ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
Revision 1448 by gezelter, Thu Jun 17 14:58:49 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 50 | Line 50
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "UseTheForce/doForces_interface.h"
53 < #define __C
53 > #define __OPENMD_C
54   #include "UseTheForce/DarkSide/fInteractionMap.h"
55   #include "utils/simError.h"
56 < namespace oopse {
56 > #include "primitives/Bond.hpp"
57 > #include "primitives/Bend.hpp"
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60 > namespace OpenMD {
61  
62    void ForceManager::calcForces(bool needPotential, bool needStress) {
63 <
63 >    
64      if (!info_->isFortranInitialized()) {
65        info_->update();
66      }
67 <
67 >    
68      preCalculation();
69      
70      calcShortRangeInteraction();
71  
72      calcLongRangeInteraction(needPotential, needStress);
73  
74 <    postCalculation();
75 <        
74 >    postCalculation(needStress);
75 >    
76    }
77 <
77 >  
78    void ForceManager::preCalculation() {
79      SimInfo::MoleculeIterator mi;
80      Molecule* mol;
# Line 81 | Line 85 | namespace oopse {
85      
86      // forces are zeroed here, before any are accumulated.
87      // NOTE: do not rezero the forces in Fortran.
88 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
88 >    
89 >    for (mol = info_->beginMolecule(mi); mol != NULL;
90 >         mol = info_->nextMolecule(mi)) {
91        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
92          atom->zeroForcesAndTorques();
93        }
94 <        
94 >          
95        //change the positions of atoms which belong to the rigidbodies
96 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
96 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
97 >           rb = mol->nextRigidBody(rbIter)) {
98          rb->zeroForcesAndTorques();
99        }        
100 +          
101      }
102      
103 +    // Zero out the stress tensor
104 +    tau *= 0.0;
105 +    
106    }
107 <
107 >  
108    void ForceManager::calcShortRangeInteraction() {
109      Molecule* mol;
110      RigidBody* rb;
111      Bond* bond;
112      Bend* bend;
113      Torsion* torsion;
114 +    Inversion* inversion;
115      SimInfo::MoleculeIterator mi;
116      Molecule::RigidBodyIterator rbIter;
117      Molecule::BondIterator bondIter;;
118      Molecule::BendIterator  bendIter;
119      Molecule::TorsionIterator  torsionIter;
120 +    Molecule::InversionIterator  inversionIter;
121 +    RealType bondPotential = 0.0;
122 +    RealType bendPotential = 0.0;
123 +    RealType torsionPotential = 0.0;
124 +    RealType inversionPotential = 0.0;
125  
126      //calculate short range interactions    
127 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
127 >    for (mol = info_->beginMolecule(mi); mol != NULL;
128 >         mol = info_->nextMolecule(mi)) {
129  
130        //change the positions of atoms which belong to the rigidbodies
131 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
132 <        rb->updateAtoms();
131 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
132 >           rb = mol->nextRigidBody(rbIter)) {
133 >        rb->updateAtoms();
134        }
135  
136 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
137 <        bond->calcForce();
136 >      for (bond = mol->beginBond(bondIter); bond != NULL;
137 >           bond = mol->nextBond(bondIter)) {
138 >        bond->calcForce();
139 >        bondPotential += bond->getPotential();
140        }
141  
142 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
143 <        bend->calcForce();
142 >      for (bend = mol->beginBend(bendIter); bend != NULL;
143 >           bend = mol->nextBend(bendIter)) {
144 >        
145 >        RealType angle;
146 >        bend->calcForce(angle);
147 >        RealType currBendPot = bend->getPotential();          
148 >        
149 >        bendPotential += bend->getPotential();
150 >        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
151 >        if (i == bendDataSets.end()) {
152 >          BendDataSet dataSet;
153 >          dataSet.prev.angle = dataSet.curr.angle = angle;
154 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
155 >          dataSet.deltaV = 0.0;
156 >          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
157 >        }else {
158 >          i->second.prev.angle = i->second.curr.angle;
159 >          i->second.prev.potential = i->second.curr.potential;
160 >          i->second.curr.angle = angle;
161 >          i->second.curr.potential = currBendPot;
162 >          i->second.deltaV =  fabs(i->second.curr.potential -  
163 >                                   i->second.prev.potential);
164 >        }
165        }
166 +      
167 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
168 +           torsion = mol->nextTorsion(torsionIter)) {
169 +        RealType angle;
170 +        torsion->calcForce(angle);
171 +        RealType currTorsionPot = torsion->getPotential();
172 +        torsionPotential += torsion->getPotential();
173 +        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
174 +        if (i == torsionDataSets.end()) {
175 +          TorsionDataSet dataSet;
176 +          dataSet.prev.angle = dataSet.curr.angle = angle;
177 +          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
178 +          dataSet.deltaV = 0.0;
179 +          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
180 +        }else {
181 +          i->second.prev.angle = i->second.curr.angle;
182 +          i->second.prev.potential = i->second.curr.potential;
183 +          i->second.curr.angle = angle;
184 +          i->second.curr.potential = currTorsionPot;
185 +          i->second.deltaV =  fabs(i->second.curr.potential -  
186 +                                   i->second.prev.potential);
187 +        }      
188 +      }      
189  
190 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
191 <        torsion->calcForce();
192 <      }
193 <
190 >      for (inversion = mol->beginInversion(inversionIter);
191 >           inversion != NULL;
192 >           inversion = mol->nextInversion(inversionIter)) {
193 >        RealType angle;
194 >        inversion->calcForce(angle);
195 >        RealType currInversionPot = inversion->getPotential();
196 >        inversionPotential += inversion->getPotential();
197 >        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
198 >        if (i == inversionDataSets.end()) {
199 >          InversionDataSet dataSet;
200 >          dataSet.prev.angle = dataSet.curr.angle = angle;
201 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
202 >          dataSet.deltaV = 0.0;
203 >          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
204 >        }else {
205 >          i->second.prev.angle = i->second.curr.angle;
206 >          i->second.prev.potential = i->second.curr.potential;
207 >          i->second.curr.angle = angle;
208 >          i->second.curr.potential = currInversionPot;
209 >          i->second.deltaV =  fabs(i->second.curr.potential -  
210 >                                   i->second.prev.potential);
211 >        }      
212 >      }      
213      }
214      
215 <
216 <    double bondPotential = 0.0;
133 <    double bendPotential = 0.0;
134 <    double torsionPotential = 0.0;
135 <
136 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
137 <
138 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
139 <          bondPotential += bond->getPotential();
140 <      }
141 <
142 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
143 <          bendPotential += bend->getPotential();
144 <      }
145 <
146 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
147 <          torsionPotential += torsion->getPotential();
148 <      }
149 <
150 <    }    
151 <
152 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
215 >    RealType  shortRangePotential = bondPotential + bendPotential +
216 >      torsionPotential +  inversionPotential;    
217      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
218      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
219      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
220      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
221      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
222 +    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
223      
224    }
225 <
226 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
225 >  
226 >  void ForceManager::calcLongRangeInteraction(bool needPotential,
227 >                                              bool needStress) {
228      Snapshot* curSnapshot;
229      DataStorage* config;
230 <    double* frc;
231 <    double* pos;
232 <    double* trq;
233 <    double* A;
234 <    double* electroFrame;
235 <    double* rc;
230 >    RealType* frc;
231 >    RealType* pos;
232 >    RealType* trq;
233 >    RealType* A;
234 >    RealType* electroFrame;
235 >    RealType* rc;
236 >    RealType* particlePot;
237      
238      //get current snapshot from SimInfo
239      curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
240 <
240 >    
241      //get array pointers
242      config = &(curSnapshot->atomData);
243      frc = config->getArrayPointer(DataStorage::dslForce);
# Line 178 | Line 245 | namespace oopse {
245      trq = config->getArrayPointer(DataStorage::dslTorque);
246      A   = config->getArrayPointer(DataStorage::dslAmat);
247      electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
248 +    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
249  
250      //calculate the center of mass of cutoff group
251      SimInfo::MoleculeIterator mi;
# Line 186 | Line 254 | namespace oopse {
254      CutoffGroup* cg;
255      Vector3d com;
256      std::vector<Vector3d> rcGroup;
257 <
257 >    
258      if(info_->getNCutoffGroups() > 0){
259 <
260 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
261 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
259 >      
260 >      for (mol = info_->beginMolecule(mi); mol != NULL;
261 >           mol = info_->nextMolecule(mi)) {
262 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
263 >            cg = mol->nextCutoffGroup(ci)) {
264            cg->getCOM(com);
265            rcGroup.push_back(com);
266          }
# Line 198 | Line 268 | namespace oopse {
268        
269        rc = rcGroup[0].getArrayPointer();
270      } else {
271 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
271 >      // center of mass of the group is the same as position of the atom  
272 >      // if cutoff group does not exist
273        rc = pos;
274      }
204  
205    //initialize data before passing to fortran
206    double longRangePotential[LR_POT_TYPES];
207    double lrPot = 0.0;
275      
276 <    Mat3x3d tau;
276 >    //initialize data before passing to fortran
277 >    RealType longRangePotential[LR_POT_TYPES];
278 >    RealType lrPot = 0.0;
279 >    Vector3d totalDipole;
280      short int passedCalcPot = needPotential;
281      short int passedCalcStress = needStress;
282      int isError = 0;
# Line 214 | Line 284 | namespace oopse {
284      for (int i=0; i<LR_POT_TYPES;i++){
285        longRangePotential[i]=0.0; //Initialize array
286      }
287 <
288 <
289 <
290 <    doForceLoop( pos,
291 <                 rc,
292 <                 A,
293 <                 electroFrame,
294 <                 frc,
295 <                 trq,
296 <                 tau.getArrayPointer(),
297 <                 longRangePotential,
298 <                 &passedCalcPot,
299 <                 &passedCalcStress,
300 <                 &isError );
231 <
287 >    
288 >    doForceLoop(pos,
289 >                rc,
290 >                A,
291 >                electroFrame,
292 >                frc,
293 >                trq,
294 >                tau.getArrayPointer(),
295 >                longRangePotential,
296 >                particlePot,
297 >                &passedCalcPot,
298 >                &passedCalcStress,
299 >                &isError );
300 >    
301      if( isError ){
302        sprintf( painCave.errMsg,
303                 "Error returned from the fortran force calculation.\n" );
# Line 238 | Line 307 | namespace oopse {
307      for (int i=0; i<LR_POT_TYPES;i++){
308        lrPot += longRangePotential[i]; //Quick hack
309      }
310 <
310 >    
311 >    // grab the simulation box dipole moment if specified
312 >    if (info_->getCalcBoxDipole()){
313 >      getAccumulatedBoxDipole(totalDipole.getArrayPointer());
314 >      
315 >      curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
316 >      curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
317 >      curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
318 >    }
319 >    
320      //store the tau and long range potential    
321      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
322 <    //  curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
323 <    curSnapshot->statData.setTau(tau);
322 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
323 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
324    }
325  
326 <
327 <  void ForceManager::postCalculation() {
326 >  
327 >  void ForceManager::postCalculation(bool needStress) {
328      SimInfo::MoleculeIterator mi;
329      Molecule* mol;
330      Molecule::RigidBodyIterator rbIter;
331      RigidBody* rb;
332 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
333      
334      // collect the atomic forces onto rigid bodies
335 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
336 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
337 <        rb->calcForcesAndTorques();
335 >    
336 >    for (mol = info_->beginMolecule(mi); mol != NULL;
337 >         mol = info_->nextMolecule(mi)) {
338 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
339 >           rb = mol->nextRigidBody(rbIter)) {
340 >        if (needStress) {          
341 >          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
342 >          tau += rbTau;
343 >        } else{
344 >          rb->calcForcesAndTorques();
345 >        }
346        }
347      }
348  
349 +    if (needStress) {
350 + #ifdef IS_MPI
351 +      Mat3x3d tmpTau(tau);
352 +      MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
353 +                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
354 + #endif
355 +      curSnapshot->statData.setTau(tau);
356 +    }
357    }
358  
359 < } //end namespace oopse
359 > } //end namespace OpenMD

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
Revision 1448 by gezelter, Thu Jun 17 14:58:49 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines