
# Line 130 | Line 474 | namespace oopse {
474      Atom* atom;
475      Molecule::RigidBodyIterator rbIter;
476      RigidBody* rb;
477 +    Molecule::CutoffGroupIterator ci;
478 +    CutoffGroup* cg;
479      
480 <    // forces are zeroed here, before any are accumulated.
481 <    // NOTE: do not rezero the forces in Fortran.
482 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
483 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
480 >    // forces and potentials are zeroed here, before any are
481 >    // accumulated.
482 >    
483 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
484 >
485 >    snap->setBondPotential(0.0);
486 >    snap->setBendPotential(0.0);
487 >    snap->setTorsionPotential(0.0);
488 >    snap->setInversionPotential(0.0);
489 >
490 >    potVec zeroPot(0.0);
491 >    snap->setLongRangePotential(zeroPot);
492 >    snap->setExcludedPotentials(zeroPot);
493 >
494 >    snap->setRestraintPotential(0.0);
495 >    snap->setRawPotential(0.0);
496 >
497 >    for (mol = info_->beginMolecule(mi); mol != NULL;
498 >         mol = info_->nextMolecule(mi)) {
499 >      for(atom = mol->beginAtom(ai); atom != NULL;
500 >          atom = mol->nextAtom(ai)) {
501          atom->zeroForcesAndTorques();
502        }
503 <        
503 >      
504        //change the positions of atoms which belong to the rigidbodies
505 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
505 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
506 >           rb = mol->nextRigidBody(rbIter)) {
507          rb->zeroForcesAndTorques();
508        }        
509 +      
510 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
511 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
512 +            cg = mol->nextCutoffGroup(ci)) {
513 +          //calculate the center of mass of cutoff group
514 +          cg->updateCOM();
515 +        }
516 +      }      
517      }
518      
519 +    // Zero out the stress tensor
520 +    stressTensor *= 0.0;
521 +    // Zero out the heatFlux
522 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
523    }
524 <
525 <  void ForceManager::calcShortRangeInteraction() {
524 >  
525 >  void ForceManager::shortRangeInteractions() {
526      Molecule* mol;
527      RigidBody* rb;
528      Bond* bond;
529      Bend* bend;
530      Torsion* torsion;
531 +    Inversion* inversion;
532      SimInfo::MoleculeIterator mi;
533      Molecule::RigidBodyIterator rbIter;
534      Molecule::BondIterator bondIter;;
535      Molecule::BendIterator  bendIter;
536      Molecule::TorsionIterator  torsionIter;
537 <    double bondPotential = 0.0;
538 <    double bendPotential = 0.0;
539 <    double torsionPotential = 0.0;
537 >    Molecule::InversionIterator  inversionIter;
538 >    RealType bondPotential = 0.0;
539 >    RealType bendPotential = 0.0;
540 >    RealType torsionPotential = 0.0;
541 >    RealType inversionPotential = 0.0;
542  
543      //calculate short range interactions    
544 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
544 >    for (mol = info_->beginMolecule(mi); mol != NULL;
545 >         mol = info_->nextMolecule(mi)) {
546  
547        //change the positions of atoms which belong to the rigidbodies
548 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
549 <          rb->updateAtoms();
548 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
549 >           rb = mol->nextRigidBody(rbIter)) {
550 >        rb->updateAtoms();
551        }
552  
553 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
554 <        bond->calcForce();
553 >      for (bond = mol->beginBond(bondIter); bond != NULL;
554 >           bond = mol->nextBond(bondIter)) {
555 >        bond->calcForce(doParticlePot_);
556          bondPotential += bond->getPotential();
175      }
176
177
178      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
179
180          double angle;
181            bend->calcForce(angle);
182          double currBendPot = bend->getPotential();          
183            bendPotential += bend->getPotential();
184          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
185          if (i == bendDataSets.end()) {
186            BendDataSet dataSet;
187            dataSet.prev.angle = dataSet.curr.angle = angle;
188            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
189            dataSet.deltaV = 0.0;
190            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
191          }else {
192            i->second.prev.angle = i->second.curr.angle;
193            i->second.prev.potential = i->second.curr.potential;
194            i->second.curr.angle = angle;
195            i->second.curr.potential = currBendPot;
196            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
197          }
557        }
558  
559 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
560 <        double angle;
561 <          torsion->calcForce(angle);
562 <        double currTorsionPot = torsion->getPotential();
563 <          torsionPotential += torsion->getPotential();
564 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
565 <          if (i == torsionDataSets.end()) {
566 <            TorsionDataSet dataSet;
567 <            dataSet.prev.angle = dataSet.curr.angle = angle;
568 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
569 <            dataSet.deltaV = 0.0;
570 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
571 <          }else {
572 <            i->second.prev.angle = i->second.curr.angle;
573 <            i->second.prev.potential = i->second.curr.potential;
574 <            i->second.curr.angle = angle;
575 <            i->second.curr.potential = currTorsionPot;
576 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
577 <          }      
559 >      for (bend = mol->beginBend(bendIter); bend != NULL;
560 >           bend = mol->nextBend(bendIter)) {
561 >        
562 >        RealType angle;
563 >        bend->calcForce(angle, doParticlePot_);
564 >        RealType currBendPot = bend->getPotential();          
565 >        
566 >        bendPotential += bend->getPotential();
567 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
568 >        if (i == bendDataSets.end()) {
569 >          BendDataSet dataSet;
570 >          dataSet.prev.angle = dataSet.curr.angle = angle;
571 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
572 >          dataSet.deltaV = 0.0;
573 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
574 >                                                                  dataSet));
575 >        }else {
576 >          i->second.prev.angle = i->second.curr.angle;
577 >          i->second.prev.potential = i->second.curr.potential;
578 >          i->second.curr.angle = angle;
579 >          i->second.curr.potential = currBendPot;
580 >          i->second.deltaV =  fabs(i->second.curr.potential -  
581 >                                   i->second.prev.potential);
582 >        }
583        }
584 <
584 >      
585 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
586 >           torsion = mol->nextTorsion(torsionIter)) {
587 >        RealType angle;
588 >        torsion->calcForce(angle, doParticlePot_);
589 >        RealType currTorsionPot = torsion->getPotential();
590 >        torsionPotential += torsion->getPotential();
591 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
592 >        if (i == torsionDataSets.end()) {
593 >          TorsionDataSet dataSet;
594 >          dataSet.prev.angle = dataSet.curr.angle = angle;
595 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
596 >          dataSet.deltaV = 0.0;
597 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
598 >        }else {
599 >          i->second.prev.angle = i->second.curr.angle;
600 >          i->second.prev.potential = i->second.curr.potential;
601 >          i->second.curr.angle = angle;
602 >          i->second.curr.potential = currTorsionPot;
603 >          i->second.deltaV =  fabs(i->second.curr.potential -  
604 >                                   i->second.prev.potential);
605 >        }      
606 >      }      
607 >      
608 >      for (inversion = mol->beginInversion(inversionIter);
609 >           inversion != NULL;
610 >           inversion = mol->nextInversion(inversionIter)) {
611 >        RealType angle;
612 >        inversion->calcForce(angle, doParticlePot_);
613 >        RealType currInversionPot = inversion->getPotential();
614 >        inversionPotential += inversion->getPotential();
615 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
616 >        if (i == inversionDataSets.end()) {
617 >          InversionDataSet dataSet;
618 >          dataSet.prev.angle = dataSet.curr.angle = angle;
619 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
620 >          dataSet.deltaV = 0.0;
621 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
622 >        }else {
623 >          i->second.prev.angle = i->second.curr.angle;
624 >          i->second.prev.potential = i->second.curr.potential;
625 >          i->second.curr.angle = angle;
626 >          i->second.curr.potential = currInversionPot;
627 >          i->second.deltaV =  fabs(i->second.curr.potential -  
628 >                                   i->second.prev.potential);
629 >        }      
630 >      }      
631      }
632 <    
633 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
632 >
633 > #ifdef IS_MPI
634 >    // Collect from all nodes.  This should eventually be moved into a
635 >    // SystemDecomposition, but this is a better place than in
636 >    // Thermo to do the collection.
637 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
638 >                              MPI::SUM);
639 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
640 >                              MPI::SUM);
641 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
642 >                              MPI::REALTYPE, MPI::SUM);
643 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
644 >                              MPI::REALTYPE, MPI::SUM);
645 > #endif
646 >
647      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
225    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
226    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
227    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
228    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
229    
230  }
648  
649 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
650 <    Snapshot* curSnapshot;
651 <    DataStorage* config;
652 <    double* frc;
236 <    double* pos;
237 <    double* trq;
238 <    double* A;
239 <    double* electroFrame;
240 <    double* rc;
649 >    curSnapshot->setBondPotential(bondPotential);
650 >    curSnapshot->setBendPotential(bendPotential);
651 >    curSnapshot->setTorsionPotential(torsionPotential);
652 >    curSnapshot->setInversionPotential(inversionPotential);
653      
654 <    //get current snapshot from SimInfo
655 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
654 >    // RealType shortRangePotential = bondPotential + bendPotential +
655 >    //   torsionPotential +  inversionPotential;    
656  
657 <    //get array pointers
658 <    config = &(curSnapshot->atomData);
659 <    frc = config->getArrayPointer(DataStorage::dslForce);
660 <    pos = config->getArrayPointer(DataStorage::dslPosition);
249 <    trq = config->getArrayPointer(DataStorage::dslTorque);
250 <    A   = config->getArrayPointer(DataStorage::dslAmat);
251 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
657 >    // curSnapshot->setShortRangePotential(shortRangePotential);
658 >  }
659 >  
660 >  void ForceManager::longRangeInteractions() {
661  
662 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
663 +    DataStorage* config = &(curSnapshot->atomData);
664 +    DataStorage* cgConfig = &(curSnapshot->cgData);
665 +
666      //calculate the center of mass of cutoff group
667 +
668      SimInfo::MoleculeIterator mi;
669      Molecule* mol;
670      Molecule::CutoffGroupIterator ci;
671      CutoffGroup* cg;
258    Vector3d com;
259    std::vector<Vector3d> rcGroup;
672  
673 <    if(info_->getNCutoffGroups() > 0){
674 <
675 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
676 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
677 <          cg->getCOM(com);
678 <          rcGroup.push_back(com);
673 >    if(info_->getNCutoffGroups() > 0){      
674 >      for (mol = info_->beginMolecule(mi); mol != NULL;
675 >           mol = info_->nextMolecule(mi)) {
676 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
677 >            cg = mol->nextCutoffGroup(ci)) {
678 >          cg->updateCOM();
679          }
680 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
680 >      }      
681      } else {
682 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
683 <      rc = pos;
682 >      // center of mass of the group is the same as position of the atom  
683 >      // if cutoff group does not exist
684 >      cgConfig->position = config->position;
685 >      cgConfig->velocity = config->velocity;
686      }
687 <  
688 <    //initialize data before passing to fortran
689 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
687 >
688 >    fDecomp_->zeroWorkArrays();
689 >    fDecomp_->distributeData();
690      
691 <    Mat3x3d tau;
692 <    short int passedCalcPot = needPotential;
693 <    short int passedCalcStress = needStress;
694 <    int isError = 0;
691 >    int cg1, cg2, atom1, atom2, topoDist;
692 >    Vector3d d_grp, dag, d, gvel2, vel2;
693 >    RealType rgrpsq, rgrp, r2, r;
694 >    RealType electroMult, vdwMult;
695 >    RealType vij;
696 >    Vector3d fij, fg, f1;
697 >    tuple3<RealType, RealType, RealType> cuts;
698 >    RealType rCutSq;
699 >    bool in_switching_region;
700 >    RealType sw, dswdr, swderiv;
701 >    vector<int> atomListColumn, atomListRow;
702 >    InteractionData idat;
703 >    SelfData sdat;
704 >    RealType mf;
705 >    RealType vpair;
706 >    RealType dVdFQ1(0.0);
707 >    RealType dVdFQ2(0.0);
708 >    Vector3d eField1(0.0);
709 >    Vector3d eField2(0.0);
710 >    potVec longRangePotential(0.0);
711 >    potVec workPot(0.0);
712 >    potVec exPot(0.0);
713 >    vector<int>::iterator ia, jb;
714  
715 <    for (int i=0; i<LR_POT_TYPES;i++){
716 <      longRangePotential[i]=0.0; //Initialize array
715 >    int loopStart, loopEnd;
716 >
717 >    idat.vdwMult = &vdwMult;
718 >    idat.electroMult = &electroMult;
719 >    idat.pot = &workPot;
720 >    idat.excludedPot = &exPot;
721 >    sdat.pot = fDecomp_->getEmbeddingPotential();
722 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
723 >    idat.vpair = &vpair;
724 >    idat.dVdFQ1 = &dVdFQ1;
725 >    idat.dVdFQ2 = &dVdFQ2;
726 >    idat.eField1 = &eField1;
727 >    idat.eField2 = &eField2;  
728 >    idat.f1 = &f1;
729 >    idat.sw = &sw;
730 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
731 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
732 >    idat.doParticlePot = doParticlePot_;
733 >    idat.doElectricField = doElectricField_;
734 >    sdat.doParticlePot = doParticlePot_;
735 >    
736 >    loopEnd = PAIR_LOOP;
737 >    if (info_->requiresPrepair() ) {
738 >      loopStart = PREPAIR_LOOP;
739 >    } else {
740 >      loopStart = PAIR_LOOP;
741      }
742 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
743 +    
744 +      if (iLoop == loopStart) {
745 +        bool update_nlist = fDecomp_->checkNeighborList();
746 +        if (update_nlist) {
747 +          if (!usePeriodicBoundaryConditions_)
748 +            Mat3x3d bbox = thermo->getBoundingBox();
749 +          neighborList = fDecomp_->buildNeighborList();
750 +        }
751 +      }
752  
753 <    doForceLoop( pos,
754 <                 rc,
755 <                 A,
756 <                 electroFrame,
757 <                 frc,
758 <                 trq,
759 <                 tau.getArrayPointer(),
296 <                 longRangePotential,
297 <                 &passedCalcPot,
298 <                 &passedCalcStress,
299 <                 &isError );
753 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
754 >             it != neighborList.end(); ++it) {
755 >                
756 >        cg1 = (*it).first;
757 >        cg2 = (*it).second;
758 >        
759 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
760  
761 <    if( isError ){
762 <      sprintf( painCave.errMsg,
763 <               "Error returned from the fortran force calculation.\n" );
764 <      painCave.isFatal = 1;
765 <      simError();
761 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
762 >
763 >        curSnapshot->wrapVector(d_grp);        
764 >        rgrpsq = d_grp.lengthSquare();
765 >        rCutSq = cuts.second;
766 >
767 >        if (rgrpsq < rCutSq) {
768 >          idat.rcut = &cuts.first;
769 >          if (iLoop == PAIR_LOOP) {
770 >            vij = 0.0;
771 >            fij.zero();
772 >            eField1.zero();
773 >            eField2.zero();
774 >          }
775 >          
776 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
777 >                                                     rgrp);
778 >
779 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
780 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
781 >
782 >          if (doHeatFlux_)
783 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
784 >
785 >          for (ia = atomListRow.begin();
786 >               ia != atomListRow.end(); ++ia) {            
787 >            atom1 = (*ia);
788 >
789 >            for (jb = atomListColumn.begin();
790 >                 jb != atomListColumn.end(); ++jb) {              
791 >              atom2 = (*jb);
792 >
793 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
794 >
795 >                vpair = 0.0;
796 >                workPot = 0.0;
797 >                exPot = 0.0;
798 >                f1.zero();
799 >                dVdFQ1 = 0.0;
800 >                dVdFQ2 = 0.0;
801 >
802 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
803 >
804 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
805 >                vdwMult = vdwScale_[topoDist];
806 >                electroMult = electrostaticScale_[topoDist];
807 >
808 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
809 >                  idat.d = &d_grp;
810 >                  idat.r2 = &rgrpsq;
811 >                  if (doHeatFlux_)
812 >                    vel2 = gvel2;
813 >                } else {
814 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
815 >                  curSnapshot->wrapVector( d );
816 >                  r2 = d.lengthSquare();
817 >                  idat.d = &d;
818 >                  idat.r2 = &r2;
819 >                  if (doHeatFlux_)
820 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
821 >                }
822 >              
823 >                r = sqrt( *(idat.r2) );
824 >                idat.rij = &r;
825 >              
826 >                if (iLoop == PREPAIR_LOOP) {
827 >                  interactionMan_->doPrePair(idat);
828 >                } else {
829 >                  interactionMan_->doPair(idat);
830 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
831 >                  vij += vpair;
832 >                  fij += f1;
833 >                  stressTensor -= outProduct( *(idat.d), f1);
834 >                  if (doHeatFlux_)
835 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
836 >                }
837 >              }
838 >            }
839 >          }
840 >
841 >          if (iLoop == PAIR_LOOP) {
842 >            if (in_switching_region) {
843 >              swderiv = vij * dswdr / rgrp;
844 >              fg = swderiv * d_grp;
845 >              fij += fg;
846 >
847 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
848 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
849 >                                            atomListColumn[0],
850 >                                            cg1, cg2)) {
851 >                  stressTensor -= outProduct( *(idat.d), fg);
852 >                  if (doHeatFlux_)
853 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
854 >                }                
855 >              }
856 >          
857 >              for (ia = atomListRow.begin();
858 >                   ia != atomListRow.end(); ++ia) {            
859 >                atom1 = (*ia);                
860 >                mf = fDecomp_->getMassFactorRow(atom1);
861 >                // fg is the force on atom ia due to cutoff group's
862 >                // presence in switching region
863 >                fg = swderiv * d_grp * mf;
864 >                fDecomp_->addForceToAtomRow(atom1, fg);
865 >                if (atomListRow.size() > 1) {
866 >                  if (info_->usesAtomicVirial()) {
867 >                    // find the distance between the atom
868 >                    // and the center of the cutoff group:
869 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
870 >                    stressTensor -= outProduct(dag, fg);
871 >                    if (doHeatFlux_)
872 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
873 >                  }
874 >                }
875 >              }
876 >              for (jb = atomListColumn.begin();
877 >                   jb != atomListColumn.end(); ++jb) {              
878 >                atom2 = (*jb);
879 >                mf = fDecomp_->getMassFactorColumn(atom2);
880 >                // fg is the force on atom jb due to cutoff group's
881 >                // presence in switching region
882 >                fg = -swderiv * d_grp * mf;
883 >                fDecomp_->addForceToAtomColumn(atom2, fg);
884 >
885 >                if (atomListColumn.size() > 1) {
886 >                  if (info_->usesAtomicVirial()) {
887 >                    // find the distance between the atom
888 >                    // and the center of the cutoff group:
889 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
890 >                    stressTensor -= outProduct(dag, fg);
891 >                    if (doHeatFlux_)
892 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
893 >                  }
894 >                }
895 >              }
896 >            }
897 >            //if (!info_->usesAtomicVirial()) {
898 >            //  stressTensor -= outProduct(d_grp, fij);
899 >            //  if (doHeatFlux_)
900 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
901 >            //}
902 >          }
903 >        }
904 >      }
905 >
906 >      if (iLoop == PREPAIR_LOOP) {
907 >        if (info_->requiresPrepair()) {
908 >
909 >          fDecomp_->collectIntermediateData();
910 >
911 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
912 >            fDecomp_->fillSelfData(sdat, atom1);
913 >            interactionMan_->doPreForce(sdat);
914 >          }
915 >
916 >          fDecomp_->distributeIntermediateData();
917 >
918 >        }
919 >      }
920      }
921 <    for (int i=0; i<LR_POT_TYPES;i++){
922 <      lrPot += longRangePotential[i]; //Quick hack
921 >  
922 >    // collects pairwise information
923 >    fDecomp_->collectData();
924 >        
925 >    if (info_->requiresSelfCorrection()) {
926 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
927 >        fDecomp_->fillSelfData(sdat, atom1);
928 >        interactionMan_->doSelfCorrection(sdat);
929 >      }
930      }
931  
932 <    //store the tau and long range potential    
933 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
313 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
314 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
932 >    // collects single-atom information
933 >    fDecomp_->collectSelfData();
934  
935 <    curSnapshot->statData.setTau(tau);
936 <  }
935 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
936 >      *(fDecomp_->getPairwisePotential());
937  
938 +    curSnapshot->setLongRangePotential(longRangePotential);
939 +    
940 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
941 +                                         *(fDecomp_->getExcludedPotential()));
942  
943 +  }
944 +
945 +  
946    void ForceManager::postCalculation() {
947 +
948 +    vector<Perturbation*>::iterator pi;
949 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
950 +      (*pi)->applyPerturbation();
951 +    }
952 +
953      SimInfo::MoleculeIterator mi;
954      Molecule* mol;
955      Molecule::RigidBodyIterator rbIter;
956      RigidBody* rb;
957 <    
957 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
958 >  
959      // collect the atomic forces onto rigid bodies
960 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
961 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
962 <        rb->calcForcesAndTorques();
960 >    
961 >    for (mol = info_->beginMolecule(mi); mol != NULL;
962 >         mol = info_->nextMolecule(mi)) {
963 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
964 >           rb = mol->nextRigidBody(rbIter)) {
965 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
966 >        stressTensor += rbTau;
967        }
968      }
969 +    
970 + #ifdef IS_MPI
971 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
972 +                              MPI::REALTYPE, MPI::SUM);
973 + #endif
974 +    curSnapshot->setStressTensor(stressTensor);
975 +    
976 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
977 +      /*
978 +      RealType vol = curSnapshot->getVolume();
979 +      RealType Elrc(0.0);
980 +      RealType Wlrc(0.0);
981  
982 <  }
982 >      set<AtomType*>::iterator i;
983 >      set<AtomType*>::iterator j;
984 >    
985 >      RealType n_i, n_j;
986 >      RealType rho_i, rho_j;
987 >      pair<RealType, RealType> LRI;
988 >      
989 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
990 >        n_i = RealType(info_->getGlobalCountOfType(*i));
991 >        rho_i = n_i /  vol;
992 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
993 >          n_j = RealType(info_->getGlobalCountOfType(*j));
994 >          rho_j = n_j / vol;
995 >          
996 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
997  
998 < } //end namespace oopse
998 >          Elrc += n_i   * rho_j * LRI.first;
999 >          Wlrc -= rho_i * rho_j * LRI.second;
1000 >        }
1001 >      }
1002 >      Elrc *= 2.0 * NumericConstant::PI;
1003 >      Wlrc *= 2.0 * NumericConstant::PI;
1004 >
1005 >      RealType lrp = curSnapshot->getLongRangePotential();
1006 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1007 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1008 >      curSnapshot->setStressTensor(stressTensor);
1009 >      */
1010 >    
1011 >    }
1012 >  }
1013 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 1879 by gezelter, Sun Jun 16 15:15:42 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines