ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53   #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
54   #include "utils/simError.h"
55   #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57   #include "primitives/Torsion.hpp"
58   #include "primitives/Inversion.hpp"
59 + #include "nonbonded/NonBondedInteraction.hpp"
60 + #include "perturbations/ElectricField.hpp"
61 + #include "parallel/ForceMatrixDecomposition.hpp"
62 +
63 + #include <cstdio>
64 + #include <iostream>
65 + #include <iomanip>
66 +
67 + using namespace std;
68   namespace OpenMD {
69 +  
70 +  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 +                                               initialized_(false) {
72 +    forceField_ = info_->getForceField();
73 +    interactionMan_ = new InteractionManager();
74 +    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 +    thermo = new Thermo(info_);
76 +  }
77  
78 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80      
81 <    if (!info_->isFortranInitialized()) {
82 <      info_->update();
83 <    }
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85 >  }
86 >  
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
102 >   *                        SHIFTED_POTENTIAL, or EWALD_FULL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120      
121 <    preCalculation();
121 >    Globals* simParams_ = info_->getSimParams();
122 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 >    int mdFileVersion;
124 >    rCut_ = 0.0; //Needs a value for a later max() call;  
125      
126 <    calcShortRangeInteraction();
126 >    if (simParams_->haveMDfileVersion())
127 >      mdFileVersion = simParams_->getMDfileVersion();
128 >    else
129 >      mdFileVersion = 0;
130 >  
131 >    // We need the list of simulated atom types to figure out cutoffs
132 >    // as well as long range corrections.
133  
134 <    calcLongRangeInteraction(needPotential, needStress);
134 >    set<AtomType*>::iterator i;
135 >    set<AtomType*> atomTypes_;
136 >    atomTypes_ = info_->getSimulatedAtomTypes();
137  
138 <    postCalculation(needStress);
138 >    if (simParams_->haveCutoffRadius()) {
139 >      rCut_ = simParams_->getCutoffRadius();
140 >    } else {      
141 >      if (info_->usesElectrostaticAtoms()) {
142 >        sprintf(painCave.errMsg,
143 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 >                "\tOpenMD will use a default value of 12.0 angstroms"
145 >                "\tfor the cutoffRadius.\n");
146 >        painCave.isFatal = 0;
147 >        painCave.severity = OPENMD_INFO;
148 >        simError();
149 >        rCut_ = 12.0;
150 >      } else {
151 >        RealType thisCut;
152 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 >          rCut_ = max(thisCut, rCut_);
155 >        }
156 >        sprintf(painCave.errMsg,
157 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 >                "\tOpenMD will use %lf angstroms.\n",
159 >                rCut_);
160 >        painCave.isFatal = 0;
161 >        painCave.severity = OPENMD_INFO;
162 >        simError();
163 >      }
164 >    }
165 >
166 >    fDecomp_->setUserCutoff(rCut_);
167 >    interactionMan_->setCutoffRadius(rCut_);
168 >
169 >    map<string, CutoffMethod> stringToCutoffMethod;
170 >    stringToCutoffMethod["HARD"] = HARD;
171 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
175 >    stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL;
176 >  
177 >    if (simParams_->haveCutoffMethod()) {
178 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
179 >      map<string, CutoffMethod>::iterator i;
180 >      i = stringToCutoffMethod.find(cutMeth);
181 >      if (i == stringToCutoffMethod.end()) {
182 >        sprintf(painCave.errMsg,
183 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
184 >                "\tShould be one of: "
185 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
186 >                "\tSHIFTED_FORCE, or EWALD_FULL\n",
187 >                cutMeth.c_str());
188 >        painCave.isFatal = 1;
189 >        painCave.severity = OPENMD_ERROR;
190 >        simError();
191 >      } else {
192 >        cutoffMethod_ = i->second;
193 >      }
194 >    } else {
195 >      if (mdFileVersion > 1) {
196 >        sprintf(painCave.errMsg,
197 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
198 >                "\tOpenMD will use SHIFTED_FORCE.\n");
199 >        painCave.isFatal = 0;
200 >        painCave.severity = OPENMD_INFO;
201 >        simError();
202 >        cutoffMethod_ = SHIFTED_FORCE;        
203 >      } else {
204 >        // handle the case where the old file version was in play
205 >        // (there should be no cutoffMethod, so we have to deduce it
206 >        // from other data).        
207 >
208 >        sprintf(painCave.errMsg,
209 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
210 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
211 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
212 >                "\tbehavior of the older (version 1) code.  To remove this\n"
213 >                "\twarning, add an explicit cutoffMethod and change the top\n"
214 >                "\tof the file so that it begins with <OpenMD version=2>\n");
215 >        painCave.isFatal = 0;
216 >        painCave.severity = OPENMD_WARNING;
217 >        simError();            
218 >                
219 >        // The old file version tethered the shifting behavior to the
220 >        // electrostaticSummationMethod keyword.
221 >        
222 >        if (simParams_->haveElectrostaticSummationMethod()) {
223 >          string myMethod = simParams_->getElectrostaticSummationMethod();
224 >          toUpper(myMethod);
225 >        
226 >          if (myMethod == "SHIFTED_POTENTIAL") {
227 >            cutoffMethod_ = SHIFTED_POTENTIAL;
228 >          } else if (myMethod == "SHIFTED_FORCE") {
229 >            cutoffMethod_ = SHIFTED_FORCE;
230 >          } else if (myMethod == "TAYLOR_SHIFTED") {
231 >            cutoffMethod_ = TAYLOR_SHIFTED;
232 >          } else if (myMethod == "EWALD_FULL") {
233 >            cutoffMethod_ = EWALD_FULL;
234 >          }
235 >        
236 >          if (simParams_->haveSwitchingRadius())
237 >            rSwitch_ = simParams_->getSwitchingRadius();
238 >
239 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
240 >              myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") {
241 >            if (simParams_->haveSwitchingRadius()){
242 >              sprintf(painCave.errMsg,
243 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
244 >                      "\tA value was set for the switchingRadius\n"
245 >                      "\teven though the electrostaticSummationMethod was\n"
246 >                      "\tset to %s\n", myMethod.c_str());
247 >              painCave.severity = OPENMD_WARNING;
248 >              painCave.isFatal = 1;
249 >              simError();            
250 >            }
251 >          }
252 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
253 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
254 >              sprintf(painCave.errMsg,
255 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
256 >                      "\tcutoffRadius and switchingRadius are set to the\n"
257 >                      "\tsame value.  OpenMD will use shifted force\n"
258 >                      "\tpotentials instead of switching functions.\n");
259 >              painCave.isFatal = 0;
260 >              painCave.severity = OPENMD_WARNING;
261 >              simError();            
262 >            } else {
263 >              cutoffMethod_ = SHIFTED_POTENTIAL;
264 >              sprintf(painCave.errMsg,
265 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
266 >                      "\tcutoffRadius and switchingRadius are set to the\n"
267 >                      "\tsame value.  OpenMD will use shifted potentials\n"
268 >                      "\tinstead of switching functions.\n");
269 >              painCave.isFatal = 0;
270 >              painCave.severity = OPENMD_WARNING;
271 >              simError();            
272 >            }
273 >          }
274 >        }
275 >      }
276 >    }
277 >
278 >    map<string, CutoffPolicy> stringToCutoffPolicy;
279 >    stringToCutoffPolicy["MIX"] = MIX;
280 >    stringToCutoffPolicy["MAX"] = MAX;
281 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
282 >
283 >    string cutPolicy;
284 >    if (forceFieldOptions_.haveCutoffPolicy()){
285 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
286 >    }else if (simParams_->haveCutoffPolicy()) {
287 >      cutPolicy = simParams_->getCutoffPolicy();
288 >    }
289 >
290 >    if (!cutPolicy.empty()){
291 >      toUpper(cutPolicy);
292 >      map<string, CutoffPolicy>::iterator i;
293 >      i = stringToCutoffPolicy.find(cutPolicy);
294 >
295 >      if (i == stringToCutoffPolicy.end()) {
296 >        sprintf(painCave.errMsg,
297 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
298 >                "\tShould be one of: "
299 >                "MIX, MAX, or TRADITIONAL\n",
300 >                cutPolicy.c_str());
301 >        painCave.isFatal = 1;
302 >        painCave.severity = OPENMD_ERROR;
303 >        simError();
304 >      } else {
305 >        cutoffPolicy_ = i->second;
306 >      }
307 >    } else {
308 >      sprintf(painCave.errMsg,
309 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
310 >              "\tOpenMD will use TRADITIONAL.\n");
311 >      painCave.isFatal = 0;
312 >      painCave.severity = OPENMD_INFO;
313 >      simError();
314 >      cutoffPolicy_ = TRADITIONAL;        
315 >    }
316 >
317 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
318 >        
319 >    // create the switching function object:
320 >
321 >    switcher_ = new SwitchingFunction();
322 >  
323 >    if (cutoffMethod_ == SWITCHED) {
324 >      if (simParams_->haveSwitchingRadius()) {
325 >        rSwitch_ = simParams_->getSwitchingRadius();
326 >        if (rSwitch_ > rCut_) {        
327 >          sprintf(painCave.errMsg,
328 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
329 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
330 >          painCave.isFatal = 1;
331 >          painCave.severity = OPENMD_ERROR;
332 >          simError();
333 >        }
334 >      } else {      
335 >        rSwitch_ = 0.85 * rCut_;
336 >        sprintf(painCave.errMsg,
337 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
338 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
339 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
340 >        painCave.isFatal = 0;
341 >        painCave.severity = OPENMD_WARNING;
342 >        simError();
343 >      }
344 >    } else {
345 >      if (mdFileVersion > 1) {
346 >        // throw an error if we define a switching radius and don't need one.
347 >        // older file versions should not do this.
348 >        if (simParams_->haveSwitchingRadius()) {
349 >          map<string, CutoffMethod>::const_iterator it;
350 >          string theMeth;
351 >          for (it = stringToCutoffMethod.begin();
352 >               it != stringToCutoffMethod.end(); ++it) {
353 >            if (it->second == cutoffMethod_) {
354 >              theMeth = it->first;
355 >              break;
356 >            }
357 >          }
358 >          sprintf(painCave.errMsg,
359 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
360 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
361 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
362 >          painCave.isFatal = 0;
363 >          painCave.severity = OPENMD_WARNING;
364 >          simError();
365 >        }
366 >      }
367 >      rSwitch_ = rCut_;
368 >    }
369      
370 +    // Default to cubic switching function.
371 +    sft_ = cubic;
372 +    if (simParams_->haveSwitchingFunctionType()) {
373 +      string funcType = simParams_->getSwitchingFunctionType();
374 +      toUpper(funcType);
375 +      if (funcType == "CUBIC") {
376 +        sft_ = cubic;
377 +      } else {
378 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
379 +          sft_ = fifth_order_poly;
380 +        } else {
381 +          // throw error        
382 +          sprintf( painCave.errMsg,
383 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
384 +                   "\tswitchingFunctionType must be one of: "
385 +                   "\"cubic\" or \"fifth_order_polynomial\".",
386 +                   funcType.c_str() );
387 +          painCave.isFatal = 1;
388 +          painCave.severity = OPENMD_ERROR;
389 +          simError();
390 +        }          
391 +      }
392 +    }
393 +    switcher_->setSwitchType(sft_);
394 +    switcher_->setSwitch(rSwitch_, rCut_);
395    }
396 +
397 +
398 +
399    
400 +  void ForceManager::initialize() {
401 +
402 +    if (!info_->isTopologyDone()) {
403 +
404 +      info_->update();
405 +      interactionMan_->setSimInfo(info_);
406 +      interactionMan_->initialize();
407 +
408 +      // We want to delay the cutoffs until after the interaction
409 +      // manager has set up the atom-atom interactions so that we can
410 +      // query them for suggested cutoff values
411 +      setupCutoffs();
412 +
413 +      info_->prepareTopology();      
414 +
415 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
416 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
417 +      if (doHeatFlux_) doParticlePot_ = true;
418 +
419 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
420 +      doSitePotential_ = info_->getSimParams()->getOutputSitePotential();
421 +  
422 +    }
423 +
424 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
425 +    
426 +    // Force fields can set options on how to scale van der Waals and
427 +    // electrostatic interactions for atoms connected via bonds, bends
428 +    // and torsions in this case the topological distance between
429 +    // atoms is:
430 +    // 0 = topologically unconnected
431 +    // 1 = bonded together
432 +    // 2 = connected via a bend
433 +    // 3 = connected via a torsion
434 +    
435 +    vdwScale_.reserve(4);
436 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
437 +
438 +    electrostaticScale_.reserve(4);
439 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
440 +
441 +    vdwScale_[0] = 1.0;
442 +    vdwScale_[1] = fopts.getvdw12scale();
443 +    vdwScale_[2] = fopts.getvdw13scale();
444 +    vdwScale_[3] = fopts.getvdw14scale();
445 +    
446 +    electrostaticScale_[0] = 1.0;
447 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
448 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
449 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
450 +    
451 +    if (info_->getSimParams()->haveElectricField()) {
452 +      ElectricField* eField = new ElectricField(info_);
453 +      perturbations_.push_back(eField);
454 +    }
455 +
456 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
457 +    
458 +    fDecomp_->distributeInitialData();
459 +    
460 +    initialized_ = true;
461 +    
462 +  }
463 +  
464 +  void ForceManager::calcForces() {
465 +    
466 +    if (!initialized_) initialize();
467 +    
468 +    preCalculation();  
469 +    shortRangeInteractions();
470 +    longRangeInteractions();
471 +    postCalculation();    
472 +  }
473 +  
474    void ForceManager::preCalculation() {
475      SimInfo::MoleculeIterator mi;
476      Molecule* mol;
# Line 82 | Line 478 | namespace OpenMD {
478      Atom* atom;
479      Molecule::RigidBodyIterator rbIter;
480      RigidBody* rb;
481 +    Molecule::CutoffGroupIterator ci;
482 +    CutoffGroup* cg;
483      
484 <    // forces are zeroed here, before any are accumulated.
485 <    // NOTE: do not rezero the forces in Fortran.
484 >    // forces and potentials are zeroed here, before any are
485 >    // accumulated.
486      
487 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
488 +
489 +    snap->setBondPotential(0.0);
490 +    snap->setBendPotential(0.0);
491 +    snap->setTorsionPotential(0.0);
492 +    snap->setInversionPotential(0.0);
493 +
494 +    potVec zeroPot(0.0);
495 +    snap->setLongRangePotential(zeroPot);
496 +    snap->setExcludedPotentials(zeroPot);
497 +
498 +    snap->setRestraintPotential(0.0);
499 +    snap->setRawPotential(0.0);
500 +
501      for (mol = info_->beginMolecule(mi); mol != NULL;
502           mol = info_->nextMolecule(mi)) {
503 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
503 >      for(atom = mol->beginAtom(ai); atom != NULL;
504 >          atom = mol->nextAtom(ai)) {
505          atom->zeroForcesAndTorques();
506        }
507 <          
507 >      
508        //change the positions of atoms which belong to the rigidbodies
509        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
510             rb = mol->nextRigidBody(rbIter)) {
511          rb->zeroForcesAndTorques();
512        }        
513 <          
513 >      
514 >      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
515 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
516 >            cg = mol->nextCutoffGroup(ci)) {
517 >          //calculate the center of mass of cutoff group
518 >          cg->updateCOM();
519 >        }
520 >      }      
521      }
522      
523      // Zero out the stress tensor
524 <    tau *= 0.0;
525 <    
524 >    stressTensor *= 0.0;
525 >    // Zero out the heatFlux
526 >    fDecomp_->setHeatFlux( Vector3d(0.0) );    
527    }
528    
529 <  void ForceManager::calcShortRangeInteraction() {
529 >  void ForceManager::shortRangeInteractions() {
530      Molecule* mol;
531      RigidBody* rb;
532      Bond* bond;
# Line 135 | Line 556 | namespace OpenMD {
556  
557        for (bond = mol->beginBond(bondIter); bond != NULL;
558             bond = mol->nextBond(bondIter)) {
559 <        bond->calcForce();
559 >        bond->calcForce(doParticlePot_);
560          bondPotential += bond->getPotential();
561        }
562  
# Line 143 | Line 564 | namespace OpenMD {
564             bend = mol->nextBend(bendIter)) {
565          
566          RealType angle;
567 <        bend->calcForce(angle);
567 >        bend->calcForce(angle, doParticlePot_);
568          RealType currBendPot = bend->getPotential();          
569 +        
570          bendPotential += bend->getPotential();
571 <        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
571 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
572          if (i == bendDataSets.end()) {
573            BendDataSet dataSet;
574            dataSet.prev.angle = dataSet.curr.angle = angle;
575            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
576            dataSet.deltaV = 0.0;
577 <          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
577 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
578 >                                                                  dataSet));
579          }else {
580            i->second.prev.angle = i->second.curr.angle;
581            i->second.prev.potential = i->second.curr.potential;
# Line 166 | Line 589 | namespace OpenMD {
589        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
590             torsion = mol->nextTorsion(torsionIter)) {
591          RealType angle;
592 <        torsion->calcForce(angle);
592 >        torsion->calcForce(angle, doParticlePot_);
593          RealType currTorsionPot = torsion->getPotential();
594          torsionPotential += torsion->getPotential();
595 <        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
595 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
596          if (i == torsionDataSets.end()) {
597            TorsionDataSet dataSet;
598            dataSet.prev.angle = dataSet.curr.angle = angle;
599            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
600            dataSet.deltaV = 0.0;
601 <          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
601 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
602          }else {
603            i->second.prev.angle = i->second.curr.angle;
604            i->second.prev.potential = i->second.curr.potential;
# Line 185 | Line 608 | namespace OpenMD {
608                                     i->second.prev.potential);
609          }      
610        }      
611 <
611 >      
612        for (inversion = mol->beginInversion(inversionIter);
613             inversion != NULL;
614             inversion = mol->nextInversion(inversionIter)) {
615          RealType angle;
616 <        inversion->calcForce(angle);
616 >        inversion->calcForce(angle, doParticlePot_);
617          RealType currInversionPot = inversion->getPotential();
618          inversionPotential += inversion->getPotential();
619 <        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
619 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
620          if (i == inversionDataSets.end()) {
621            InversionDataSet dataSet;
622            dataSet.prev.angle = dataSet.curr.angle = angle;
623            dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
624            dataSet.deltaV = 0.0;
625 <          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
625 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
626          }else {
627            i->second.prev.angle = i->second.curr.angle;
628            i->second.prev.potential = i->second.curr.potential;
# Line 210 | Line 633 | namespace OpenMD {
633          }      
634        }      
635      }
636 <    
637 <    RealType  shortRangePotential = bondPotential + bendPotential +
638 <      torsionPotential +  inversionPotential;    
636 >
637 > #ifdef IS_MPI
638 >    // Collect from all nodes.  This should eventually be moved into a
639 >    // SystemDecomposition, but this is a better place than in
640 >    // Thermo to do the collection.
641 >
642 >    MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE,
643 >                  MPI_SUM, MPI_COMM_WORLD);
644 >    MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE,
645 >                  MPI_SUM, MPI_COMM_WORLD);
646 >    MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1,
647 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
648 >    MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1,
649 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
650 > #endif
651 >
652      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
653 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
654 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
655 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
656 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
657 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
653 >
654 >    curSnapshot->setBondPotential(bondPotential);
655 >    curSnapshot->setBendPotential(bendPotential);
656 >    curSnapshot->setTorsionPotential(torsionPotential);
657 >    curSnapshot->setInversionPotential(inversionPotential);
658      
659 +    // RealType shortRangePotential = bondPotential + bendPotential +
660 +    //   torsionPotential +  inversionPotential;    
661 +
662 +    // curSnapshot->setShortRangePotential(shortRangePotential);
663    }
664    
665 <  void ForceManager::calcLongRangeInteraction(bool needPotential,
226 <                                              bool needStress) {
227 <    Snapshot* curSnapshot;
228 <    DataStorage* config;
229 <    RealType* frc;
230 <    RealType* pos;
231 <    RealType* trq;
232 <    RealType* A;
233 <    RealType* electroFrame;
234 <    RealType* rc;
235 <    RealType* particlePot;
236 <    
237 <    //get current snapshot from SimInfo
238 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
239 <    
240 <    //get array pointers
241 <    config = &(curSnapshot->atomData);
242 <    frc = config->getArrayPointer(DataStorage::dslForce);
243 <    pos = config->getArrayPointer(DataStorage::dslPosition);
244 <    trq = config->getArrayPointer(DataStorage::dslTorque);
245 <    A   = config->getArrayPointer(DataStorage::dslAmat);
246 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
247 <    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
665 >  void ForceManager::longRangeInteractions() {
666  
667 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
668 +    DataStorage* config = &(curSnapshot->atomData);
669 +    DataStorage* cgConfig = &(curSnapshot->cgData);
670 +
671 +
672      //calculate the center of mass of cutoff group
673 +
674      SimInfo::MoleculeIterator mi;
675      Molecule* mol;
676      Molecule::CutoffGroupIterator ci;
677      CutoffGroup* cg;
678 <    Vector3d com;
679 <    std::vector<Vector3d> rcGroup;
256 <    
257 <    if(info_->getNCutoffGroups() > 0){
258 <      
678 >
679 >    if(info_->getNCutoffGroups() > 0){      
680        for (mol = info_->beginMolecule(mi); mol != NULL;
681             mol = info_->nextMolecule(mi)) {
682          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
683              cg = mol->nextCutoffGroup(ci)) {
684 <          cg->getCOM(com);
264 <          rcGroup.push_back(com);
684 >          cg->updateCOM();
685          }
686 <      }// end for (mol)
267 <      
268 <      rc = rcGroup[0].getArrayPointer();
686 >      }      
687      } else {
688        // center of mass of the group is the same as position of the atom  
689        // if cutoff group does not exist
690 <      rc = pos;
690 >      cgConfig->position = config->position;
691 >      cgConfig->velocity = config->velocity;
692      }
693 +
694 +    fDecomp_->zeroWorkArrays();
695 +    fDecomp_->distributeData();
696      
697 <    //initialize data before passing to fortran
698 <    RealType longRangePotential[LR_POT_TYPES];
699 <    RealType lrPot = 0.0;
700 <    Vector3d totalDipole;
701 <    short int passedCalcPot = needPotential;
702 <    short int passedCalcStress = needStress;
703 <    int isError = 0;
697 >    int cg1, cg2, atom1, atom2, topoDist;
698 >    Vector3d d_grp, dag, d, gvel2, vel2;
699 >    RealType rgrpsq, rgrp, r2, r;
700 >    RealType electroMult, vdwMult;
701 >    RealType vij;
702 >    Vector3d fij, fg, f1;
703 >    tuple3<RealType, RealType, RealType> cuts;
704 >    RealType rCut, rCutSq, rListSq;
705 >    bool in_switching_region;
706 >    RealType sw, dswdr, swderiv;
707 >    vector<int> atomListColumn, atomListRow;
708 >    InteractionData idat;
709 >    SelfData sdat;
710 >    RealType mf;
711 >    RealType vpair;
712 >    RealType dVdFQ1(0.0);
713 >    RealType dVdFQ2(0.0);
714 >    potVec longRangePotential(0.0);
715 >    RealType reciprocalPotential(0.0);
716 >    potVec workPot(0.0);
717 >    potVec exPot(0.0);
718 >    Vector3d eField1(0.0);
719 >    Vector3d eField2(0.0);
720 >    RealType sPot1(0.0);
721 >    RealType sPot2(0.0);
722 >                  
723 >    vector<int>::iterator ia, jb;
724  
725 <    for (int i=0; i<LR_POT_TYPES;i++){
284 <      longRangePotential[i]=0.0; //Initialize array
285 <    }
725 >    int loopStart, loopEnd;
726      
727 <    doForceLoop(pos,
728 <                rc,
729 <                A,
730 <                electroFrame,
731 <                frc,
732 <                trq,
733 <                tau.getArrayPointer(),
734 <                longRangePotential,
735 <                particlePot,
736 <                &passedCalcPot,
737 <                &passedCalcStress,
738 <                &isError );
727 >    idat.rcut = &rCut;
728 >    idat.vdwMult = &vdwMult;
729 >    idat.electroMult = &electroMult;
730 >    idat.pot = &workPot;
731 >    idat.excludedPot = &exPot;
732 >    sdat.pot = fDecomp_->getEmbeddingPotential();
733 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
734 >    idat.vpair = &vpair;
735 >    idat.dVdFQ1 = &dVdFQ1;
736 >    idat.dVdFQ2 = &dVdFQ2;
737 >    idat.eField1 = &eField1;
738 >    idat.eField2 = &eField2;
739 >    idat.sPot1 = &sPot1;
740 >    idat.sPot2 = &sPot2;
741 >    idat.f1 = &f1;
742 >    idat.sw = &sw;
743 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
744 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
745 >    idat.doParticlePot = doParticlePot_;
746 >    idat.doElectricField = doElectricField_;
747 >    idat.doSitePotential = doSitePotential_;
748 >    sdat.doParticlePot = doParticlePot_;
749      
750 <    if( isError ){
751 <      sprintf( painCave.errMsg,
752 <               "Error returned from the fortran force calculation.\n" );
753 <      painCave.isFatal = 1;
754 <      simError();
750 >    loopEnd = PAIR_LOOP;
751 >    if (info_->requiresPrepair() ) {
752 >      loopStart = PREPAIR_LOOP;
753 >    } else {
754 >      loopStart = PAIR_LOOP;
755      }
756 <    for (int i=0; i<LR_POT_TYPES;i++){
307 <      lrPot += longRangePotential[i]; //Quick hack
308 <    }
756 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
757      
758 <    // grab the simulation box dipole moment if specified
759 <    if (info_->getCalcBoxDipole()){
760 <      getAccumulatedBoxDipole(totalDipole.getArrayPointer());
761 <      
762 <      curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
763 <      curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
764 <      curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
758 >      if (iLoop == loopStart) {
759 >        bool update_nlist = fDecomp_->checkNeighborList();
760 >        if (update_nlist) {
761 >          if (!usePeriodicBoundaryConditions_)
762 >            Mat3x3d bbox = thermo->getBoundingBox();
763 >          fDecomp_->buildNeighborList(neighborList_);
764 >        }
765 >      }
766 >
767 >      for (vector<pair<int, int> >::iterator it = neighborList_.begin();
768 >             it != neighborList_.end(); ++it) {
769 >                
770 >        cg1 = (*it).first;
771 >        cg2 = (*it).second;
772 >        
773 >        fDecomp_->getGroupCutoffs(cg1, cg2, rCut, rCutSq, rListSq);
774 >
775 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
776 >
777 >        // already wrapped in the getIntergroupVector call:
778 >        // curSnapshot->wrapVector(d_grp);        
779 >        rgrpsq = d_grp.lengthSquare();
780 >
781 >        if (rgrpsq < rCutSq) {
782 >          if (iLoop == PAIR_LOOP) {
783 >            vij = 0.0;
784 >            fij.zero();
785 >            eField1.zero();
786 >            eField2.zero();
787 >            sPot1 = 0.0;
788 >            sPot2 = 0.0;
789 >          }
790 >          
791 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
792 >                                                     rgrp);
793 >
794 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
795 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
796 >
797 >          if (doHeatFlux_)
798 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
799 >
800 >          for (ia = atomListRow.begin();
801 >               ia != atomListRow.end(); ++ia) {            
802 >            atom1 = (*ia);
803 >
804 >            for (jb = atomListColumn.begin();
805 >                 jb != atomListColumn.end(); ++jb) {              
806 >              atom2 = (*jb);
807 >
808 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
809 >
810 >                vpair = 0.0;
811 >                workPot = 0.0;
812 >                exPot = 0.0;
813 >                f1.zero();
814 >                dVdFQ1 = 0.0;
815 >                dVdFQ2 = 0.0;
816 >
817 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
818 >
819 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
820 >                vdwMult = vdwScale_[topoDist];
821 >                electroMult = electrostaticScale_[topoDist];
822 >
823 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
824 >                  idat.d = &d_grp;
825 >                  idat.r2 = &rgrpsq;
826 >                  if (doHeatFlux_)
827 >                    vel2 = gvel2;
828 >                } else {
829 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
830 >                  curSnapshot->wrapVector( d );
831 >                  r2 = d.lengthSquare();
832 >                  idat.d = &d;
833 >                  idat.r2 = &r2;
834 >                  if (doHeatFlux_)
835 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
836 >                }
837 >              
838 >                r = sqrt( *(idat.r2) );
839 >                idat.rij = &r;
840 >
841 >                if (iLoop == PREPAIR_LOOP) {
842 >                  interactionMan_->doPrePair(idat);
843 >                } else {
844 >                  interactionMan_->doPair(idat);
845 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
846 >                  vij += vpair;
847 >                  fij += f1;
848 >                  stressTensor -= outProduct( *(idat.d), f1);
849 >                  if (doHeatFlux_)
850 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
851 >                }
852 >              }
853 >            }
854 >          }
855 >
856 >          if (iLoop == PAIR_LOOP) {
857 >            if (in_switching_region) {
858 >              swderiv = vij * dswdr / rgrp;
859 >              fg = swderiv * d_grp;
860 >              fij += fg;
861 >
862 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
863 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
864 >                                            atomListColumn[0],
865 >                                            cg1, cg2)) {
866 >                  stressTensor -= outProduct( *(idat.d), fg);
867 >                  if (doHeatFlux_)
868 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
869 >                }                
870 >              }
871 >          
872 >              for (ia = atomListRow.begin();
873 >                   ia != atomListRow.end(); ++ia) {            
874 >                atom1 = (*ia);                
875 >                mf = fDecomp_->getMassFactorRow(atom1);
876 >                // fg is the force on atom ia due to cutoff group's
877 >                // presence in switching region
878 >                fg = swderiv * d_grp * mf;
879 >                fDecomp_->addForceToAtomRow(atom1, fg);
880 >                if (atomListRow.size() > 1) {
881 >                  if (info_->usesAtomicVirial()) {
882 >                    // find the distance between the atom
883 >                    // and the center of the cutoff group:
884 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
885 >                    stressTensor -= outProduct(dag, fg);
886 >                    if (doHeatFlux_)
887 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
888 >                  }
889 >                }
890 >              }
891 >              for (jb = atomListColumn.begin();
892 >                   jb != atomListColumn.end(); ++jb) {              
893 >                atom2 = (*jb);
894 >                mf = fDecomp_->getMassFactorColumn(atom2);
895 >                // fg is the force on atom jb due to cutoff group's
896 >                // presence in switching region
897 >                fg = -swderiv * d_grp * mf;
898 >                fDecomp_->addForceToAtomColumn(atom2, fg);
899 >
900 >                if (atomListColumn.size() > 1) {
901 >                  if (info_->usesAtomicVirial()) {
902 >                    // find the distance between the atom
903 >                    // and the center of the cutoff group:
904 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
905 >                    stressTensor -= outProduct(dag, fg);
906 >                    if (doHeatFlux_)
907 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
908 >                  }
909 >                }
910 >              }
911 >            }
912 >            //if (!info_->usesAtomicVirial()) {
913 >            //  stressTensor -= outProduct(d_grp, fij);
914 >            //  if (doHeatFlux_)
915 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
916 >            //}
917 >          }
918 >        }
919 >      }
920 >
921 >      if (iLoop == PREPAIR_LOOP) {
922 >        if (info_->requiresPrepair()) {
923 >
924 >          fDecomp_->collectIntermediateData();
925 >
926 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
927 >            fDecomp_->fillSelfData(sdat, atom1);
928 >            interactionMan_->doPreForce(sdat);
929 >          }
930 >
931 >          fDecomp_->distributeIntermediateData();
932 >
933 >        }
934 >      }
935      }
936      
937 <    //store the tau and long range potential    
938 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
939 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
940 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
937 >    // collects pairwise information
938 >    fDecomp_->collectData();
939 >    if (cutoffMethod_ == EWALD_FULL) {
940 >      interactionMan_->doReciprocalSpaceSum(reciprocalPotential);
941 >
942 >      curSnapshot->setReciprocalPotential(reciprocalPotential);
943 >    }
944 >        
945 >    if (info_->requiresSelfCorrection()) {
946 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
947 >        fDecomp_->fillSelfData(sdat, atom1);
948 >        interactionMan_->doSelfCorrection(sdat);
949 >      }
950 >    }
951 >
952 >    // collects single-atom information
953 >    fDecomp_->collectSelfData();
954 >
955 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
956 >      *(fDecomp_->getPairwisePotential());
957 >
958 >    curSnapshot->setLongRangePotential(longRangePotential);
959 >    
960 >    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
961 >                                         *(fDecomp_->getExcludedPotential()));
962 >
963    }
964  
965 <  
966 <  void ForceManager::postCalculation(bool needStress) {
965 >  void ForceManager::postCalculation() {
966 >
967 >    vector<Perturbation*>::iterator pi;
968 >    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
969 >      (*pi)->applyPerturbation();
970 >    }
971 >
972      SimInfo::MoleculeIterator mi;
973      Molecule* mol;
974      Molecule::RigidBodyIterator rbIter;
975      RigidBody* rb;
976      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
977 <    
977 >  
978      // collect the atomic forces onto rigid bodies
979      
980      for (mol = info_->beginMolecule(mi); mol != NULL;
981           mol = info_->nextMolecule(mi)) {
982        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
983             rb = mol->nextRigidBody(rbIter)) {
984 <        if (needStress) {          
985 <          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
341 <          tau += rbTau;
342 <        } else{
343 <          rb->calcForcesAndTorques();
344 <        }
984 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
985 >        stressTensor += rbTau;
986        }
987      }
988 <
348 <    if (needStress) {
988 >    
989   #ifdef IS_MPI
990 <      Mat3x3d tmpTau(tau);
991 <      MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
352 <                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
990 >    MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9,
991 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
992   #endif
993 <      curSnapshot->statData.setTau(tau);
994 <    }
995 <  }
993 >    curSnapshot->setStressTensor(stressTensor);
994 >    
995 >    if (info_->getSimParams()->getUseLongRangeCorrections()) {
996 >      /*
997 >      RealType vol = curSnapshot->getVolume();
998 >      RealType Elrc(0.0);
999 >      RealType Wlrc(0.0);
1000  
1001 < } //end namespace OpenMD
1001 >      set<AtomType*>::iterator i;
1002 >      set<AtomType*>::iterator j;
1003 >    
1004 >      RealType n_i, n_j;
1005 >      RealType rho_i, rho_j;
1006 >      pair<RealType, RealType> LRI;
1007 >      
1008 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
1009 >        n_i = RealType(info_->getGlobalCountOfType(*i));
1010 >        rho_i = n_i /  vol;
1011 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
1012 >          n_j = RealType(info_->getGlobalCountOfType(*j));
1013 >          rho_j = n_j / vol;
1014 >          
1015 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
1016 >
1017 >          Elrc += n_i   * rho_j * LRI.first;
1018 >          Wlrc -= rho_i * rho_j * LRI.second;
1019 >        }
1020 >      }
1021 >      Elrc *= 2.0 * NumericConstant::PI;
1022 >      Wlrc *= 2.0 * NumericConstant::PI;
1023 >
1024 >      RealType lrp = curSnapshot->getLongRangePotential();
1025 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1026 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1027 >      curSnapshot->setStressTensor(stressTensor);
1028 >      */
1029 >    
1030 >    }
1031 >  }
1032 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines