ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
Revision: 1610
Committed: Fri Aug 12 14:37:25 2011 UTC (13 years, 8 months ago) by gezelter
File size: 12585 byte(s)
Log Message:
Fixed a clang compilation problem, added the ability to output
particle potential in the dump files.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50 #include "brains/ForceManager.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53 #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 #include "utils/simError.h"
56 #include "primitives/Bond.hpp"
57 #include "primitives/Bend.hpp"
58 #include "primitives/Torsion.hpp"
59 #include "primitives/Inversion.hpp"
60 namespace OpenMD {
61
62 void ForceManager::calcForces() {
63
64 if (!info_->isFortranInitialized()) {
65 info_->update();
66 }
67
68 preCalculation();
69
70 calcShortRangeInteraction();
71
72 calcLongRangeInteraction();
73
74 postCalculation();
75
76 }
77
78 void ForceManager::preCalculation() {
79 SimInfo::MoleculeIterator mi;
80 Molecule* mol;
81 Molecule::AtomIterator ai;
82 Atom* atom;
83 Molecule::RigidBodyIterator rbIter;
84 RigidBody* rb;
85
86 // forces are zeroed here, before any are accumulated.
87 // NOTE: do not rezero the forces in Fortran.
88
89 for (mol = info_->beginMolecule(mi); mol != NULL;
90 mol = info_->nextMolecule(mi)) {
91 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
92 atom->zeroForcesAndTorques();
93 }
94
95 //change the positions of atoms which belong to the rigidbodies
96 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
97 rb = mol->nextRigidBody(rbIter)) {
98 rb->zeroForcesAndTorques();
99 }
100
101 }
102
103 // Zero out the stress tensor
104 tau *= 0.0;
105
106 }
107
108 void ForceManager::calcShortRangeInteraction() {
109 Molecule* mol;
110 RigidBody* rb;
111 Bond* bond;
112 Bend* bend;
113 Torsion* torsion;
114 Inversion* inversion;
115 SimInfo::MoleculeIterator mi;
116 Molecule::RigidBodyIterator rbIter;
117 Molecule::BondIterator bondIter;;
118 Molecule::BendIterator bendIter;
119 Molecule::TorsionIterator torsionIter;
120 Molecule::InversionIterator inversionIter;
121 RealType bondPotential = 0.0;
122 RealType bendPotential = 0.0;
123 RealType torsionPotential = 0.0;
124 RealType inversionPotential = 0.0;
125
126 //calculate short range interactions
127 for (mol = info_->beginMolecule(mi); mol != NULL;
128 mol = info_->nextMolecule(mi)) {
129
130 //change the positions of atoms which belong to the rigidbodies
131 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
132 rb = mol->nextRigidBody(rbIter)) {
133 rb->updateAtoms();
134 }
135
136 for (bond = mol->beginBond(bondIter); bond != NULL;
137 bond = mol->nextBond(bondIter)) {
138 bond->calcForce();
139 bondPotential += bond->getPotential();
140 }
141
142 for (bend = mol->beginBend(bendIter); bend != NULL;
143 bend = mol->nextBend(bendIter)) {
144
145 RealType angle;
146 bend->calcForce(angle);
147 RealType currBendPot = bend->getPotential();
148
149 bendPotential += bend->getPotential();
150 std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
151 if (i == bendDataSets.end()) {
152 BendDataSet dataSet;
153 dataSet.prev.angle = dataSet.curr.angle = angle;
154 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
155 dataSet.deltaV = 0.0;
156 bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
157 }else {
158 i->second.prev.angle = i->second.curr.angle;
159 i->second.prev.potential = i->second.curr.potential;
160 i->second.curr.angle = angle;
161 i->second.curr.potential = currBendPot;
162 i->second.deltaV = fabs(i->second.curr.potential -
163 i->second.prev.potential);
164 }
165 }
166
167 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
168 torsion = mol->nextTorsion(torsionIter)) {
169 RealType angle;
170 torsion->calcForce(angle);
171 RealType currTorsionPot = torsion->getPotential();
172 torsionPotential += torsion->getPotential();
173 std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
174 if (i == torsionDataSets.end()) {
175 TorsionDataSet dataSet;
176 dataSet.prev.angle = dataSet.curr.angle = angle;
177 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
178 dataSet.deltaV = 0.0;
179 torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
180 }else {
181 i->second.prev.angle = i->second.curr.angle;
182 i->second.prev.potential = i->second.curr.potential;
183 i->second.curr.angle = angle;
184 i->second.curr.potential = currTorsionPot;
185 i->second.deltaV = fabs(i->second.curr.potential -
186 i->second.prev.potential);
187 }
188 }
189
190 for (inversion = mol->beginInversion(inversionIter);
191 inversion != NULL;
192 inversion = mol->nextInversion(inversionIter)) {
193 RealType angle;
194 inversion->calcForce(angle);
195 RealType currInversionPot = inversion->getPotential();
196 inversionPotential += inversion->getPotential();
197 std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
198 if (i == inversionDataSets.end()) {
199 InversionDataSet dataSet;
200 dataSet.prev.angle = dataSet.curr.angle = angle;
201 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
202 dataSet.deltaV = 0.0;
203 inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
204 }else {
205 i->second.prev.angle = i->second.curr.angle;
206 i->second.prev.potential = i->second.curr.potential;
207 i->second.curr.angle = angle;
208 i->second.curr.potential = currInversionPot;
209 i->second.deltaV = fabs(i->second.curr.potential -
210 i->second.prev.potential);
211 }
212 }
213 }
214
215 RealType shortRangePotential = bondPotential + bendPotential +
216 torsionPotential + inversionPotential;
217 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
218 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
219 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
220 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
221 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
222 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
223
224 }
225
226 void ForceManager::calcLongRangeInteraction() {
227 Snapshot* curSnapshot;
228 DataStorage* config;
229 RealType* frc;
230 RealType* pos;
231 RealType* trq;
232 RealType* A;
233 RealType* electroFrame;
234 RealType* rc;
235 RealType* particlePot;
236
237 //get current snapshot from SimInfo
238 curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
239
240 //get array pointers
241 config = &(curSnapshot->atomData);
242 frc = config->getArrayPointer(DataStorage::dslForce);
243 pos = config->getArrayPointer(DataStorage::dslPosition);
244 trq = config->getArrayPointer(DataStorage::dslTorque);
245 A = config->getArrayPointer(DataStorage::dslAmat);
246 electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
247 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
248
249 //calculate the center of mass of cutoff group
250 SimInfo::MoleculeIterator mi;
251 Molecule* mol;
252 Molecule::CutoffGroupIterator ci;
253 CutoffGroup* cg;
254 Vector3d com;
255 std::vector<Vector3d> rcGroup;
256
257 if(info_->getNCutoffGroups() > 0){
258
259 for (mol = info_->beginMolecule(mi); mol != NULL;
260 mol = info_->nextMolecule(mi)) {
261 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
262 cg = mol->nextCutoffGroup(ci)) {
263 cg->getCOM(com);
264 rcGroup.push_back(com);
265 }
266 }// end for (mol)
267
268 rc = rcGroup[0].getArrayPointer();
269 } else {
270 // center of mass of the group is the same as position of the atom
271 // if cutoff group does not exist
272 rc = pos;
273 }
274
275 //initialize data before passing to fortran
276 RealType longRangePotential[LR_POT_TYPES];
277 RealType lrPot = 0.0;
278 Vector3d totalDipole;
279 int isError = 0;
280
281 for (int i=0; i<LR_POT_TYPES;i++){
282 longRangePotential[i]=0.0; //Initialize array
283 }
284
285 doForceLoop(pos,
286 rc,
287 A,
288 electroFrame,
289 frc,
290 trq,
291 tau.getArrayPointer(),
292 longRangePotential,
293 particlePot,
294 &isError );
295
296 if( isError ){
297 sprintf( painCave.errMsg,
298 "Error returned from the fortran force calculation.\n" );
299 painCave.isFatal = 1;
300 simError();
301 }
302 for (int i=0; i<LR_POT_TYPES;i++){
303 lrPot += longRangePotential[i]; //Quick hack
304 }
305
306 // grab the simulation box dipole moment if specified
307 if (info_->getCalcBoxDipole()){
308 getAccumulatedBoxDipole(totalDipole.getArrayPointer());
309
310 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
311 curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
312 curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
313 }
314
315 //store the tau and long range potential
316 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
317 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
318 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
319 }
320
321
322 void ForceManager::postCalculation() {
323 SimInfo::MoleculeIterator mi;
324 Molecule* mol;
325 Molecule::RigidBodyIterator rbIter;
326 RigidBody* rb;
327 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
328
329 // collect the atomic forces onto rigid bodies
330
331 for (mol = info_->beginMolecule(mi); mol != NULL;
332 mol = info_->nextMolecule(mi)) {
333 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
334 rb = mol->nextRigidBody(rbIter)) {
335 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
336 tau += rbTau;
337 }
338 }
339
340 #ifdef IS_MPI
341 Mat3x3d tmpTau(tau);
342 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
343 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
344 #endif
345 curSnapshot->statData.setTau(tau);
346 }
347
348 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date