ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceManager.cpp
(Generate patch)

Comparing trunk/src/brains/ForceManager.cpp (file contents):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 1925 by gezelter, Wed Aug 7 15:24:16 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/ElectricField.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 < /*
64 <  struct BendOrderStruct {
65 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
68 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 >                                               initialized_(false) {
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 >    thermo = new Thermo(info_);
76    }
77  
78 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
79 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80 >    
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85    }
86 <  */
87 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
86 >  
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
102 >   *                        SHIFTED_POTENTIAL, or EWALD_FULL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120 >    
121 >    Globals* simParams_ = info_->getSimParams();
122 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 >    int mdFileVersion;
124 >    rCut_ = 0.0; //Needs a value for a later max() call;  
125 >    
126 >    if (simParams_->haveMDfileVersion())
127 >      mdFileVersion = simParams_->getMDfileVersion();
128 >    else
129 >      mdFileVersion = 0;
130 >  
131 >    // We need the list of simulated atom types to figure out cutoffs
132 >    // as well as long range corrections.
133  
134 <    if (!info_->isFortranInitialized()) {
135 <      info_->update();
134 >    set<AtomType*>::iterator i;
135 >    set<AtomType*> atomTypes_;
136 >    atomTypes_ = info_->getSimulatedAtomTypes();
137 >
138 >    if (simParams_->haveCutoffRadius()) {
139 >      rCut_ = simParams_->getCutoffRadius();
140 >    } else {      
141 >      if (info_->usesElectrostaticAtoms()) {
142 >        sprintf(painCave.errMsg,
143 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 >                "\tOpenMD will use a default value of 12.0 angstroms"
145 >                "\tfor the cutoffRadius.\n");
146 >        painCave.isFatal = 0;
147 >        painCave.severity = OPENMD_INFO;
148 >        simError();
149 >        rCut_ = 12.0;
150 >      } else {
151 >        RealType thisCut;
152 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 >          rCut_ = max(thisCut, rCut_);
155 >        }
156 >        sprintf(painCave.errMsg,
157 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 >                "\tOpenMD will use %lf angstroms.\n",
159 >                rCut_);
160 >        painCave.isFatal = 0;
161 >        painCave.severity = OPENMD_INFO;
162 >        simError();
163 >      }
164      }
165  
166 <    preCalculation();
167 <    
86 <    calcShortRangeInteraction();
166 >    fDecomp_->setUserCutoff(rCut_);
167 >    interactionMan_->setCutoffRadius(rCut_);
168  
169 <    calcLongRangeInteraction(needPotential, needStress);
169 >    map<string, CutoffMethod> stringToCutoffMethod;
170 >    stringToCutoffMethod["HARD"] = HARD;
171 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 >    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
175 >    stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL;
176 >  
177 >    if (simParams_->haveCutoffMethod()) {
178 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
179 >      map<string, CutoffMethod>::iterator i;
180 >      i = stringToCutoffMethod.find(cutMeth);
181 >      if (i == stringToCutoffMethod.end()) {
182 >        sprintf(painCave.errMsg,
183 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
184 >                "\tShould be one of: "
185 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
186 >                "\tSHIFTED_FORCE, or EWALD_FULL\n",
187 >                cutMeth.c_str());
188 >        painCave.isFatal = 1;
189 >        painCave.severity = OPENMD_ERROR;
190 >        simError();
191 >      } else {
192 >        cutoffMethod_ = i->second;
193 >      }
194 >    } else {
195 >      if (mdFileVersion > 1) {
196 >        sprintf(painCave.errMsg,
197 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
198 >                "\tOpenMD will use SHIFTED_FORCE.\n");
199 >        painCave.isFatal = 0;
200 >        painCave.severity = OPENMD_INFO;
201 >        simError();
202 >        cutoffMethod_ = SHIFTED_FORCE;        
203 >      } else {
204 >        // handle the case where the old file version was in play
205 >        // (there should be no cutoffMethod, so we have to deduce it
206 >        // from other data).        
207  
208 <    postCalculation();
208 >        sprintf(painCave.errMsg,
209 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
210 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
211 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
212 >                "\tbehavior of the older (version 1) code.  To remove this\n"
213 >                "\twarning, add an explicit cutoffMethod and change the top\n"
214 >                "\tof the file so that it begins with <OpenMD version=2>\n");
215 >        painCave.isFatal = 0;
216 >        painCave.severity = OPENMD_WARNING;
217 >        simError();            
218 >                
219 >        // The old file version tethered the shifting behavior to the
220 >        // electrostaticSummationMethod keyword.
221 >        
222 >        if (simParams_->haveElectrostaticSummationMethod()) {
223 >          string myMethod = simParams_->getElectrostaticSummationMethod();
224 >          toUpper(myMethod);
225 >        
226 >          if (myMethod == "SHIFTED_POTENTIAL") {
227 >            cutoffMethod_ = SHIFTED_POTENTIAL;
228 >          } else if (myMethod == "SHIFTED_FORCE") {
229 >            cutoffMethod_ = SHIFTED_FORCE;
230 >          } else if (myMethod == "TAYLOR_SHIFTED") {
231 >            cutoffMethod_ = TAYLOR_SHIFTED;
232 >          } else if (myMethod == "EWALD_FULL") {
233 >            cutoffMethod_ = EWALD_FULL;
234 >          }
235 >        
236 >          if (simParams_->haveSwitchingRadius())
237 >            rSwitch_ = simParams_->getSwitchingRadius();
238  
239 < /*
240 <    std::vector<BendOrderStruct> bendOrderStruct;
241 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
242 <        BendOrderStruct tmp;
243 <        tmp.bend= const_cast<Bend*>(i->first);
244 <        tmp.dataSet = i->second;
245 <        bendOrderStruct.push_back(tmp);
239 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
240 >              myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") {
241 >            if (simParams_->haveSwitchingRadius()){
242 >              sprintf(painCave.errMsg,
243 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
244 >                      "\tA value was set for the switchingRadius\n"
245 >                      "\teven though the electrostaticSummationMethod was\n"
246 >                      "\tset to %s\n", myMethod.c_str());
247 >              painCave.severity = OPENMD_WARNING;
248 >              painCave.isFatal = 1;
249 >              simError();            
250 >            }
251 >          }
252 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
253 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
254 >              sprintf(painCave.errMsg,
255 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
256 >                      "\tcutoffRadius and switchingRadius are set to the\n"
257 >                      "\tsame value.  OpenMD will use shifted force\n"
258 >                      "\tpotentials instead of switching functions.\n");
259 >              painCave.isFatal = 0;
260 >              painCave.severity = OPENMD_WARNING;
261 >              simError();            
262 >            } else {
263 >              cutoffMethod_ = SHIFTED_POTENTIAL;
264 >              sprintf(painCave.errMsg,
265 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
266 >                      "\tcutoffRadius and switchingRadius are set to the\n"
267 >                      "\tsame value.  OpenMD will use shifted potentials\n"
268 >                      "\tinstead of switching functions.\n");
269 >              painCave.isFatal = 0;
270 >              painCave.severity = OPENMD_WARNING;
271 >              simError();            
272 >            }
273 >          }
274 >        }
275 >      }
276      }
277  
278 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
279 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
280 <        TorsionOrderStruct tmp;
281 <        tmp.torsion = const_cast<Torsion*>(j->first);
282 <        tmp.dataSet = j->second;
283 <        torsionOrderStruct.push_back(tmp);
278 >    map<string, CutoffPolicy> stringToCutoffPolicy;
279 >    stringToCutoffPolicy["MIX"] = MIX;
280 >    stringToCutoffPolicy["MAX"] = MAX;
281 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
282 >
283 >    string cutPolicy;
284 >    if (forceFieldOptions_.haveCutoffPolicy()){
285 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
286 >    }else if (simParams_->haveCutoffPolicy()) {
287 >      cutPolicy = simParams_->getCutoffPolicy();
288 >    }
289 >
290 >    if (!cutPolicy.empty()){
291 >      toUpper(cutPolicy);
292 >      map<string, CutoffPolicy>::iterator i;
293 >      i = stringToCutoffPolicy.find(cutPolicy);
294 >
295 >      if (i == stringToCutoffPolicy.end()) {
296 >        sprintf(painCave.errMsg,
297 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
298 >                "\tShould be one of: "
299 >                "MIX, MAX, or TRADITIONAL\n",
300 >                cutPolicy.c_str());
301 >        painCave.isFatal = 1;
302 >        painCave.severity = OPENMD_ERROR;
303 >        simError();
304 >      } else {
305 >        cutoffPolicy_ = i->second;
306 >      }
307 >    } else {
308 >      sprintf(painCave.errMsg,
309 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
310 >              "\tOpenMD will use TRADITIONAL.\n");
311 >      painCave.isFatal = 0;
312 >      painCave.severity = OPENMD_INFO;
313 >      simError();
314 >      cutoffPolicy_ = TRADITIONAL;        
315      }
316 +
317 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
318 +        
319 +    // create the switching function object:
320 +
321 +    switcher_ = new SwitchingFunction();
322 +  
323 +    if (cutoffMethod_ == SWITCHED) {
324 +      if (simParams_->haveSwitchingRadius()) {
325 +        rSwitch_ = simParams_->getSwitchingRadius();
326 +        if (rSwitch_ > rCut_) {        
327 +          sprintf(painCave.errMsg,
328 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
329 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
330 +          painCave.isFatal = 1;
331 +          painCave.severity = OPENMD_ERROR;
332 +          simError();
333 +        }
334 +      } else {      
335 +        rSwitch_ = 0.85 * rCut_;
336 +        sprintf(painCave.errMsg,
337 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
338 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
339 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
340 +        painCave.isFatal = 0;
341 +        painCave.severity = OPENMD_WARNING;
342 +        simError();
343 +      }
344 +    } else {
345 +      if (mdFileVersion > 1) {
346 +        // throw an error if we define a switching radius and don't need one.
347 +        // older file versions should not do this.
348 +        if (simParams_->haveSwitchingRadius()) {
349 +          map<string, CutoffMethod>::const_iterator it;
350 +          string theMeth;
351 +          for (it = stringToCutoffMethod.begin();
352 +               it != stringToCutoffMethod.end(); ++it) {
353 +            if (it->second == cutoffMethod_) {
354 +              theMeth = it->first;
355 +              break;
356 +            }
357 +          }
358 +          sprintf(painCave.errMsg,
359 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
360 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
361 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
362 +          painCave.isFatal = 0;
363 +          painCave.severity = OPENMD_WARNING;
364 +          simError();
365 +        }
366 +      }
367 +      rSwitch_ = rCut_;
368 +    }
369      
370 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
371 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
372 <    std::cout << "bend" << std::endl;
373 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
374 <        Bend* bend = k->bend;
375 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
376 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
370 >    // Default to cubic switching function.
371 >    sft_ = cubic;
372 >    if (simParams_->haveSwitchingFunctionType()) {
373 >      string funcType = simParams_->getSwitchingFunctionType();
374 >      toUpper(funcType);
375 >      if (funcType == "CUBIC") {
376 >        sft_ = cubic;
377 >      } else {
378 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
379 >          sft_ = fifth_order_poly;
380 >        } else {
381 >          // throw error        
382 >          sprintf( painCave.errMsg,
383 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
384 >                   "\tswitchingFunctionType must be one of: "
385 >                   "\"cubic\" or \"fifth_order_polynomial\".",
386 >                   funcType.c_str() );
387 >          painCave.isFatal = 1;
388 >          painCave.severity = OPENMD_ERROR;
389 >          simError();
390 >        }          
391 >      }
392      }
393 <    std::cout << "torsio" << std::endl;
394 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
119 <        Torsion* torsion = l->torsion;
120 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
121 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
122 <    }
123 <   */
393 >    switcher_->setSwitchType(sft_);
394 >    switcher_->setSwitch(rSwitch_, rCut_);
395    }
396  
397 +
398 +
399 +  
400 +  void ForceManager::initialize() {
401 +
402 +    if (!info_->isTopologyDone()) {
403 +
404 +      info_->update();
405 +      interactionMan_->setSimInfo(info_);
406 +      interactionMan_->initialize();
407 +
408 +      // We want to delay the cutoffs until after the interaction
409 +      // manager has set up the atom-atom interactions so that we can
410 +      // query them for suggested cutoff values
411 +      setupCutoffs();
412 +
413 +      info_->prepareTopology();      
414 +
415 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
416 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
417 +      if (doHeatFlux_) doParticlePot_ = true;
418 +
419 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
420 +  
421 +    }
422 +
423 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
424 +    
425 +    // Force fields can set options on how to scale van der Waals and
426 +    // electrostatic interactions for atoms connected via bonds, bends
427 +    // and torsions in this case the topological distance between
428 +    // atoms is:
429 +    // 0 = topologically unconnected
430 +    // 1 = bonded together
431 +    // 2 = connected via a bend
432 +    // 3 = connected via a torsion
433 +    
434 +    vdwScale_.reserve(4);
435 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
436 +
437 +    electrostaticScale_.reserve(4);
438 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
439 +
440 +    vdwScale_[0] = 1.0;
441 +    vdwScale_[1] = fopts.getvdw12scale();
442 +    vdwScale_[2] = fopts.getvdw13scale();
443 +    vdwScale_[3] = fopts.getvdw14scale();
444 +    
445 +    electrostaticScale_[0] = 1.0;
446 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
447 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
448 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
449 +    
450 +    if (info_->getSimParams()->haveElectricField()) {
451 +      ElectricField* eField = new ElectricField(info_);
452 +      perturbations_.push_back(eField);
453 +    }
454 +
455 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
456 +    
457 +    fDecomp_->distributeInitialData();
458 +    
459 +    initialized_ = true;
460 +    
461 +  }
462 +  
463 +  void ForceManager::calcForces() {
464 +    
465 +    if (!initialized_) initialize();
466 +    
467 +    preCalculation();  
468 +    shortRangeInteractions();
469 +    longRangeInteractions();
470 +    postCalculation();    
471 +  }
472 +  
473    void ForceManager::preCalculation() {
474      SimInfo::MoleculeIterator mi;
475      Molecule* mol;
# Line 130 | Line 477 | namespace oopse {
477      Atom* atom;
478      Molecule::RigidBodyIterator rbIter;
479      RigidBody* rb;
480 +    Molecule::CutoffGroupIterator ci;
481 +    CutoffGroup* cg;
482      
483 <    // forces are zeroed here, before any are accumulated.
484 <    // NOTE: do not rezero the forces in Fortran.
485 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
486 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
483 >    // forces and potentials are zeroed here, before any are
484 >    // accumulated.
485 >    
486 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
487 >
488 >    snap->setBondPotential(0.0);
489 >    snap->setBendPotential(0.0);
490 >    snap->setTorsionPotential(0.0);
491 >    snap->setInversionPotential(0.0);
492 >
493 >    potVec zeroPot(0.0);
494 >    snap->setLongRangePotential(zeroPot);
495 >    snap->setExcludedPotentials(zeroPot);
496 >
497 >    snap->setRestraintPotential(0.0);
498 >    snap->setRawPotential(0.0);
499 >
500 >    for (mol = info_->beginMolecule(mi); mol != NULL;
501 >         mol = info_->nextMolecule(mi)) {
502 >      for(atom = mol->beginAtom(ai); atom != NULL;
503 >          atom = mol->nextAtom(ai)) {
504          atom->zeroForcesAndTorques();
505        }
506 <        
506 >      
507        //change the positions of atoms which belong to the rigidbodies
508 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
508 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
509 >           rb = mol->nextRigidBody(rbIter)) {
510          rb->zeroForcesAndTorques();
511        }        
512 +      
513 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
514 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
515 +            cg = mol->nextCutoffGroup(ci)) {
516 +          //calculate the center of mass of cutoff group
517 +          cg->updateCOM();
518 +        }
519 +      }      
520      }
521      
522 +    // Zero out the stress tensor
523 +    stressTensor *= 0.0;
524 +    // Zero out the heatFlux
525 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
526    }
527 <
528 <  void ForceManager::calcShortRangeInteraction() {
527 >  
528 >  void ForceManager::shortRangeInteractions() {
529      Molecule* mol;
530      RigidBody* rb;
531      Bond* bond;
532      Bend* bend;
533      Torsion* torsion;
534 +    Inversion* inversion;
535      SimInfo::MoleculeIterator mi;
536      Molecule::RigidBodyIterator rbIter;
537      Molecule::BondIterator bondIter;;
538      Molecule::BendIterator  bendIter;
539      Molecule::TorsionIterator  torsionIter;
540 <    double bondPotential = 0.0;
541 <    double bendPotential = 0.0;
542 <    double torsionPotential = 0.0;
540 >    Molecule::InversionIterator  inversionIter;
541 >    RealType bondPotential = 0.0;
542 >    RealType bendPotential = 0.0;
543 >    RealType torsionPotential = 0.0;
544 >    RealType inversionPotential = 0.0;
545  
546      //calculate short range interactions    
547 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
547 >    for (mol = info_->beginMolecule(mi); mol != NULL;
548 >         mol = info_->nextMolecule(mi)) {
549  
550        //change the positions of atoms which belong to the rigidbodies
551 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
552 <          rb->updateAtoms();
551 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
552 >           rb = mol->nextRigidBody(rbIter)) {
553 >        rb->updateAtoms();
554        }
555  
556 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
557 <        bond->calcForce();
556 >      for (bond = mol->beginBond(bondIter); bond != NULL;
557 >           bond = mol->nextBond(bondIter)) {
558 >        bond->calcForce(doParticlePot_);
559          bondPotential += bond->getPotential();
560        }
561  
562 <
563 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
564 <
565 <          double angle;
566 <            bend->calcForce(angle);
567 <          double currBendPot = bend->getPotential();          
568 <            bendPotential += bend->getPotential();
569 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
570 <          if (i == bendDataSets.end()) {
571 <            BendDataSet dataSet;
572 <            dataSet.prev.angle = dataSet.curr.angle = angle;
573 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
574 <            dataSet.deltaV = 0.0;
575 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
576 <          }else {
577 <            i->second.prev.angle = i->second.curr.angle;
578 <            i->second.prev.potential = i->second.curr.potential;
579 <            i->second.curr.angle = angle;
580 <            i->second.curr.potential = currBendPot;
581 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
582 <          }
562 >      for (bend = mol->beginBend(bendIter); bend != NULL;
563 >           bend = mol->nextBend(bendIter)) {
564 >        
565 >        RealType angle;
566 >        bend->calcForce(angle, doParticlePot_);
567 >        RealType currBendPot = bend->getPotential();          
568 >        
569 >        bendPotential += bend->getPotential();
570 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
571 >        if (i == bendDataSets.end()) {
572 >          BendDataSet dataSet;
573 >          dataSet.prev.angle = dataSet.curr.angle = angle;
574 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
575 >          dataSet.deltaV = 0.0;
576 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
577 >                                                                  dataSet));
578 >        }else {
579 >          i->second.prev.angle = i->second.curr.angle;
580 >          i->second.prev.potential = i->second.curr.potential;
581 >          i->second.curr.angle = angle;
582 >          i->second.curr.potential = currBendPot;
583 >          i->second.deltaV =  fabs(i->second.curr.potential -  
584 >                                   i->second.prev.potential);
585 >        }
586        }
587 +      
588 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
589 +           torsion = mol->nextTorsion(torsionIter)) {
590 +        RealType angle;
591 +        torsion->calcForce(angle, doParticlePot_);
592 +        RealType currTorsionPot = torsion->getPotential();
593 +        torsionPotential += torsion->getPotential();
594 +        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
595 +        if (i == torsionDataSets.end()) {
596 +          TorsionDataSet dataSet;
597 +          dataSet.prev.angle = dataSet.curr.angle = angle;
598 +          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
599 +          dataSet.deltaV = 0.0;
600 +          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
601 +        }else {
602 +          i->second.prev.angle = i->second.curr.angle;
603 +          i->second.prev.potential = i->second.curr.potential;
604 +          i->second.curr.angle = angle;
605 +          i->second.curr.potential = currTorsionPot;
606 +          i->second.deltaV =  fabs(i->second.curr.potential -  
607 +                                   i->second.prev.potential);
608 +        }      
609 +      }      
610 +      
611 +      for (inversion = mol->beginInversion(inversionIter);
612 +           inversion != NULL;
613 +           inversion = mol->nextInversion(inversionIter)) {
614 +        RealType angle;
615 +        inversion->calcForce(angle, doParticlePot_);
616 +        RealType currInversionPot = inversion->getPotential();
617 +        inversionPotential += inversion->getPotential();
618 +        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
619 +        if (i == inversionDataSets.end()) {
620 +          InversionDataSet dataSet;
621 +          dataSet.prev.angle = dataSet.curr.angle = angle;
622 +          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
623 +          dataSet.deltaV = 0.0;
624 +          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
625 +        }else {
626 +          i->second.prev.angle = i->second.curr.angle;
627 +          i->second.prev.potential = i->second.curr.potential;
628 +          i->second.curr.angle = angle;
629 +          i->second.curr.potential = currInversionPot;
630 +          i->second.deltaV =  fabs(i->second.curr.potential -  
631 +                                   i->second.prev.potential);
632 +        }      
633 +      }      
634 +    }
635  
636 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
637 <        double angle;
638 <          torsion->calcForce(angle);
639 <        double currTorsionPot = torsion->getPotential();
640 <          torsionPotential += torsion->getPotential();
641 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
642 <          if (i == torsionDataSets.end()) {
643 <            TorsionDataSet dataSet;
644 <            dataSet.prev.angle = dataSet.curr.angle = angle;
645 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
646 <            dataSet.deltaV = 0.0;
647 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
648 <          }else {
213 <            i->second.prev.angle = i->second.curr.angle;
214 <            i->second.prev.potential = i->second.curr.potential;
215 <            i->second.curr.angle = angle;
216 <            i->second.curr.potential = currTorsionPot;
217 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
218 <          }      
219 <      }
636 > #ifdef IS_MPI
637 >    // Collect from all nodes.  This should eventually be moved into a
638 >    // SystemDecomposition, but this is a better place than in
639 >    // Thermo to do the collection.
640 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
641 >                              MPI::SUM);
642 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
643 >                              MPI::SUM);
644 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
645 >                              MPI::REALTYPE, MPI::SUM);
646 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
647 >                              MPI::REALTYPE, MPI::SUM);
648 > #endif
649  
221    }
222    
223    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
650      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
651 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
652 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
653 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
654 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
651 >
652 >    curSnapshot->setBondPotential(bondPotential);
653 >    curSnapshot->setBendPotential(bendPotential);
654 >    curSnapshot->setTorsionPotential(torsionPotential);
655 >    curSnapshot->setInversionPotential(inversionPotential);
656      
657 +    // RealType shortRangePotential = bondPotential + bendPotential +
658 +    //   torsionPotential +  inversionPotential;    
659 +
660 +    // curSnapshot->setShortRangePotential(shortRangePotential);
661    }
662 +  
663 +  void ForceManager::longRangeInteractions() {
664  
665 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
666 <    Snapshot* curSnapshot;
667 <    DataStorage* config;
235 <    double* frc;
236 <    double* pos;
237 <    double* trq;
238 <    double* A;
239 <    double* electroFrame;
240 <    double* rc;
241 <    
242 <    //get current snapshot from SimInfo
243 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
665 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
666 >    DataStorage* config = &(curSnapshot->atomData);
667 >    DataStorage* cgConfig = &(curSnapshot->cgData);
668  
245    //get array pointers
246    config = &(curSnapshot->atomData);
247    frc = config->getArrayPointer(DataStorage::dslForce);
248    pos = config->getArrayPointer(DataStorage::dslPosition);
249    trq = config->getArrayPointer(DataStorage::dslTorque);
250    A   = config->getArrayPointer(DataStorage::dslAmat);
251    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
669  
670      //calculate the center of mass of cutoff group
671 +
672      SimInfo::MoleculeIterator mi;
673      Molecule* mol;
674      Molecule::CutoffGroupIterator ci;
675      CutoffGroup* cg;
258    Vector3d com;
259    std::vector<Vector3d> rcGroup;
676  
677 <    if(info_->getNCutoffGroups() > 0){
678 <
679 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
680 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
681 <          cg->getCOM(com);
682 <          rcGroup.push_back(com);
677 >    if(info_->getNCutoffGroups() > 0){      
678 >      for (mol = info_->beginMolecule(mi); mol != NULL;
679 >           mol = info_->nextMolecule(mi)) {
680 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
681 >            cg = mol->nextCutoffGroup(ci)) {
682 >          cg->updateCOM();
683          }
684 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
684 >      }      
685      } else {
686 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
687 <      rc = pos;
686 >      // center of mass of the group is the same as position of the atom  
687 >      // if cutoff group does not exist
688 >      cgConfig->position = config->position;
689 >      cgConfig->velocity = config->velocity;
690      }
691 <  
692 <    //initialize data before passing to fortran
693 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
691 >
692 >    fDecomp_->zeroWorkArrays();
693 >    fDecomp_->distributeData();
694      
695 <    Mat3x3d tau;
696 <    short int passedCalcPot = needPotential;
697 <    short int passedCalcStress = needStress;
698 <    int isError = 0;
695 >    int cg1, cg2, atom1, atom2, topoDist;
696 >    Vector3d d_grp, dag, d, gvel2, vel2;
697 >    RealType rgrpsq, rgrp, r2, r;
698 >    RealType electroMult, vdwMult;
699 >    RealType vij;
700 >    Vector3d fij, fg, f1;
701 >    tuple3<RealType, RealType, RealType> cuts;
702 >    RealType rCut, rCutSq, rListSq;
703 >    bool in_switching_region;
704 >    RealType sw, dswdr, swderiv;
705 >    vector<int> atomListColumn, atomListRow;
706 >    InteractionData idat;
707 >    SelfData sdat;
708 >    RealType mf;
709 >    RealType vpair;
710 >    RealType dVdFQ1(0.0);
711 >    RealType dVdFQ2(0.0);
712 >    potVec longRangePotential(0.0);
713 >    RealType reciprocalPotential(0.0);
714 >    potVec workPot(0.0);
715 >    potVec exPot(0.0);
716 >    Vector3d eField1(0.0);
717 >    Vector3d eField2(0.0);
718 >    vector<int>::iterator ia, jb;
719  
720 <    for (int i=0; i<LR_POT_TYPES;i++){
721 <      longRangePotential[i]=0.0; //Initialize array
720 >    int loopStart, loopEnd;
721 >    
722 >    idat.rcut = &rCut;
723 >    idat.vdwMult = &vdwMult;
724 >    idat.electroMult = &electroMult;
725 >    idat.pot = &workPot;
726 >    idat.excludedPot = &exPot;
727 >    sdat.pot = fDecomp_->getEmbeddingPotential();
728 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
729 >    idat.vpair = &vpair;
730 >    idat.dVdFQ1 = &dVdFQ1;
731 >    idat.dVdFQ2 = &dVdFQ2;
732 >    idat.eField1 = &eField1;
733 >    idat.eField2 = &eField2;  
734 >    idat.f1 = &f1;
735 >    idat.sw = &sw;
736 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
737 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
738 >    idat.doParticlePot = doParticlePot_;
739 >    idat.doElectricField = doElectricField_;
740 >    sdat.doParticlePot = doParticlePot_;
741 >    
742 >    loopEnd = PAIR_LOOP;
743 >    if (info_->requiresPrepair() ) {
744 >      loopStart = PREPAIR_LOOP;
745 >    } else {
746 >      loopStart = PAIR_LOOP;
747      }
748 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
749 +    
750 +      if (iLoop == loopStart) {
751 +        bool update_nlist = fDecomp_->checkNeighborList();
752 +        if (update_nlist) {
753 +          if (!usePeriodicBoundaryConditions_)
754 +            Mat3x3d bbox = thermo->getBoundingBox();
755 +          fDecomp_->buildNeighborList(neighborList_);
756 +        }
757 +      }
758  
759 <    doForceLoop( pos,
760 <                 rc,
761 <                 A,
762 <                 electroFrame,
763 <                 frc,
764 <                 trq,
765 <                 tau.getArrayPointer(),
766 <                 longRangePotential,
767 <                 &passedCalcPot,
768 <                 &passedCalcStress,
769 <                 &isError );
770 <
771 <    if( isError ){
772 <      sprintf( painCave.errMsg,
773 <               "Error returned from the fortran force calculation.\n" );
774 <      painCave.isFatal = 1;
775 <      simError();
759 >      for (vector<pair<int, int> >::iterator it = neighborList_.begin();
760 >             it != neighborList_.end(); ++it) {
761 >                
762 >        cg1 = (*it).first;
763 >        cg2 = (*it).second;
764 >        
765 >        fDecomp_->getGroupCutoffs(cg1, cg2, rCut, rCutSq, rListSq);
766 >
767 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
768 >
769 >        // already wrapped in the getIntergroupVector call:
770 >        // curSnapshot->wrapVector(d_grp);        
771 >        rgrpsq = d_grp.lengthSquare();
772 >
773 >        if (rgrpsq < rCutSq) {
774 >          if (iLoop == PAIR_LOOP) {
775 >            vij = 0.0;
776 >            fij.zero();
777 >            eField1.zero();
778 >            eField2.zero();
779 >          }
780 >          
781 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
782 >                                                     rgrp);
783 >
784 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
785 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
786 >
787 >          if (doHeatFlux_)
788 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
789 >
790 >          for (ia = atomListRow.begin();
791 >               ia != atomListRow.end(); ++ia) {            
792 >            atom1 = (*ia);
793 >
794 >            for (jb = atomListColumn.begin();
795 >                 jb != atomListColumn.end(); ++jb) {              
796 >              atom2 = (*jb);
797 >
798 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
799 >
800 >                vpair = 0.0;
801 >                workPot = 0.0;
802 >                exPot = 0.0;
803 >                f1.zero();
804 >                dVdFQ1 = 0.0;
805 >                dVdFQ2 = 0.0;
806 >
807 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
808 >
809 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
810 >                vdwMult = vdwScale_[topoDist];
811 >                electroMult = electrostaticScale_[topoDist];
812 >
813 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
814 >                  idat.d = &d_grp;
815 >                  idat.r2 = &rgrpsq;
816 >                  if (doHeatFlux_)
817 >                    vel2 = gvel2;
818 >                } else {
819 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
820 >                  curSnapshot->wrapVector( d );
821 >                  r2 = d.lengthSquare();
822 >                  idat.d = &d;
823 >                  idat.r2 = &r2;
824 >                  if (doHeatFlux_)
825 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
826 >                }
827 >              
828 >                r = sqrt( *(idat.r2) );
829 >                idat.rij = &r;
830 >
831 >                if (iLoop == PREPAIR_LOOP) {
832 >                  interactionMan_->doPrePair(idat);
833 >                } else {
834 >                  interactionMan_->doPair(idat);
835 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
836 >                  vij += vpair;
837 >                  fij += f1;
838 >                  stressTensor -= outProduct( *(idat.d), f1);
839 >                  if (doHeatFlux_)
840 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
841 >                }
842 >              }
843 >            }
844 >          }
845 >
846 >          if (iLoop == PAIR_LOOP) {
847 >            if (in_switching_region) {
848 >              swderiv = vij * dswdr / rgrp;
849 >              fg = swderiv * d_grp;
850 >              fij += fg;
851 >
852 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
853 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
854 >                                            atomListColumn[0],
855 >                                            cg1, cg2)) {
856 >                  stressTensor -= outProduct( *(idat.d), fg);
857 >                  if (doHeatFlux_)
858 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
859 >                }                
860 >              }
861 >          
862 >              for (ia = atomListRow.begin();
863 >                   ia != atomListRow.end(); ++ia) {            
864 >                atom1 = (*ia);                
865 >                mf = fDecomp_->getMassFactorRow(atom1);
866 >                // fg is the force on atom ia due to cutoff group's
867 >                // presence in switching region
868 >                fg = swderiv * d_grp * mf;
869 >                fDecomp_->addForceToAtomRow(atom1, fg);
870 >                if (atomListRow.size() > 1) {
871 >                  if (info_->usesAtomicVirial()) {
872 >                    // find the distance between the atom
873 >                    // and the center of the cutoff group:
874 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
875 >                    stressTensor -= outProduct(dag, fg);
876 >                    if (doHeatFlux_)
877 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
878 >                  }
879 >                }
880 >              }
881 >              for (jb = atomListColumn.begin();
882 >                   jb != atomListColumn.end(); ++jb) {              
883 >                atom2 = (*jb);
884 >                mf = fDecomp_->getMassFactorColumn(atom2);
885 >                // fg is the force on atom jb due to cutoff group's
886 >                // presence in switching region
887 >                fg = -swderiv * d_grp * mf;
888 >                fDecomp_->addForceToAtomColumn(atom2, fg);
889 >
890 >                if (atomListColumn.size() > 1) {
891 >                  if (info_->usesAtomicVirial()) {
892 >                    // find the distance between the atom
893 >                    // and the center of the cutoff group:
894 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
895 >                    stressTensor -= outProduct(dag, fg);
896 >                    if (doHeatFlux_)
897 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
898 >                  }
899 >                }
900 >              }
901 >            }
902 >            //if (!info_->usesAtomicVirial()) {
903 >            //  stressTensor -= outProduct(d_grp, fij);
904 >            //  if (doHeatFlux_)
905 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
906 >            //}
907 >          }
908 >        }
909 >      }
910 >
911 >      if (iLoop == PREPAIR_LOOP) {
912 >        if (info_->requiresPrepair()) {
913 >
914 >          fDecomp_->collectIntermediateData();
915 >
916 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
917 >            fDecomp_->fillSelfData(sdat, atom1);
918 >            interactionMan_->doPreForce(sdat);
919 >          }
920 >
921 >          fDecomp_->distributeIntermediateData();
922 >
923 >        }
924 >      }
925      }
926 <    for (int i=0; i<LR_POT_TYPES;i++){
927 <      lrPot += longRangePotential[i]; //Quick hack
926 >    
927 >    // collects pairwise information
928 >    fDecomp_->collectData();
929 >    if (cutoffMethod_ == EWALD_FULL) {
930 >      interactionMan_->doReciprocalSpaceSum(reciprocalPotential);
931 >
932 >      curSnapshot->setReciprocalPotential(reciprocalPotential);
933      }
934 +        
935 +    if (info_->requiresSelfCorrection()) {
936 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
937 +        fDecomp_->fillSelfData(sdat, atom1);
938 +        interactionMan_->doSelfCorrection(sdat);
939 +      }
940 +    }
941  
942 <    //store the tau and long range potential    
943 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
313 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
314 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
942 >    // collects single-atom information
943 >    fDecomp_->collectSelfData();
944  
945 <    curSnapshot->statData.setTau(tau);
946 <  }
945 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
946 >      *(fDecomp_->getPairwisePotential());
947  
948 +    curSnapshot->setLongRangePotential(longRangePotential);
949 +    
950 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
951 +                                         *(fDecomp_->getExcludedPotential()));
952  
953 +  }
954 +
955    void ForceManager::postCalculation() {
956 +
957 +    vector<Perturbation*>::iterator pi;
958 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
959 +      (*pi)->applyPerturbation();
960 +    }
961 +
962      SimInfo::MoleculeIterator mi;
963      Molecule* mol;
964      Molecule::RigidBodyIterator rbIter;
965      RigidBody* rb;
966 <    
966 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
967 >  
968      // collect the atomic forces onto rigid bodies
969 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
970 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
971 <        rb->calcForcesAndTorques();
969 >    
970 >    for (mol = info_->beginMolecule(mi); mol != NULL;
971 >         mol = info_->nextMolecule(mi)) {
972 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
973 >           rb = mol->nextRigidBody(rbIter)) {
974 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
975 >        stressTensor += rbTau;
976        }
977      }
978 +    
979 + #ifdef IS_MPI
980 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
981 +                              MPI::REALTYPE, MPI::SUM);
982 + #endif
983 +    curSnapshot->setStressTensor(stressTensor);
984 +    
985 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
986 +      /*
987 +      RealType vol = curSnapshot->getVolume();
988 +      RealType Elrc(0.0);
989 +      RealType Wlrc(0.0);
990  
991 <  }
991 >      set<AtomType*>::iterator i;
992 >      set<AtomType*>::iterator j;
993 >    
994 >      RealType n_i, n_j;
995 >      RealType rho_i, rho_j;
996 >      pair<RealType, RealType> LRI;
997 >      
998 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
999 >        n_i = RealType(info_->getGlobalCountOfType(*i));
1000 >        rho_i = n_i /  vol;
1001 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
1002 >          n_j = RealType(info_->getGlobalCountOfType(*j));
1003 >          rho_j = n_j / vol;
1004 >          
1005 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
1006  
1007 < } //end namespace oopse
1007 >          Elrc += n_i   * rho_j * LRI.first;
1008 >          Wlrc -= rho_i * rho_j * LRI.second;
1009 >        }
1010 >      }
1011 >      Elrc *= 2.0 * NumericConstant::PI;
1012 >      Wlrc *= 2.0 * NumericConstant::PI;
1013 >
1014 >      RealType lrp = curSnapshot->getLongRangePotential();
1015 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1016 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1017 >      curSnapshot->setStressTensor(stressTensor);
1018 >      */
1019 >    
1020 >    }
1021 >  }
1022 > }

Comparing trunk/src/brains/ForceManager.cpp (property svn:keywords):
Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
Revision 1925 by gezelter, Wed Aug 7 15:24:16 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines