53 |
|
#define __C |
54 |
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
|
#include "utils/simError.h" |
56 |
+ |
#include "primitives/Bond.hpp" |
57 |
+ |
#include "primitives/Bend.hpp" |
58 |
|
namespace oopse { |
59 |
|
|
60 |
|
void ForceManager::calcForces(bool needPotential, bool needStress) { |
61 |
< |
|
61 |
> |
|
62 |
|
if (!info_->isFortranInitialized()) { |
63 |
|
info_->update(); |
64 |
|
} |
65 |
< |
|
65 |
> |
|
66 |
|
preCalculation(); |
67 |
|
|
68 |
|
calcShortRangeInteraction(); |
69 |
|
|
70 |
|
calcLongRangeInteraction(needPotential, needStress); |
71 |
|
|
72 |
< |
postCalculation(); |
73 |
< |
|
72 |
> |
postCalculation(needStress); |
73 |
> |
|
74 |
|
} |
75 |
< |
|
75 |
> |
|
76 |
|
void ForceManager::preCalculation() { |
77 |
|
SimInfo::MoleculeIterator mi; |
78 |
|
Molecule* mol; |
83 |
|
|
84 |
|
// forces are zeroed here, before any are accumulated. |
85 |
|
// NOTE: do not rezero the forces in Fortran. |
86 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
86 |
> |
|
87 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
88 |
> |
mol = info_->nextMolecule(mi)) { |
89 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
90 |
|
atom->zeroForcesAndTorques(); |
91 |
|
} |
92 |
< |
|
92 |
> |
|
93 |
|
//change the positions of atoms which belong to the rigidbodies |
94 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
94 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
95 |
> |
rb = mol->nextRigidBody(rbIter)) { |
96 |
|
rb->zeroForcesAndTorques(); |
97 |
|
} |
98 |
|
} |
99 |
|
|
100 |
+ |
// Zero out the stress tensor |
101 |
+ |
tau *= 0.0; |
102 |
+ |
|
103 |
|
} |
104 |
< |
|
104 |
> |
|
105 |
|
void ForceManager::calcShortRangeInteraction() { |
106 |
|
Molecule* mol; |
107 |
|
RigidBody* rb; |
113 |
|
Molecule::BondIterator bondIter;; |
114 |
|
Molecule::BendIterator bendIter; |
115 |
|
Molecule::TorsionIterator torsionIter; |
116 |
+ |
RealType bondPotential = 0.0; |
117 |
+ |
RealType bendPotential = 0.0; |
118 |
+ |
RealType torsionPotential = 0.0; |
119 |
|
|
120 |
|
//calculate short range interactions |
121 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
121 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
122 |
> |
mol = info_->nextMolecule(mi)) { |
123 |
|
|
124 |
|
//change the positions of atoms which belong to the rigidbodies |
125 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
126 |
< |
rb->updateAtoms(); |
125 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
126 |
> |
rb = mol->nextRigidBody(rbIter)) { |
127 |
> |
rb->updateAtoms(); |
128 |
|
} |
129 |
|
|
130 |
< |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
131 |
< |
bond->calcForce(); |
130 |
> |
for (bond = mol->beginBond(bondIter); bond != NULL; |
131 |
> |
bond = mol->nextBond(bondIter)) { |
132 |
> |
bond->calcForce(); |
133 |
> |
bondPotential += bond->getPotential(); |
134 |
|
} |
135 |
|
|
136 |
< |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
137 |
< |
bend->calcForce(); |
136 |
> |
for (bend = mol->beginBend(bendIter); bend != NULL; |
137 |
> |
bend = mol->nextBend(bendIter)) { |
138 |
> |
|
139 |
> |
RealType angle; |
140 |
> |
bend->calcForce(angle); |
141 |
> |
RealType currBendPot = bend->getPotential(); |
142 |
> |
bendPotential += bend->getPotential(); |
143 |
> |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
144 |
> |
if (i == bendDataSets.end()) { |
145 |
> |
BendDataSet dataSet; |
146 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
147 |
> |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
148 |
> |
dataSet.deltaV = 0.0; |
149 |
> |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
150 |
> |
}else { |
151 |
> |
i->second.prev.angle = i->second.curr.angle; |
152 |
> |
i->second.prev.potential = i->second.curr.potential; |
153 |
> |
i->second.curr.angle = angle; |
154 |
> |
i->second.curr.potential = currBendPot; |
155 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
156 |
> |
i->second.prev.potential); |
157 |
> |
} |
158 |
|
} |
159 |
< |
|
160 |
< |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
161 |
< |
torsion->calcForce(); |
162 |
< |
} |
163 |
< |
|
159 |
> |
|
160 |
> |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
161 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
162 |
> |
RealType angle; |
163 |
> |
torsion->calcForce(angle); |
164 |
> |
RealType currTorsionPot = torsion->getPotential(); |
165 |
> |
torsionPotential += torsion->getPotential(); |
166 |
> |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
167 |
> |
if (i == torsionDataSets.end()) { |
168 |
> |
TorsionDataSet dataSet; |
169 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
170 |
> |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
171 |
> |
dataSet.deltaV = 0.0; |
172 |
> |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
173 |
> |
}else { |
174 |
> |
i->second.prev.angle = i->second.curr.angle; |
175 |
> |
i->second.prev.potential = i->second.curr.potential; |
176 |
> |
i->second.curr.angle = angle; |
177 |
> |
i->second.curr.potential = currTorsionPot; |
178 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
179 |
> |
i->second.prev.potential); |
180 |
> |
} |
181 |
> |
} |
182 |
|
} |
183 |
|
|
184 |
< |
double shortRangePotential = 0.0; |
185 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
133 |
< |
shortRangePotential += mol->getPotential(); |
134 |
< |
} |
135 |
< |
|
184 |
> |
RealType shortRangePotential = bondPotential + bendPotential + |
185 |
> |
torsionPotential; |
186 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
187 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
188 |
+ |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
189 |
+ |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
190 |
+ |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
191 |
+ |
|
192 |
|
} |
193 |
< |
|
194 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
193 |
> |
|
194 |
> |
void ForceManager::calcLongRangeInteraction(bool needPotential, |
195 |
> |
bool needStress) { |
196 |
|
Snapshot* curSnapshot; |
197 |
|
DataStorage* config; |
198 |
< |
double* frc; |
199 |
< |
double* pos; |
200 |
< |
double* trq; |
201 |
< |
double* A; |
202 |
< |
double* electroFrame; |
203 |
< |
double* rc; |
198 |
> |
RealType* frc; |
199 |
> |
RealType* pos; |
200 |
> |
RealType* trq; |
201 |
> |
RealType* A; |
202 |
> |
RealType* electroFrame; |
203 |
> |
RealType* rc; |
204 |
|
|
205 |
|
//get current snapshot from SimInfo |
206 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
207 |
< |
|
207 |
> |
|
208 |
|
//get array pointers |
209 |
|
config = &(curSnapshot->atomData); |
210 |
|
frc = config->getArrayPointer(DataStorage::dslForce); |
220 |
|
CutoffGroup* cg; |
221 |
|
Vector3d com; |
222 |
|
std::vector<Vector3d> rcGroup; |
223 |
< |
|
223 |
> |
|
224 |
|
if(info_->getNCutoffGroups() > 0){ |
225 |
< |
|
226 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
227 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
225 |
> |
|
226 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
227 |
> |
mol = info_->nextMolecule(mi)) { |
228 |
> |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
229 |
> |
cg = mol->nextCutoffGroup(ci)) { |
230 |
|
cg->getCOM(com); |
231 |
|
rcGroup.push_back(com); |
232 |
|
} |
234 |
|
|
235 |
|
rc = rcGroup[0].getArrayPointer(); |
236 |
|
} else { |
237 |
< |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
237 |
> |
// center of mass of the group is the same as position of the atom |
238 |
> |
// if cutoff group does not exist |
239 |
|
rc = pos; |
240 |
|
} |
183 |
– |
|
184 |
– |
//initialize data before passing to fortran |
185 |
– |
double longRangePotential[LR_POT_TYPES]; |
186 |
– |
double lrPot = 0.0; |
241 |
|
|
242 |
< |
Mat3x3d tau; |
242 |
> |
//initialize data before passing to fortran |
243 |
> |
RealType longRangePotential[LR_POT_TYPES]; |
244 |
> |
RealType lrPot = 0.0; |
245 |
> |
Vector3d totalDipole; |
246 |
|
short int passedCalcPot = needPotential; |
247 |
|
short int passedCalcStress = needStress; |
248 |
|
int isError = 0; |
250 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
251 |
|
longRangePotential[i]=0.0; //Initialize array |
252 |
|
} |
253 |
< |
|
254 |
< |
|
255 |
< |
|
256 |
< |
doForceLoop( pos, |
257 |
< |
rc, |
258 |
< |
A, |
259 |
< |
electroFrame, |
260 |
< |
frc, |
261 |
< |
trq, |
262 |
< |
tau.getArrayPointer(), |
263 |
< |
longRangePotential, |
264 |
< |
&passedCalcPot, |
265 |
< |
&passedCalcStress, |
209 |
< |
&isError ); |
210 |
< |
|
253 |
> |
|
254 |
> |
doForceLoop(pos, |
255 |
> |
rc, |
256 |
> |
A, |
257 |
> |
electroFrame, |
258 |
> |
frc, |
259 |
> |
trq, |
260 |
> |
tau.getArrayPointer(), |
261 |
> |
longRangePotential, |
262 |
> |
&passedCalcPot, |
263 |
> |
&passedCalcStress, |
264 |
> |
&isError ); |
265 |
> |
|
266 |
|
if( isError ){ |
267 |
|
sprintf( painCave.errMsg, |
268 |
|
"Error returned from the fortran force calculation.\n" ); |
272 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
273 |
|
lrPot += longRangePotential[i]; //Quick hack |
274 |
|
} |
275 |
< |
|
275 |
> |
|
276 |
> |
// grab the simulation box dipole moment if specified |
277 |
> |
if (info_->getCalcBoxDipole()){ |
278 |
> |
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
279 |
> |
|
280 |
> |
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
281 |
> |
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
282 |
> |
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
283 |
> |
} |
284 |
> |
|
285 |
|
//store the tau and long range potential |
286 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
287 |
< |
// curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential; |
288 |
< |
curSnapshot->statData.setTau(tau); |
287 |
> |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
288 |
> |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
289 |
|
} |
290 |
|
|
291 |
< |
|
292 |
< |
void ForceManager::postCalculation() { |
291 |
> |
|
292 |
> |
void ForceManager::postCalculation(bool needStress) { |
293 |
|
SimInfo::MoleculeIterator mi; |
294 |
|
Molecule* mol; |
295 |
|
Molecule::RigidBodyIterator rbIter; |
296 |
|
RigidBody* rb; |
297 |
+ |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
298 |
|
|
299 |
|
// collect the atomic forces onto rigid bodies |
300 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
301 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
302 |
< |
rb->calcForcesAndTorques(); |
300 |
> |
|
301 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
302 |
> |
mol = info_->nextMolecule(mi)) { |
303 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
304 |
> |
rb = mol->nextRigidBody(rbIter)) { |
305 |
> |
if (needStress) { |
306 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
307 |
> |
tau += rbTau; |
308 |
> |
} else{ |
309 |
> |
rb->calcForcesAndTorques(); |
310 |
> |
} |
311 |
|
} |
312 |
|
} |
313 |
|
|
314 |
+ |
if (needStress) { |
315 |
+ |
#ifdef IS_MPI |
316 |
+ |
Mat3x3d tmpTau(tau); |
317 |
+ |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
318 |
+ |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
319 |
+ |
#endif |
320 |
+ |
curSnapshot->statData.setTau(tau); |
321 |
+ |
} |
322 |
|
} |
323 |
|
|
324 |
|
} //end namespace oopse |