1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
gezelter |
1879 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
gezelter |
1782 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
246 |
*/ |
42 |
|
|
|
43 |
gezelter |
507 |
/** |
44 |
|
|
* @file ForceManager.cpp |
45 |
|
|
* @author tlin |
46 |
|
|
* @date 11/09/2004 |
47 |
|
|
* @version 1.0 |
48 |
|
|
*/ |
49 |
gezelter |
246 |
|
50 |
gezelter |
1782 |
|
51 |
gezelter |
246 |
#include "brains/ForceManager.hpp" |
52 |
|
|
#include "primitives/Molecule.hpp" |
53 |
gezelter |
1390 |
#define __OPENMD_C |
54 |
gezelter |
246 |
#include "utils/simError.h" |
55 |
xsun |
1215 |
#include "primitives/Bond.hpp" |
56 |
tim |
749 |
#include "primitives/Bend.hpp" |
57 |
cli2 |
1275 |
#include "primitives/Torsion.hpp" |
58 |
|
|
#include "primitives/Inversion.hpp" |
59 |
gezelter |
1782 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
|
|
#include "perturbations/ElectricField.hpp" |
61 |
|
|
#include "parallel/ForceMatrixDecomposition.hpp" |
62 |
|
|
|
63 |
|
|
#include <cstdio> |
64 |
|
|
#include <iostream> |
65 |
|
|
#include <iomanip> |
66 |
|
|
|
67 |
|
|
using namespace std; |
68 |
gezelter |
1390 |
namespace OpenMD { |
69 |
gezelter |
1782 |
|
70 |
gezelter |
1879 |
ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL), |
71 |
|
|
initialized_(false) { |
72 |
gezelter |
1782 |
forceField_ = info_->getForceField(); |
73 |
|
|
interactionMan_ = new InteractionManager(); |
74 |
|
|
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
75 |
gezelter |
1879 |
thermo = new Thermo(info_); |
76 |
gezelter |
1782 |
} |
77 |
gezelter |
246 |
|
78 |
gezelter |
1879 |
ForceManager::~ForceManager() { |
79 |
|
|
perturbations_.clear(); |
80 |
|
|
|
81 |
|
|
delete switcher_; |
82 |
|
|
delete interactionMan_; |
83 |
|
|
delete fDecomp_; |
84 |
|
|
delete thermo; |
85 |
|
|
} |
86 |
|
|
|
87 |
gezelter |
1782 |
/** |
88 |
|
|
* setupCutoffs |
89 |
|
|
* |
90 |
|
|
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
91 |
|
|
* and cutoffPolicy |
92 |
|
|
* |
93 |
|
|
* cutoffRadius : realType |
94 |
|
|
* If the cutoffRadius was explicitly set, use that value. |
95 |
|
|
* If the cutoffRadius was not explicitly set: |
96 |
|
|
* Are there electrostatic atoms? Use 12.0 Angstroms. |
97 |
|
|
* No electrostatic atoms? Poll the atom types present in the |
98 |
|
|
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
99 |
|
|
* Use the maximum suggested value that was found. |
100 |
|
|
* |
101 |
gezelter |
1879 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED, |
102 |
gezelter |
1915 |
* SHIFTED_POTENTIAL, or EWALD_FULL) |
103 |
gezelter |
1782 |
* If cutoffMethod was explicitly set, use that choice. |
104 |
|
|
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
105 |
|
|
* |
106 |
|
|
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
107 |
|
|
* If cutoffPolicy was explicitly set, use that choice. |
108 |
|
|
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
109 |
|
|
* |
110 |
|
|
* switchingRadius : realType |
111 |
|
|
* If the cutoffMethod was set to SWITCHED: |
112 |
|
|
* If the switchingRadius was explicitly set, use that value |
113 |
|
|
* (but do a sanity check first). |
114 |
|
|
* If the switchingRadius was not explicitly set: use 0.85 * |
115 |
|
|
* cutoffRadius_ |
116 |
|
|
* If the cutoffMethod was not set to SWITCHED: |
117 |
|
|
* Set switchingRadius equal to cutoffRadius for safety. |
118 |
|
|
*/ |
119 |
|
|
void ForceManager::setupCutoffs() { |
120 |
gezelter |
1126 |
|
121 |
gezelter |
1782 |
Globals* simParams_ = info_->getSimParams(); |
122 |
|
|
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
123 |
|
|
int mdFileVersion; |
124 |
|
|
rCut_ = 0.0; //Needs a value for a later max() call; |
125 |
|
|
|
126 |
|
|
if (simParams_->haveMDfileVersion()) |
127 |
|
|
mdFileVersion = simParams_->getMDfileVersion(); |
128 |
|
|
else |
129 |
|
|
mdFileVersion = 0; |
130 |
|
|
|
131 |
gezelter |
1879 |
// We need the list of simulated atom types to figure out cutoffs |
132 |
|
|
// as well as long range corrections. |
133 |
|
|
|
134 |
|
|
set<AtomType*>::iterator i; |
135 |
|
|
set<AtomType*> atomTypes_; |
136 |
|
|
atomTypes_ = info_->getSimulatedAtomTypes(); |
137 |
|
|
|
138 |
gezelter |
1782 |
if (simParams_->haveCutoffRadius()) { |
139 |
|
|
rCut_ = simParams_->getCutoffRadius(); |
140 |
|
|
} else { |
141 |
|
|
if (info_->usesElectrostaticAtoms()) { |
142 |
|
|
sprintf(painCave.errMsg, |
143 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
144 |
|
|
"\tOpenMD will use a default value of 12.0 angstroms" |
145 |
|
|
"\tfor the cutoffRadius.\n"); |
146 |
|
|
painCave.isFatal = 0; |
147 |
|
|
painCave.severity = OPENMD_INFO; |
148 |
|
|
simError(); |
149 |
|
|
rCut_ = 12.0; |
150 |
|
|
} else { |
151 |
|
|
RealType thisCut; |
152 |
gezelter |
1879 |
for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { |
153 |
gezelter |
1782 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
154 |
|
|
rCut_ = max(thisCut, rCut_); |
155 |
|
|
} |
156 |
|
|
sprintf(painCave.errMsg, |
157 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
158 |
|
|
"\tOpenMD will use %lf angstroms.\n", |
159 |
|
|
rCut_); |
160 |
|
|
painCave.isFatal = 0; |
161 |
|
|
painCave.severity = OPENMD_INFO; |
162 |
|
|
simError(); |
163 |
|
|
} |
164 |
|
|
} |
165 |
|
|
|
166 |
|
|
fDecomp_->setUserCutoff(rCut_); |
167 |
|
|
interactionMan_->setCutoffRadius(rCut_); |
168 |
|
|
|
169 |
|
|
map<string, CutoffMethod> stringToCutoffMethod; |
170 |
|
|
stringToCutoffMethod["HARD"] = HARD; |
171 |
|
|
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
172 |
|
|
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
173 |
|
|
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
174 |
gezelter |
1879 |
stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED; |
175 |
gezelter |
1915 |
stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL; |
176 |
gezelter |
1782 |
|
177 |
|
|
if (simParams_->haveCutoffMethod()) { |
178 |
|
|
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
179 |
|
|
map<string, CutoffMethod>::iterator i; |
180 |
|
|
i = stringToCutoffMethod.find(cutMeth); |
181 |
|
|
if (i == stringToCutoffMethod.end()) { |
182 |
|
|
sprintf(painCave.errMsg, |
183 |
|
|
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
184 |
|
|
"\tShould be one of: " |
185 |
gezelter |
1879 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n" |
186 |
gezelter |
1915 |
"\tSHIFTED_FORCE, or EWALD_FULL\n", |
187 |
gezelter |
1782 |
cutMeth.c_str()); |
188 |
|
|
painCave.isFatal = 1; |
189 |
|
|
painCave.severity = OPENMD_ERROR; |
190 |
|
|
simError(); |
191 |
|
|
} else { |
192 |
|
|
cutoffMethod_ = i->second; |
193 |
|
|
} |
194 |
|
|
} else { |
195 |
|
|
if (mdFileVersion > 1) { |
196 |
|
|
sprintf(painCave.errMsg, |
197 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
198 |
|
|
"\tOpenMD will use SHIFTED_FORCE.\n"); |
199 |
|
|
painCave.isFatal = 0; |
200 |
|
|
painCave.severity = OPENMD_INFO; |
201 |
|
|
simError(); |
202 |
|
|
cutoffMethod_ = SHIFTED_FORCE; |
203 |
|
|
} else { |
204 |
|
|
// handle the case where the old file version was in play |
205 |
|
|
// (there should be no cutoffMethod, so we have to deduce it |
206 |
|
|
// from other data). |
207 |
|
|
|
208 |
|
|
sprintf(painCave.errMsg, |
209 |
|
|
"ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n" |
210 |
|
|
"\tOpenMD found a file which does not set a cutoffMethod.\n" |
211 |
|
|
"\tOpenMD will attempt to deduce a cutoffMethod using the\n" |
212 |
|
|
"\tbehavior of the older (version 1) code. To remove this\n" |
213 |
|
|
"\twarning, add an explicit cutoffMethod and change the top\n" |
214 |
|
|
"\tof the file so that it begins with <OpenMD version=2>\n"); |
215 |
|
|
painCave.isFatal = 0; |
216 |
|
|
painCave.severity = OPENMD_WARNING; |
217 |
|
|
simError(); |
218 |
|
|
|
219 |
|
|
// The old file version tethered the shifting behavior to the |
220 |
|
|
// electrostaticSummationMethod keyword. |
221 |
|
|
|
222 |
|
|
if (simParams_->haveElectrostaticSummationMethod()) { |
223 |
|
|
string myMethod = simParams_->getElectrostaticSummationMethod(); |
224 |
|
|
toUpper(myMethod); |
225 |
|
|
|
226 |
|
|
if (myMethod == "SHIFTED_POTENTIAL") { |
227 |
|
|
cutoffMethod_ = SHIFTED_POTENTIAL; |
228 |
|
|
} else if (myMethod == "SHIFTED_FORCE") { |
229 |
|
|
cutoffMethod_ = SHIFTED_FORCE; |
230 |
gezelter |
1879 |
} else if (myMethod == "TAYLOR_SHIFTED") { |
231 |
|
|
cutoffMethod_ = TAYLOR_SHIFTED; |
232 |
gezelter |
1915 |
} else if (myMethod == "EWALD_FULL") { |
233 |
|
|
cutoffMethod_ = EWALD_FULL; |
234 |
gezelter |
1782 |
} |
235 |
|
|
|
236 |
|
|
if (simParams_->haveSwitchingRadius()) |
237 |
|
|
rSwitch_ = simParams_->getSwitchingRadius(); |
238 |
|
|
|
239 |
gezelter |
1879 |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" || |
240 |
gezelter |
1915 |
myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") { |
241 |
gezelter |
1782 |
if (simParams_->haveSwitchingRadius()){ |
242 |
|
|
sprintf(painCave.errMsg, |
243 |
|
|
"ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n" |
244 |
|
|
"\tA value was set for the switchingRadius\n" |
245 |
|
|
"\teven though the electrostaticSummationMethod was\n" |
246 |
|
|
"\tset to %s\n", myMethod.c_str()); |
247 |
|
|
painCave.severity = OPENMD_WARNING; |
248 |
|
|
painCave.isFatal = 1; |
249 |
|
|
simError(); |
250 |
|
|
} |
251 |
|
|
} |
252 |
|
|
if (abs(rCut_ - rSwitch_) < 0.0001) { |
253 |
|
|
if (cutoffMethod_ == SHIFTED_FORCE) { |
254 |
|
|
sprintf(painCave.errMsg, |
255 |
|
|
"ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" |
256 |
|
|
"\tcutoffRadius and switchingRadius are set to the\n" |
257 |
|
|
"\tsame value. OpenMD will use shifted force\n" |
258 |
|
|
"\tpotentials instead of switching functions.\n"); |
259 |
|
|
painCave.isFatal = 0; |
260 |
|
|
painCave.severity = OPENMD_WARNING; |
261 |
|
|
simError(); |
262 |
|
|
} else { |
263 |
|
|
cutoffMethod_ = SHIFTED_POTENTIAL; |
264 |
|
|
sprintf(painCave.errMsg, |
265 |
|
|
"ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" |
266 |
|
|
"\tcutoffRadius and switchingRadius are set to the\n" |
267 |
|
|
"\tsame value. OpenMD will use shifted potentials\n" |
268 |
|
|
"\tinstead of switching functions.\n"); |
269 |
|
|
painCave.isFatal = 0; |
270 |
|
|
painCave.severity = OPENMD_WARNING; |
271 |
|
|
simError(); |
272 |
|
|
} |
273 |
|
|
} |
274 |
|
|
} |
275 |
|
|
} |
276 |
|
|
} |
277 |
|
|
|
278 |
|
|
map<string, CutoffPolicy> stringToCutoffPolicy; |
279 |
|
|
stringToCutoffPolicy["MIX"] = MIX; |
280 |
|
|
stringToCutoffPolicy["MAX"] = MAX; |
281 |
|
|
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
282 |
|
|
|
283 |
|
|
string cutPolicy; |
284 |
|
|
if (forceFieldOptions_.haveCutoffPolicy()){ |
285 |
|
|
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
286 |
|
|
}else if (simParams_->haveCutoffPolicy()) { |
287 |
|
|
cutPolicy = simParams_->getCutoffPolicy(); |
288 |
|
|
} |
289 |
|
|
|
290 |
|
|
if (!cutPolicy.empty()){ |
291 |
|
|
toUpper(cutPolicy); |
292 |
|
|
map<string, CutoffPolicy>::iterator i; |
293 |
|
|
i = stringToCutoffPolicy.find(cutPolicy); |
294 |
|
|
|
295 |
|
|
if (i == stringToCutoffPolicy.end()) { |
296 |
|
|
sprintf(painCave.errMsg, |
297 |
|
|
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
298 |
|
|
"\tShould be one of: " |
299 |
|
|
"MIX, MAX, or TRADITIONAL\n", |
300 |
|
|
cutPolicy.c_str()); |
301 |
|
|
painCave.isFatal = 1; |
302 |
|
|
painCave.severity = OPENMD_ERROR; |
303 |
|
|
simError(); |
304 |
|
|
} else { |
305 |
|
|
cutoffPolicy_ = i->second; |
306 |
|
|
} |
307 |
|
|
} else { |
308 |
|
|
sprintf(painCave.errMsg, |
309 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
310 |
|
|
"\tOpenMD will use TRADITIONAL.\n"); |
311 |
|
|
painCave.isFatal = 0; |
312 |
|
|
painCave.severity = OPENMD_INFO; |
313 |
|
|
simError(); |
314 |
|
|
cutoffPolicy_ = TRADITIONAL; |
315 |
|
|
} |
316 |
|
|
|
317 |
|
|
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
318 |
|
|
|
319 |
|
|
// create the switching function object: |
320 |
|
|
|
321 |
|
|
switcher_ = new SwitchingFunction(); |
322 |
|
|
|
323 |
|
|
if (cutoffMethod_ == SWITCHED) { |
324 |
|
|
if (simParams_->haveSwitchingRadius()) { |
325 |
|
|
rSwitch_ = simParams_->getSwitchingRadius(); |
326 |
|
|
if (rSwitch_ > rCut_) { |
327 |
|
|
sprintf(painCave.errMsg, |
328 |
|
|
"ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
329 |
|
|
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
330 |
|
|
painCave.isFatal = 1; |
331 |
|
|
painCave.severity = OPENMD_ERROR; |
332 |
|
|
simError(); |
333 |
|
|
} |
334 |
|
|
} else { |
335 |
|
|
rSwitch_ = 0.85 * rCut_; |
336 |
|
|
sprintf(painCave.errMsg, |
337 |
|
|
"ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
338 |
|
|
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
339 |
|
|
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
340 |
|
|
painCave.isFatal = 0; |
341 |
|
|
painCave.severity = OPENMD_WARNING; |
342 |
|
|
simError(); |
343 |
|
|
} |
344 |
|
|
} else { |
345 |
|
|
if (mdFileVersion > 1) { |
346 |
|
|
// throw an error if we define a switching radius and don't need one. |
347 |
|
|
// older file versions should not do this. |
348 |
|
|
if (simParams_->haveSwitchingRadius()) { |
349 |
|
|
map<string, CutoffMethod>::const_iterator it; |
350 |
|
|
string theMeth; |
351 |
|
|
for (it = stringToCutoffMethod.begin(); |
352 |
|
|
it != stringToCutoffMethod.end(); ++it) { |
353 |
|
|
if (it->second == cutoffMethod_) { |
354 |
|
|
theMeth = it->first; |
355 |
|
|
break; |
356 |
|
|
} |
357 |
|
|
} |
358 |
|
|
sprintf(painCave.errMsg, |
359 |
|
|
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
360 |
|
|
"\tis not set to SWITCHED, so switchingRadius value\n" |
361 |
|
|
"\twill be ignored for this simulation\n", theMeth.c_str()); |
362 |
|
|
painCave.isFatal = 0; |
363 |
|
|
painCave.severity = OPENMD_WARNING; |
364 |
|
|
simError(); |
365 |
|
|
} |
366 |
|
|
} |
367 |
|
|
rSwitch_ = rCut_; |
368 |
|
|
} |
369 |
|
|
|
370 |
|
|
// Default to cubic switching function. |
371 |
|
|
sft_ = cubic; |
372 |
|
|
if (simParams_->haveSwitchingFunctionType()) { |
373 |
|
|
string funcType = simParams_->getSwitchingFunctionType(); |
374 |
|
|
toUpper(funcType); |
375 |
|
|
if (funcType == "CUBIC") { |
376 |
|
|
sft_ = cubic; |
377 |
|
|
} else { |
378 |
|
|
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
379 |
|
|
sft_ = fifth_order_poly; |
380 |
|
|
} else { |
381 |
|
|
// throw error |
382 |
|
|
sprintf( painCave.errMsg, |
383 |
|
|
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
384 |
|
|
"\tswitchingFunctionType must be one of: " |
385 |
|
|
"\"cubic\" or \"fifth_order_polynomial\".", |
386 |
|
|
funcType.c_str() ); |
387 |
|
|
painCave.isFatal = 1; |
388 |
|
|
painCave.severity = OPENMD_ERROR; |
389 |
|
|
simError(); |
390 |
|
|
} |
391 |
|
|
} |
392 |
|
|
} |
393 |
|
|
switcher_->setSwitchType(sft_); |
394 |
|
|
switcher_->setSwitch(rSwitch_, rCut_); |
395 |
|
|
} |
396 |
|
|
|
397 |
|
|
|
398 |
|
|
|
399 |
|
|
|
400 |
|
|
void ForceManager::initialize() { |
401 |
|
|
|
402 |
|
|
if (!info_->isTopologyDone()) { |
403 |
|
|
|
404 |
gezelter |
507 |
info_->update(); |
405 |
gezelter |
1782 |
interactionMan_->setSimInfo(info_); |
406 |
|
|
interactionMan_->initialize(); |
407 |
|
|
|
408 |
|
|
// We want to delay the cutoffs until after the interaction |
409 |
|
|
// manager has set up the atom-atom interactions so that we can |
410 |
|
|
// query them for suggested cutoff values |
411 |
|
|
setupCutoffs(); |
412 |
|
|
|
413 |
|
|
info_->prepareTopology(); |
414 |
|
|
|
415 |
|
|
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
416 |
|
|
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
417 |
|
|
if (doHeatFlux_) doParticlePot_ = true; |
418 |
gezelter |
1879 |
|
419 |
|
|
doElectricField_ = info_->getSimParams()->getOutputElectricField(); |
420 |
gezelter |
1782 |
|
421 |
gezelter |
246 |
} |
422 |
gezelter |
1782 |
|
423 |
|
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
424 |
gezelter |
1126 |
|
425 |
gezelter |
1782 |
// Force fields can set options on how to scale van der Waals and |
426 |
|
|
// electrostatic interactions for atoms connected via bonds, bends |
427 |
|
|
// and torsions in this case the topological distance between |
428 |
|
|
// atoms is: |
429 |
|
|
// 0 = topologically unconnected |
430 |
|
|
// 1 = bonded together |
431 |
|
|
// 2 = connected via a bend |
432 |
|
|
// 3 = connected via a torsion |
433 |
gezelter |
246 |
|
434 |
gezelter |
1782 |
vdwScale_.reserve(4); |
435 |
|
|
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
436 |
gezelter |
246 |
|
437 |
gezelter |
1782 |
electrostaticScale_.reserve(4); |
438 |
|
|
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
439 |
gezelter |
246 |
|
440 |
gezelter |
1782 |
vdwScale_[0] = 1.0; |
441 |
|
|
vdwScale_[1] = fopts.getvdw12scale(); |
442 |
|
|
vdwScale_[2] = fopts.getvdw13scale(); |
443 |
|
|
vdwScale_[3] = fopts.getvdw14scale(); |
444 |
tim |
749 |
|
445 |
gezelter |
1782 |
electrostaticScale_[0] = 1.0; |
446 |
|
|
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
447 |
|
|
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
448 |
|
|
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
449 |
|
|
|
450 |
|
|
if (info_->getSimParams()->haveElectricField()) { |
451 |
|
|
ElectricField* eField = new ElectricField(info_); |
452 |
|
|
perturbations_.push_back(eField); |
453 |
|
|
} |
454 |
|
|
|
455 |
gezelter |
1879 |
usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions(); |
456 |
|
|
|
457 |
gezelter |
1782 |
fDecomp_->distributeInitialData(); |
458 |
gezelter |
1879 |
|
459 |
gezelter |
1782 |
initialized_ = true; |
460 |
gezelter |
1879 |
|
461 |
gezelter |
507 |
} |
462 |
gezelter |
1879 |
|
463 |
gezelter |
1782 |
void ForceManager::calcForces() { |
464 |
|
|
|
465 |
|
|
if (!initialized_) initialize(); |
466 |
gezelter |
1879 |
|
467 |
gezelter |
1782 |
preCalculation(); |
468 |
|
|
shortRangeInteractions(); |
469 |
|
|
longRangeInteractions(); |
470 |
|
|
postCalculation(); |
471 |
|
|
} |
472 |
gezelter |
1126 |
|
473 |
gezelter |
507 |
void ForceManager::preCalculation() { |
474 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
475 |
|
|
Molecule* mol; |
476 |
|
|
Molecule::AtomIterator ai; |
477 |
|
|
Atom* atom; |
478 |
|
|
Molecule::RigidBodyIterator rbIter; |
479 |
|
|
RigidBody* rb; |
480 |
gezelter |
1782 |
Molecule::CutoffGroupIterator ci; |
481 |
|
|
CutoffGroup* cg; |
482 |
gezelter |
246 |
|
483 |
gezelter |
1782 |
// forces and potentials are zeroed here, before any are |
484 |
|
|
// accumulated. |
485 |
chuckv |
1245 |
|
486 |
gezelter |
1782 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
487 |
|
|
|
488 |
|
|
snap->setBondPotential(0.0); |
489 |
|
|
snap->setBendPotential(0.0); |
490 |
|
|
snap->setTorsionPotential(0.0); |
491 |
|
|
snap->setInversionPotential(0.0); |
492 |
|
|
|
493 |
|
|
potVec zeroPot(0.0); |
494 |
|
|
snap->setLongRangePotential(zeroPot); |
495 |
|
|
snap->setExcludedPotentials(zeroPot); |
496 |
|
|
|
497 |
|
|
snap->setRestraintPotential(0.0); |
498 |
|
|
snap->setRawPotential(0.0); |
499 |
|
|
|
500 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
501 |
|
|
mol = info_->nextMolecule(mi)) { |
502 |
gezelter |
1782 |
for(atom = mol->beginAtom(ai); atom != NULL; |
503 |
|
|
atom = mol->nextAtom(ai)) { |
504 |
gezelter |
507 |
atom->zeroForcesAndTorques(); |
505 |
|
|
} |
506 |
gezelter |
1782 |
|
507 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
508 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
509 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
510 |
gezelter |
507 |
rb->zeroForcesAndTorques(); |
511 |
|
|
} |
512 |
gezelter |
1782 |
|
513 |
|
|
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
514 |
|
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
515 |
|
|
cg = mol->nextCutoffGroup(ci)) { |
516 |
|
|
//calculate the center of mass of cutoff group |
517 |
|
|
cg->updateCOM(); |
518 |
|
|
} |
519 |
|
|
} |
520 |
gezelter |
246 |
} |
521 |
|
|
|
522 |
gezelter |
1126 |
// Zero out the stress tensor |
523 |
gezelter |
1782 |
stressTensor *= 0.0; |
524 |
|
|
// Zero out the heatFlux |
525 |
|
|
fDecomp_->setHeatFlux( Vector3d(0.0) ); |
526 |
gezelter |
507 |
} |
527 |
gezelter |
1126 |
|
528 |
gezelter |
1782 |
void ForceManager::shortRangeInteractions() { |
529 |
gezelter |
246 |
Molecule* mol; |
530 |
|
|
RigidBody* rb; |
531 |
|
|
Bond* bond; |
532 |
|
|
Bend* bend; |
533 |
|
|
Torsion* torsion; |
534 |
cli2 |
1275 |
Inversion* inversion; |
535 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
536 |
|
|
Molecule::RigidBodyIterator rbIter; |
537 |
|
|
Molecule::BondIterator bondIter;; |
538 |
|
|
Molecule::BendIterator bendIter; |
539 |
|
|
Molecule::TorsionIterator torsionIter; |
540 |
cli2 |
1275 |
Molecule::InversionIterator inversionIter; |
541 |
tim |
963 |
RealType bondPotential = 0.0; |
542 |
|
|
RealType bendPotential = 0.0; |
543 |
|
|
RealType torsionPotential = 0.0; |
544 |
cli2 |
1275 |
RealType inversionPotential = 0.0; |
545 |
gezelter |
246 |
|
546 |
|
|
//calculate short range interactions |
547 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
548 |
|
|
mol = info_->nextMolecule(mi)) { |
549 |
gezelter |
246 |
|
550 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
551 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
552 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
553 |
|
|
rb->updateAtoms(); |
554 |
gezelter |
507 |
} |
555 |
gezelter |
246 |
|
556 |
gezelter |
1126 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
557 |
|
|
bond = mol->nextBond(bondIter)) { |
558 |
gezelter |
1782 |
bond->calcForce(doParticlePot_); |
559 |
tim |
749 |
bondPotential += bond->getPotential(); |
560 |
gezelter |
507 |
} |
561 |
gezelter |
246 |
|
562 |
gezelter |
1126 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
563 |
|
|
bend = mol->nextBend(bendIter)) { |
564 |
|
|
|
565 |
|
|
RealType angle; |
566 |
gezelter |
1782 |
bend->calcForce(angle, doParticlePot_); |
567 |
gezelter |
1126 |
RealType currBendPot = bend->getPotential(); |
568 |
gezelter |
1448 |
|
569 |
gezelter |
1126 |
bendPotential += bend->getPotential(); |
570 |
gezelter |
1782 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
571 |
gezelter |
1126 |
if (i == bendDataSets.end()) { |
572 |
|
|
BendDataSet dataSet; |
573 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
574 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
575 |
|
|
dataSet.deltaV = 0.0; |
576 |
gezelter |
1782 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
577 |
|
|
dataSet)); |
578 |
gezelter |
1126 |
}else { |
579 |
|
|
i->second.prev.angle = i->second.curr.angle; |
580 |
|
|
i->second.prev.potential = i->second.curr.potential; |
581 |
|
|
i->second.curr.angle = angle; |
582 |
|
|
i->second.curr.potential = currBendPot; |
583 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
584 |
|
|
i->second.prev.potential); |
585 |
|
|
} |
586 |
gezelter |
507 |
} |
587 |
gezelter |
1126 |
|
588 |
|
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
589 |
|
|
torsion = mol->nextTorsion(torsionIter)) { |
590 |
tim |
963 |
RealType angle; |
591 |
gezelter |
1782 |
torsion->calcForce(angle, doParticlePot_); |
592 |
tim |
963 |
RealType currTorsionPot = torsion->getPotential(); |
593 |
gezelter |
1126 |
torsionPotential += torsion->getPotential(); |
594 |
gezelter |
1782 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
595 |
gezelter |
1126 |
if (i == torsionDataSets.end()) { |
596 |
|
|
TorsionDataSet dataSet; |
597 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
598 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
599 |
|
|
dataSet.deltaV = 0.0; |
600 |
gezelter |
1782 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
601 |
gezelter |
1126 |
}else { |
602 |
|
|
i->second.prev.angle = i->second.curr.angle; |
603 |
|
|
i->second.prev.potential = i->second.curr.potential; |
604 |
|
|
i->second.curr.angle = angle; |
605 |
|
|
i->second.curr.potential = currTorsionPot; |
606 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
607 |
|
|
i->second.prev.potential); |
608 |
|
|
} |
609 |
|
|
} |
610 |
gezelter |
1782 |
|
611 |
cli2 |
1275 |
for (inversion = mol->beginInversion(inversionIter); |
612 |
|
|
inversion != NULL; |
613 |
|
|
inversion = mol->nextInversion(inversionIter)) { |
614 |
|
|
RealType angle; |
615 |
gezelter |
1782 |
inversion->calcForce(angle, doParticlePot_); |
616 |
cli2 |
1275 |
RealType currInversionPot = inversion->getPotential(); |
617 |
|
|
inversionPotential += inversion->getPotential(); |
618 |
gezelter |
1782 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
619 |
cli2 |
1275 |
if (i == inversionDataSets.end()) { |
620 |
|
|
InversionDataSet dataSet; |
621 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
622 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
623 |
|
|
dataSet.deltaV = 0.0; |
624 |
gezelter |
1782 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
625 |
cli2 |
1275 |
}else { |
626 |
|
|
i->second.prev.angle = i->second.curr.angle; |
627 |
|
|
i->second.prev.potential = i->second.curr.potential; |
628 |
|
|
i->second.curr.angle = angle; |
629 |
|
|
i->second.curr.potential = currInversionPot; |
630 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
631 |
|
|
i->second.prev.potential); |
632 |
|
|
} |
633 |
|
|
} |
634 |
gezelter |
246 |
} |
635 |
gezelter |
1782 |
|
636 |
|
|
#ifdef IS_MPI |
637 |
|
|
// Collect from all nodes. This should eventually be moved into a |
638 |
|
|
// SystemDecomposition, but this is a better place than in |
639 |
|
|
// Thermo to do the collection. |
640 |
gezelter |
1969 |
|
641 |
|
|
MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE, |
642 |
|
|
MPI_SUM, MPI_COMM_WORLD); |
643 |
|
|
MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE, |
644 |
|
|
MPI_SUM, MPI_COMM_WORLD); |
645 |
|
|
MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1, |
646 |
|
|
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
647 |
|
|
MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1, |
648 |
|
|
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
649 |
gezelter |
1782 |
#endif |
650 |
|
|
|
651 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
652 |
gezelter |
1782 |
|
653 |
|
|
curSnapshot->setBondPotential(bondPotential); |
654 |
|
|
curSnapshot->setBendPotential(bendPotential); |
655 |
|
|
curSnapshot->setTorsionPotential(torsionPotential); |
656 |
|
|
curSnapshot->setInversionPotential(inversionPotential); |
657 |
tim |
665 |
|
658 |
gezelter |
1782 |
// RealType shortRangePotential = bondPotential + bendPotential + |
659 |
|
|
// torsionPotential + inversionPotential; |
660 |
|
|
|
661 |
|
|
// curSnapshot->setShortRangePotential(shortRangePotential); |
662 |
gezelter |
507 |
} |
663 |
gezelter |
1126 |
|
664 |
gezelter |
1782 |
void ForceManager::longRangeInteractions() { |
665 |
gezelter |
246 |
|
666 |
gezelter |
1782 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
667 |
|
|
DataStorage* config = &(curSnapshot->atomData); |
668 |
|
|
DataStorage* cgConfig = &(curSnapshot->cgData); |
669 |
|
|
|
670 |
gezelter |
1924 |
|
671 |
gezelter |
246 |
//calculate the center of mass of cutoff group |
672 |
gezelter |
1782 |
|
673 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
674 |
|
|
Molecule* mol; |
675 |
|
|
Molecule::CutoffGroupIterator ci; |
676 |
|
|
CutoffGroup* cg; |
677 |
gezelter |
1782 |
|
678 |
|
|
if(info_->getNCutoffGroups() > 0){ |
679 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
680 |
|
|
mol = info_->nextMolecule(mi)) { |
681 |
|
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
682 |
|
|
cg = mol->nextCutoffGroup(ci)) { |
683 |
gezelter |
1782 |
cg->updateCOM(); |
684 |
gezelter |
246 |
} |
685 |
gezelter |
1782 |
} |
686 |
gezelter |
246 |
} else { |
687 |
gezelter |
1126 |
// center of mass of the group is the same as position of the atom |
688 |
|
|
// if cutoff group does not exist |
689 |
gezelter |
1782 |
cgConfig->position = config->position; |
690 |
|
|
cgConfig->velocity = config->velocity; |
691 |
gezelter |
246 |
} |
692 |
gezelter |
1782 |
|
693 |
|
|
fDecomp_->zeroWorkArrays(); |
694 |
|
|
fDecomp_->distributeData(); |
695 |
gezelter |
1126 |
|
696 |
gezelter |
1782 |
int cg1, cg2, atom1, atom2, topoDist; |
697 |
|
|
Vector3d d_grp, dag, d, gvel2, vel2; |
698 |
|
|
RealType rgrpsq, rgrp, r2, r; |
699 |
|
|
RealType electroMult, vdwMult; |
700 |
|
|
RealType vij; |
701 |
|
|
Vector3d fij, fg, f1; |
702 |
|
|
tuple3<RealType, RealType, RealType> cuts; |
703 |
gezelter |
1896 |
RealType rCut, rCutSq, rListSq; |
704 |
gezelter |
1782 |
bool in_switching_region; |
705 |
|
|
RealType sw, dswdr, swderiv; |
706 |
gezelter |
1879 |
vector<int> atomListColumn, atomListRow; |
707 |
gezelter |
1782 |
InteractionData idat; |
708 |
|
|
SelfData sdat; |
709 |
|
|
RealType mf; |
710 |
|
|
RealType vpair; |
711 |
|
|
RealType dVdFQ1(0.0); |
712 |
|
|
RealType dVdFQ2(0.0); |
713 |
|
|
potVec longRangePotential(0.0); |
714 |
gezelter |
1925 |
RealType reciprocalPotential(0.0); |
715 |
gezelter |
1782 |
potVec workPot(0.0); |
716 |
|
|
potVec exPot(0.0); |
717 |
gezelter |
1880 |
Vector3d eField1(0.0); |
718 |
|
|
Vector3d eField2(0.0); |
719 |
gezelter |
1782 |
vector<int>::iterator ia, jb; |
720 |
gezelter |
246 |
|
721 |
gezelter |
1782 |
int loopStart, loopEnd; |
722 |
gezelter |
1895 |
|
723 |
gezelter |
1896 |
idat.rcut = &rCut; |
724 |
gezelter |
1782 |
idat.vdwMult = &vdwMult; |
725 |
|
|
idat.electroMult = &electroMult; |
726 |
|
|
idat.pot = &workPot; |
727 |
|
|
idat.excludedPot = &exPot; |
728 |
|
|
sdat.pot = fDecomp_->getEmbeddingPotential(); |
729 |
|
|
sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); |
730 |
|
|
idat.vpair = &vpair; |
731 |
|
|
idat.dVdFQ1 = &dVdFQ1; |
732 |
|
|
idat.dVdFQ2 = &dVdFQ2; |
733 |
gezelter |
1788 |
idat.eField1 = &eField1; |
734 |
gezelter |
1879 |
idat.eField2 = &eField2; |
735 |
gezelter |
1782 |
idat.f1 = &f1; |
736 |
|
|
idat.sw = &sw; |
737 |
|
|
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
738 |
gezelter |
1879 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || cutoffMethod_ == TAYLOR_SHIFTED) ? true : false; |
739 |
gezelter |
1782 |
idat.doParticlePot = doParticlePot_; |
740 |
gezelter |
1879 |
idat.doElectricField = doElectricField_; |
741 |
gezelter |
1782 |
sdat.doParticlePot = doParticlePot_; |
742 |
|
|
|
743 |
|
|
loopEnd = PAIR_LOOP; |
744 |
|
|
if (info_->requiresPrepair() ) { |
745 |
|
|
loopStart = PREPAIR_LOOP; |
746 |
|
|
} else { |
747 |
|
|
loopStart = PAIR_LOOP; |
748 |
chuckv |
664 |
} |
749 |
gezelter |
1782 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
750 |
gezelter |
1126 |
|
751 |
gezelter |
1782 |
if (iLoop == loopStart) { |
752 |
|
|
bool update_nlist = fDecomp_->checkNeighborList(); |
753 |
gezelter |
1879 |
if (update_nlist) { |
754 |
|
|
if (!usePeriodicBoundaryConditions_) |
755 |
|
|
Mat3x3d bbox = thermo->getBoundingBox(); |
756 |
gezelter |
1895 |
fDecomp_->buildNeighborList(neighborList_); |
757 |
gezelter |
1879 |
} |
758 |
|
|
} |
759 |
gezelter |
1782 |
|
760 |
gezelter |
1895 |
for (vector<pair<int, int> >::iterator it = neighborList_.begin(); |
761 |
|
|
it != neighborList_.end(); ++it) { |
762 |
gezelter |
1782 |
|
763 |
|
|
cg1 = (*it).first; |
764 |
|
|
cg2 = (*it).second; |
765 |
|
|
|
766 |
gezelter |
1896 |
fDecomp_->getGroupCutoffs(cg1, cg2, rCut, rCutSq, rListSq); |
767 |
gezelter |
1782 |
|
768 |
|
|
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
769 |
|
|
|
770 |
gezelter |
1893 |
// already wrapped in the getIntergroupVector call: |
771 |
|
|
// curSnapshot->wrapVector(d_grp); |
772 |
gezelter |
1782 |
rgrpsq = d_grp.lengthSquare(); |
773 |
|
|
|
774 |
|
|
if (rgrpsq < rCutSq) { |
775 |
|
|
if (iLoop == PAIR_LOOP) { |
776 |
|
|
vij = 0.0; |
777 |
gezelter |
1879 |
fij.zero(); |
778 |
|
|
eField1.zero(); |
779 |
|
|
eField2.zero(); |
780 |
gezelter |
1782 |
} |
781 |
|
|
|
782 |
|
|
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
783 |
|
|
rgrp); |
784 |
|
|
|
785 |
|
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
786 |
|
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
787 |
|
|
|
788 |
|
|
if (doHeatFlux_) |
789 |
|
|
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
790 |
|
|
|
791 |
|
|
for (ia = atomListRow.begin(); |
792 |
|
|
ia != atomListRow.end(); ++ia) { |
793 |
|
|
atom1 = (*ia); |
794 |
|
|
|
795 |
|
|
for (jb = atomListColumn.begin(); |
796 |
|
|
jb != atomListColumn.end(); ++jb) { |
797 |
|
|
atom2 = (*jb); |
798 |
|
|
|
799 |
|
|
if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { |
800 |
|
|
|
801 |
|
|
vpair = 0.0; |
802 |
|
|
workPot = 0.0; |
803 |
|
|
exPot = 0.0; |
804 |
gezelter |
1879 |
f1.zero(); |
805 |
gezelter |
1782 |
dVdFQ1 = 0.0; |
806 |
|
|
dVdFQ2 = 0.0; |
807 |
|
|
|
808 |
|
|
fDecomp_->fillInteractionData(idat, atom1, atom2); |
809 |
|
|
|
810 |
|
|
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
811 |
|
|
vdwMult = vdwScale_[topoDist]; |
812 |
|
|
electroMult = electrostaticScale_[topoDist]; |
813 |
|
|
|
814 |
|
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
815 |
|
|
idat.d = &d_grp; |
816 |
|
|
idat.r2 = &rgrpsq; |
817 |
|
|
if (doHeatFlux_) |
818 |
|
|
vel2 = gvel2; |
819 |
|
|
} else { |
820 |
|
|
d = fDecomp_->getInteratomicVector(atom1, atom2); |
821 |
|
|
curSnapshot->wrapVector( d ); |
822 |
|
|
r2 = d.lengthSquare(); |
823 |
|
|
idat.d = &d; |
824 |
|
|
idat.r2 = &r2; |
825 |
|
|
if (doHeatFlux_) |
826 |
|
|
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
827 |
|
|
} |
828 |
|
|
|
829 |
|
|
r = sqrt( *(idat.r2) ); |
830 |
|
|
idat.rij = &r; |
831 |
gezelter |
1924 |
|
832 |
gezelter |
1782 |
if (iLoop == PREPAIR_LOOP) { |
833 |
|
|
interactionMan_->doPrePair(idat); |
834 |
|
|
} else { |
835 |
|
|
interactionMan_->doPair(idat); |
836 |
|
|
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
837 |
|
|
vij += vpair; |
838 |
|
|
fij += f1; |
839 |
|
|
stressTensor -= outProduct( *(idat.d), f1); |
840 |
|
|
if (doHeatFlux_) |
841 |
|
|
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
842 |
|
|
} |
843 |
|
|
} |
844 |
|
|
} |
845 |
|
|
} |
846 |
|
|
|
847 |
|
|
if (iLoop == PAIR_LOOP) { |
848 |
|
|
if (in_switching_region) { |
849 |
|
|
swderiv = vij * dswdr / rgrp; |
850 |
|
|
fg = swderiv * d_grp; |
851 |
|
|
fij += fg; |
852 |
|
|
|
853 |
|
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
854 |
gezelter |
1809 |
if (!fDecomp_->skipAtomPair(atomListRow[0], |
855 |
|
|
atomListColumn[0], |
856 |
|
|
cg1, cg2)) { |
857 |
|
|
stressTensor -= outProduct( *(idat.d), fg); |
858 |
|
|
if (doHeatFlux_) |
859 |
|
|
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
860 |
|
|
} |
861 |
gezelter |
1782 |
} |
862 |
|
|
|
863 |
|
|
for (ia = atomListRow.begin(); |
864 |
|
|
ia != atomListRow.end(); ++ia) { |
865 |
|
|
atom1 = (*ia); |
866 |
|
|
mf = fDecomp_->getMassFactorRow(atom1); |
867 |
|
|
// fg is the force on atom ia due to cutoff group's |
868 |
|
|
// presence in switching region |
869 |
|
|
fg = swderiv * d_grp * mf; |
870 |
|
|
fDecomp_->addForceToAtomRow(atom1, fg); |
871 |
|
|
if (atomListRow.size() > 1) { |
872 |
|
|
if (info_->usesAtomicVirial()) { |
873 |
|
|
// find the distance between the atom |
874 |
|
|
// and the center of the cutoff group: |
875 |
|
|
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
876 |
|
|
stressTensor -= outProduct(dag, fg); |
877 |
|
|
if (doHeatFlux_) |
878 |
|
|
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
879 |
|
|
} |
880 |
|
|
} |
881 |
|
|
} |
882 |
|
|
for (jb = atomListColumn.begin(); |
883 |
|
|
jb != atomListColumn.end(); ++jb) { |
884 |
|
|
atom2 = (*jb); |
885 |
|
|
mf = fDecomp_->getMassFactorColumn(atom2); |
886 |
|
|
// fg is the force on atom jb due to cutoff group's |
887 |
|
|
// presence in switching region |
888 |
|
|
fg = -swderiv * d_grp * mf; |
889 |
|
|
fDecomp_->addForceToAtomColumn(atom2, fg); |
890 |
|
|
|
891 |
|
|
if (atomListColumn.size() > 1) { |
892 |
|
|
if (info_->usesAtomicVirial()) { |
893 |
|
|
// find the distance between the atom |
894 |
|
|
// and the center of the cutoff group: |
895 |
|
|
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
896 |
|
|
stressTensor -= outProduct(dag, fg); |
897 |
|
|
if (doHeatFlux_) |
898 |
|
|
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
899 |
|
|
} |
900 |
|
|
} |
901 |
|
|
} |
902 |
|
|
} |
903 |
|
|
//if (!info_->usesAtomicVirial()) { |
904 |
|
|
// stressTensor -= outProduct(d_grp, fij); |
905 |
|
|
// if (doHeatFlux_) |
906 |
|
|
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
907 |
|
|
//} |
908 |
|
|
} |
909 |
|
|
} |
910 |
|
|
} |
911 |
|
|
|
912 |
|
|
if (iLoop == PREPAIR_LOOP) { |
913 |
|
|
if (info_->requiresPrepair()) { |
914 |
|
|
|
915 |
|
|
fDecomp_->collectIntermediateData(); |
916 |
|
|
|
917 |
|
|
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
918 |
|
|
fDecomp_->fillSelfData(sdat, atom1); |
919 |
|
|
interactionMan_->doPreForce(sdat); |
920 |
|
|
} |
921 |
|
|
|
922 |
|
|
fDecomp_->distributeIntermediateData(); |
923 |
|
|
|
924 |
|
|
} |
925 |
|
|
} |
926 |
gezelter |
246 |
} |
927 |
gezelter |
1880 |
|
928 |
gezelter |
1782 |
// collects pairwise information |
929 |
|
|
fDecomp_->collectData(); |
930 |
gezelter |
1915 |
if (cutoffMethod_ == EWALD_FULL) { |
931 |
gezelter |
1923 |
interactionMan_->doReciprocalSpaceSum(reciprocalPotential); |
932 |
gezelter |
1925 |
|
933 |
|
|
curSnapshot->setReciprocalPotential(reciprocalPotential); |
934 |
gezelter |
1915 |
} |
935 |
gezelter |
1782 |
|
936 |
|
|
if (info_->requiresSelfCorrection()) { |
937 |
|
|
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
938 |
|
|
fDecomp_->fillSelfData(sdat, atom1); |
939 |
|
|
interactionMan_->doSelfCorrection(sdat); |
940 |
|
|
} |
941 |
chrisfen |
998 |
} |
942 |
gezelter |
1782 |
|
943 |
|
|
// collects single-atom information |
944 |
|
|
fDecomp_->collectSelfData(); |
945 |
|
|
|
946 |
|
|
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
947 |
gezelter |
1925 |
*(fDecomp_->getPairwisePotential()); |
948 |
gezelter |
1782 |
|
949 |
|
|
curSnapshot->setLongRangePotential(longRangePotential); |
950 |
gezelter |
1126 |
|
951 |
gezelter |
1782 |
curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + |
952 |
|
|
*(fDecomp_->getExcludedPotential())); |
953 |
|
|
|
954 |
gezelter |
507 |
} |
955 |
gezelter |
246 |
|
956 |
gezelter |
1464 |
void ForceManager::postCalculation() { |
957 |
gezelter |
1782 |
|
958 |
|
|
vector<Perturbation*>::iterator pi; |
959 |
|
|
for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) { |
960 |
|
|
(*pi)->applyPerturbation(); |
961 |
|
|
} |
962 |
|
|
|
963 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
964 |
|
|
Molecule* mol; |
965 |
|
|
Molecule::RigidBodyIterator rbIter; |
966 |
|
|
RigidBody* rb; |
967 |
gezelter |
1126 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
968 |
gezelter |
1782 |
|
969 |
gezelter |
246 |
// collect the atomic forces onto rigid bodies |
970 |
gezelter |
1126 |
|
971 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
972 |
|
|
mol = info_->nextMolecule(mi)) { |
973 |
|
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
974 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
975 |
gezelter |
1464 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
976 |
gezelter |
1782 |
stressTensor += rbTau; |
977 |
gezelter |
507 |
} |
978 |
gezelter |
1126 |
} |
979 |
gezelter |
1464 |
|
980 |
gezelter |
1126 |
#ifdef IS_MPI |
981 |
gezelter |
1969 |
MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9, |
982 |
gezelter |
1987 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
983 |
gezelter |
1126 |
#endif |
984 |
gezelter |
1782 |
curSnapshot->setStressTensor(stressTensor); |
985 |
|
|
|
986 |
gezelter |
1879 |
if (info_->getSimParams()->getUseLongRangeCorrections()) { |
987 |
|
|
/* |
988 |
|
|
RealType vol = curSnapshot->getVolume(); |
989 |
|
|
RealType Elrc(0.0); |
990 |
|
|
RealType Wlrc(0.0); |
991 |
|
|
|
992 |
|
|
set<AtomType*>::iterator i; |
993 |
|
|
set<AtomType*>::iterator j; |
994 |
|
|
|
995 |
|
|
RealType n_i, n_j; |
996 |
|
|
RealType rho_i, rho_j; |
997 |
|
|
pair<RealType, RealType> LRI; |
998 |
|
|
|
999 |
|
|
for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { |
1000 |
|
|
n_i = RealType(info_->getGlobalCountOfType(*i)); |
1001 |
|
|
rho_i = n_i / vol; |
1002 |
|
|
for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) { |
1003 |
|
|
n_j = RealType(info_->getGlobalCountOfType(*j)); |
1004 |
|
|
rho_j = n_j / vol; |
1005 |
|
|
|
1006 |
|
|
LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) ); |
1007 |
|
|
|
1008 |
|
|
Elrc += n_i * rho_j * LRI.first; |
1009 |
|
|
Wlrc -= rho_i * rho_j * LRI.second; |
1010 |
|
|
} |
1011 |
|
|
} |
1012 |
|
|
Elrc *= 2.0 * NumericConstant::PI; |
1013 |
|
|
Wlrc *= 2.0 * NumericConstant::PI; |
1014 |
|
|
|
1015 |
|
|
RealType lrp = curSnapshot->getLongRangePotential(); |
1016 |
|
|
curSnapshot->setLongRangePotential(lrp + Elrc); |
1017 |
|
|
stressTensor += Wlrc * SquareMatrix3<RealType>::identity(); |
1018 |
|
|
curSnapshot->setStressTensor(stressTensor); |
1019 |
|
|
*/ |
1020 |
|
|
|
1021 |
|
|
} |
1022 |
gezelter |
507 |
} |
1023 |
gezelter |
1879 |
} |