ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 475 by tim, Tue Apr 12 18:30:37 2005 UTC vs.
branches/development/src/brains/ForceField.cpp (file contents), Revision 1725 by gezelter, Sat May 26 18:13:43 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43 < /**
44 <  * @file ForceField.cpp
45 <  * @author tlin
46 <  * @date 11/04/2004
47 <  * @time 22:51am
48 <  * @version 1.0
49 <  */
43 > /**
44 > * @file ForceField.cpp
45 > * @author tlin
46 > * @date 11/04/2004
47 > * @time 22:51am
48 > * @version 1.0
49 > */
50    
51 < #include "UseTheForce/ForceField.hpp"
51 > #include <algorithm>
52 > #include "brains/ForceField.hpp"
53   #include "utils/simError.h"
52 #include "UseTheForce/DarkSide/atype_interface.h"
53 namespace oopse {
54  
55 < ForceField::ForceField() {
55 > #include "io/OptionSectionParser.hpp"
56 > #include "io/BaseAtomTypesSectionParser.hpp"
57 > #include "io/DirectionalAtomTypesSectionParser.hpp"
58 > #include "io/AtomTypesSectionParser.hpp"
59 > #include "io/BendTypesSectionParser.hpp"
60 > #include "io/BondTypesSectionParser.hpp"
61 > #include "io/ChargeAtomTypesSectionParser.hpp"
62 > #include "io/EAMAtomTypesSectionParser.hpp"
63 > #include "io/FluctuatingChargeAtomTypesSectionParser.hpp"
64 > #include "io/GayBerneAtomTypesSectionParser.hpp"
65 > #include "io/InversionTypesSectionParser.hpp"
66 > #include "io/LennardJonesAtomTypesSectionParser.hpp"
67 > #include "io/MultipoleAtomTypesSectionParser.hpp"
68 > #include "io/NonBondedInteractionsSectionParser.hpp"
69 > #include "io/PolarizableAtomTypesSectionParser.hpp"
70 > #include "io/SCAtomTypesSectionParser.hpp"
71 > #include "io/ShapeAtomTypesSectionParser.hpp"
72 > #include "io/StickyAtomTypesSectionParser.hpp"
73 > #include "io/StickyPowerAtomTypesSectionParser.hpp"
74 > #include "io/TorsionTypesSectionParser.hpp"
75 >
76 > #include "types/LennardJonesAdapter.hpp"
77 > #include "types/EAMAdapter.hpp"
78 > #include "types/SuttonChenAdapter.hpp"
79 > #include "types/GayBerneAdapter.hpp"
80 > #include "types/StickyAdapter.hpp"
81 >
82 > namespace OpenMD {
83 >
84 >  ForceField::ForceField(std::string ffName) {
85 >
86      char* tempPath;
87      tempPath = getenv("FORCE_PARAM_PATH");
88 <
88 >    
89      if (tempPath == NULL) {
90 <        //convert a macro from compiler to a string in c++
91 <        STR_DEFINE(ffPath_, FRC_PATH );
90 >      //convert a macro from compiler to a string in c++
91 >      STR_DEFINE(ffPath_, FRC_PATH );
92      } else {
93 <        ffPath_ = tempPath;
93 >      ffPath_ = tempPath;
94      }
65 }
95  
96 +    setForceFieldFileName(ffName + ".frc");
97  
98 < ForceField::~ForceField() {
99 <    deleteAtypes();
100 < }
98 >    /**
99 >     * The order of adding section parsers is important.
100 >     *
101 >     * OptionSectionParser must come first to set options for other
102 >     * parsers
103 >     *
104 >     * DirectionalAtomTypesSectionParser should be added before
105 >     * AtomTypesSectionParser, and these two section parsers will
106 >     * actually create "real" AtomTypes (AtomTypesSectionParser will
107 >     * create AtomType and DirectionalAtomTypesSectionParser will
108 >     * create DirectionalAtomType, which is a subclass of AtomType and
109 >     * should come first).
110 >     *
111 >     * Other AtomTypes Section Parsers will not create the "real"
112 >     * AtomType, they only add and set some attributes of the AtomType
113 >     * (via the Adapters). Thus ordering of these is not important.
114 >     * AtomTypesSectionParser should be added before other atom type
115 >     *
116 >     * The order of BondTypesSectionParser, BendTypesSectionParser and
117 >     * TorsionTypesSectionParser, etc. are not important.
118 >     */
119  
120 < AtomType* ForceField::getAtomType(const std::string &at) {
120 >    spMan_.push_back(new OptionSectionParser(forceFieldOptions_));
121 >    spMan_.push_back(new BaseAtomTypesSectionParser());
122 >    spMan_.push_back(new DirectionalAtomTypesSectionParser(forceFieldOptions_));
123 >    spMan_.push_back(new AtomTypesSectionParser());
124 >
125 >    spMan_.push_back(new LennardJonesAtomTypesSectionParser(forceFieldOptions_));
126 >    spMan_.push_back(new ChargeAtomTypesSectionParser(forceFieldOptions_));
127 >    spMan_.push_back(new MultipoleAtomTypesSectionParser(forceFieldOptions_));
128 >    spMan_.push_back(new FluctuatingChargeAtomTypesSectionParser(forceFieldOptions_));
129 >    spMan_.push_back(new PolarizableAtomTypesSectionParser(forceFieldOptions_));
130 >    spMan_.push_back(new GayBerneAtomTypesSectionParser(forceFieldOptions_));
131 >    spMan_.push_back(new EAMAtomTypesSectionParser(forceFieldOptions_));
132 >    spMan_.push_back(new SCAtomTypesSectionParser(forceFieldOptions_));
133 >    spMan_.push_back(new ShapeAtomTypesSectionParser(forceFieldOptions_));
134 >    spMan_.push_back(new StickyAtomTypesSectionParser(forceFieldOptions_));
135 >    spMan_.push_back(new StickyPowerAtomTypesSectionParser(forceFieldOptions_));
136 >
137 >    spMan_.push_back(new BondTypesSectionParser(forceFieldOptions_));
138 >    spMan_.push_back(new BendTypesSectionParser(forceFieldOptions_));
139 >    spMan_.push_back(new TorsionTypesSectionParser(forceFieldOptions_));
140 >    spMan_.push_back(new InversionTypesSectionParser(forceFieldOptions_));
141 >
142 >    spMan_.push_back(new NonBondedInteractionsSectionParser(forceFieldOptions_));    
143 >  }
144 >
145 >  void ForceField::parse(const std::string& filename) {
146 >    ifstrstream* ffStream;
147 >
148 >    ffStream = openForceFieldFile(filename);
149 >
150 >    spMan_.parse(*ffStream, *this);
151 >
152 >    ForceField::AtomTypeContainer::MapTypeIterator i;
153 >    AtomType* at;
154 >
155 >    for (at = atomTypeCont_.beginType(i); at != NULL;
156 >         at = atomTypeCont_.nextType(i)) {
157 >
158 >      // useBase sets the responsibilities, and these have to be done
159 >      // after the atomTypes and Base types have all been scanned:
160 >
161 >      std::vector<AtomType*> ayb = at->allYourBase();      
162 >      if (ayb.size() > 1) {
163 >        for (int j = ayb.size()-1; j > 0; j--) {
164 >          
165 >          ayb[j-1]->useBase(ayb[j]);
166 >
167 >        }
168 >      }
169 >    }
170 >
171 >    delete ffStream;
172 >  }
173 >
174 >  /**
175 >   * getAtomType by string
176 >   *
177 >   * finds the requested atom type in this force field using the string
178 >   * name of the atom type.
179 >   */
180 >  AtomType* ForceField::getAtomType(const std::string &at) {
181      std::vector<std::string> keys;
182      keys.push_back(at);
183      return atomTypeCont_.find(keys);
184 < }
184 >  }
185  
186 < BondType* ForceField::getBondType(const std::string &at1, const std::string &at2) {
186 >  /**
187 >   * getAtomType by ident
188 >   *
189 >   * finds the requested atom type in this force field using the
190 >   * integer ident instead of the string name of the atom type.
191 >   */
192 >  AtomType* ForceField::getAtomType(int ident) {  
193 >    std::string at = atypeIdentToName.find(ident)->second;
194 >    return getAtomType(at);
195 >  }
196 >
197 >  BondType* ForceField::getBondType(const std::string &at1,
198 >                                    const std::string &at2) {
199      std::vector<std::string> keys;
200      keys.push_back(at1);
201      keys.push_back(at2);    
# Line 83 | Line 203 | BondType* ForceField::getBondType(const std::string &a
203      //try exact match first
204      BondType* bondType = bondTypeCont_.find(keys);
205      if (bondType) {
206 <        return bondType;
206 >      return bondType;
207      } else {
208 <        //if no exact match found, try wild card match
209 <        return bondTypeCont_.find(keys, wildCardAtomTypeName_);
210 <    }
208 >      AtomType* atype1;
209 >      AtomType* atype2;
210 >      std::vector<std::string> at1key;
211 >      at1key.push_back(at1);
212 >      atype1 = atomTypeCont_.find(at1key);
213 >  
214 >      std::vector<std::string> at2key;
215 >      at2key.push_back(at2);
216 >      atype2 = atomTypeCont_.find(at2key);
217  
218 < }
218 >      // query atom types for their chains of responsibility
219 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
220 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
221  
222 < BendType* ForceField::getBendType(const std::string &at1, const std::string &at2,
223 <                        const std::string &at3) {
222 >      std::vector<AtomType*>::iterator i;
223 >      std::vector<AtomType*>::iterator j;
224 >
225 >      int ii = 0;
226 >      int jj = 0;
227 >      int bondTypeScore;
228 >
229 >      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
230 >
231 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
232 >        jj = 0;
233 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
234 >
235 >          bondTypeScore = ii + jj;
236 >
237 >          std::vector<std::string> myKeys;
238 >          myKeys.push_back((*i)->getName());
239 >          myKeys.push_back((*j)->getName());
240 >
241 >          BondType* bondType = bondTypeCont_.find(myKeys);
242 >          if (bondType) {
243 >            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
244 >          }
245 >          jj++;
246 >        }
247 >        ii++;
248 >      }
249 >
250 >
251 >      if (foundBonds.size() > 0) {
252 >        // sort the foundBonds by the score:
253 >        std::sort(foundBonds.begin(), foundBonds.end());
254 >    
255 >        int bestScore = foundBonds[0].first;
256 >        std::vector<std::string> theKeys = foundBonds[0].second;
257 >        
258 >        BondType* bestType = bondTypeCont_.find(theKeys);
259 >        
260 >        return bestType;
261 >      } else {
262 >        //if no exact match found, try wild card match
263 >        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
264 >      }
265 >    }
266 >  }
267 >  
268 >  BendType* ForceField::getBendType(const std::string &at1,
269 >                                    const std::string &at2,
270 >                                    const std::string &at3) {
271      std::vector<std::string> keys;
272      keys.push_back(at1);
273      keys.push_back(at2);    
# Line 101 | Line 276 | BendType* ForceField::getBendType(const std::string &a
276      //try exact match first
277      BendType* bendType = bendTypeCont_.find(keys);
278      if (bendType) {
279 <        return bendType;
279 >      return bendType;
280      } else {
281 <        //if no exact match found, try wild card match
282 <        return bendTypeCont_.find(keys, wildCardAtomTypeName_);
281 >
282 >      AtomType* atype1;
283 >      AtomType* atype2;
284 >      AtomType* atype3;
285 >      std::vector<std::string> at1key;
286 >      at1key.push_back(at1);
287 >      atype1 = atomTypeCont_.find(at1key);
288 >  
289 >      std::vector<std::string> at2key;
290 >      at2key.push_back(at2);
291 >      atype2 = atomTypeCont_.find(at2key);
292 >
293 >      std::vector<std::string> at3key;
294 >      at3key.push_back(at3);
295 >      atype3 = atomTypeCont_.find(at3key);
296 >
297 >      // query atom types for their chains of responsibility
298 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
299 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
300 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
301 >
302 >      std::vector<AtomType*>::iterator i;
303 >      std::vector<AtomType*>::iterator j;
304 >      std::vector<AtomType*>::iterator k;
305 >
306 >      int ii = 0;
307 >      int jj = 0;
308 >      int kk = 0;
309 >      int IKscore;
310 >
311 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
312 >
313 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
314 >        ii = 0;
315 >        for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
316 >          kk = 0;
317 >          for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
318 >          
319 >            IKscore = ii + kk;
320 >
321 >            std::vector<std::string> myKeys;
322 >            myKeys.push_back((*i)->getName());
323 >            myKeys.push_back((*j)->getName());
324 >            myKeys.push_back((*k)->getName());
325 >
326 >            BendType* bendType = bendTypeCont_.find(myKeys);
327 >            if (bendType) {
328 >              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
329 >            }
330 >            kk++;
331 >          }
332 >          ii++;
333 >        }
334 >        jj++;
335 >      }
336 >      
337 >      if (foundBends.size() > 0) {
338 >        std::sort(foundBends.begin(), foundBends.end());
339 >        int jscore = foundBends[0].first;
340 >        int ikscore = foundBends[0].second;
341 >        std::vector<std::string> theKeys = foundBends[0].third;      
342 >        
343 >        BendType* bestType = bendTypeCont_.find(theKeys);  
344 >        return bestType;
345 >      } else {        
346 >        //if no exact match found, try wild card match
347 >        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
348 >      }
349      }
350 < }
350 >  }
351  
352 < TorsionType* ForceField::getTorsionType(const std::string &at1, const std::string &at2,
353 <                              const std::string &at3, const std::string &at4) {
352 >  TorsionType* ForceField::getTorsionType(const std::string &at1,
353 >                                          const std::string &at2,
354 >                                          const std::string &at3,
355 >                                          const std::string &at4) {
356      std::vector<std::string> keys;
357      keys.push_back(at1);
358      keys.push_back(at2);    
359      keys.push_back(at3);    
360      keys.push_back(at4);    
361  
362 +
363 +    //try exact match first
364      TorsionType* torsionType = torsionTypeCont_.find(keys);
365      if (torsionType) {
366 <        return torsionType;
366 >      return torsionType;
367      } else {
123        //if no exact match found, try wild card match
124        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
125    }
126    
127    return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
368  
369 < }
369 >      AtomType* atype1;
370 >      AtomType* atype2;
371 >      AtomType* atype3;
372 >      AtomType* atype4;
373 >      std::vector<std::string> at1key;
374 >      at1key.push_back(at1);
375 >      atype1 = atomTypeCont_.find(at1key);
376 >  
377 >      std::vector<std::string> at2key;
378 >      at2key.push_back(at2);
379 >      atype2 = atomTypeCont_.find(at2key);
380  
381 < BondType* ForceField::getExactBondType(const std::string &at1, const std::string &at2){
381 >      std::vector<std::string> at3key;
382 >      at3key.push_back(at3);
383 >      atype3 = atomTypeCont_.find(at3key);
384 >
385 >      std::vector<std::string> at4key;
386 >      at4key.push_back(at4);
387 >      atype4 = atomTypeCont_.find(at4key);
388 >
389 >      // query atom types for their chains of responsibility
390 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
391 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
392 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
393 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
394 >
395 >      std::vector<AtomType*>::iterator i;
396 >      std::vector<AtomType*>::iterator j;
397 >      std::vector<AtomType*>::iterator k;
398 >      std::vector<AtomType*>::iterator l;
399 >
400 >      int ii = 0;
401 >      int jj = 0;
402 >      int kk = 0;
403 >      int ll = 0;
404 >      int ILscore;
405 >      int JKscore;
406 >
407 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
408 >
409 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
410 >        kk = 0;
411 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
412 >          ii = 0;      
413 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
414 >            ll = 0;
415 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
416 >          
417 >              ILscore = ii + ll;
418 >              JKscore = jj + kk;
419 >
420 >              std::vector<std::string> myKeys;
421 >              myKeys.push_back((*i)->getName());
422 >              myKeys.push_back((*j)->getName());
423 >              myKeys.push_back((*k)->getName());
424 >              myKeys.push_back((*l)->getName());
425 >
426 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
427 >              if (torsionType) {
428 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
429 >              }
430 >              ll++;
431 >            }
432 >            ii++;
433 >          }
434 >          kk++;
435 >        }
436 >        jj++;
437 >      }
438 >      
439 >      if (foundTorsions.size() > 0) {
440 >        std::sort(foundTorsions.begin(), foundTorsions.end());
441 >        int jkscore = foundTorsions[0].first;
442 >        int ilscore = foundTorsions[0].second;
443 >        std::vector<std::string> theKeys = foundTorsions[0].third;
444 >        
445 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
446 >        return bestType;
447 >      } else {
448 >        //if no exact match found, try wild card match
449 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
450 >      }
451 >    }
452 >  }
453 >
454 >  InversionType* ForceField::getInversionType(const std::string &at1,
455 >                                              const std::string &at2,
456 >                                              const std::string &at3,
457 >                                              const std::string &at4) {
458      std::vector<std::string> keys;
459      keys.push_back(at1);
460      keys.push_back(at2);    
461 <    return bondTypeCont_.find(keys);
462 < }
461 >    keys.push_back(at3);    
462 >    keys.push_back(at4);    
463  
464 < BendType* ForceField::getExactBendType(const std::string &at1, const std::string &at2,
465 <                            const std::string &at3){
464 >    //try exact match first
465 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
466 >    if (inversionType) {
467 >      return inversionType;
468 >    } else {
469 >      
470 >      AtomType* atype1;
471 >      AtomType* atype2;
472 >      AtomType* atype3;
473 >      AtomType* atype4;
474 >      std::vector<std::string> at1key;
475 >      at1key.push_back(at1);
476 >      atype1 = atomTypeCont_.find(at1key);
477 >      
478 >      std::vector<std::string> at2key;
479 >      at2key.push_back(at2);
480 >      atype2 = atomTypeCont_.find(at2key);
481 >      
482 >      std::vector<std::string> at3key;
483 >      at3key.push_back(at3);
484 >      atype3 = atomTypeCont_.find(at3key);
485 >      
486 >      std::vector<std::string> at4key;
487 >      at4key.push_back(at4);
488 >      atype4 = atomTypeCont_.find(at4key);
489 >
490 >      // query atom types for their chains of responsibility
491 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
492 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
493 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
494 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
495 >
496 >      std::vector<AtomType*>::iterator i;
497 >      std::vector<AtomType*>::iterator j;
498 >      std::vector<AtomType*>::iterator k;
499 >      std::vector<AtomType*>::iterator l;
500 >
501 >      int ii = 0;
502 >      int jj = 0;
503 >      int kk = 0;
504 >      int ll = 0;
505 >      int Iscore;
506 >      int JKLscore;
507 >      
508 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
509 >      
510 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
511 >        kk = 0;
512 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
513 >          ii = 0;      
514 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
515 >            ll = 0;
516 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
517 >              
518 >              Iscore = ii;
519 >              JKLscore = jj + kk + ll;
520 >              
521 >              std::vector<std::string> myKeys;
522 >              myKeys.push_back((*i)->getName());
523 >              myKeys.push_back((*j)->getName());
524 >              myKeys.push_back((*k)->getName());
525 >              myKeys.push_back((*l)->getName());
526 >              
527 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
528 >              if (inversionType) {
529 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
530 >              }
531 >              ll++;
532 >            }
533 >            ii++;
534 >          }
535 >          kk++;
536 >        }
537 >        jj++;
538 >      }
539 >        
540 >      if (foundInversions.size() > 0) {
541 >        std::sort(foundInversions.begin(), foundInversions.end());
542 >        int iscore = foundInversions[0].first;
543 >        int jklscore = foundInversions[0].second;
544 >        std::vector<std::string> theKeys = foundInversions[0].third;
545 >        
546 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
547 >        return bestType;
548 >      } else {
549 >        //if no exact match found, try wild card match
550 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
551 >      }
552 >    }
553 >  }
554 >  
555 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
556 >    
557      std::vector<std::string> keys;
558      keys.push_back(at1);
559      keys.push_back(at2);    
560 +    
561 +    //try exact match first
562 +    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
563 +    if (nbiType) {
564 +      return nbiType;
565 +    } else {
566 +      AtomType* atype1;
567 +      AtomType* atype2;
568 +      std::vector<std::string> at1key;
569 +      at1key.push_back(at1);
570 +      atype1 = atomTypeCont_.find(at1key);
571 +      
572 +      std::vector<std::string> at2key;
573 +      at2key.push_back(at2);
574 +      atype2 = atomTypeCont_.find(at2key);
575 +      
576 +      // query atom types for their chains of responsibility
577 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
578 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
579 +      
580 +      std::vector<AtomType*>::iterator i;
581 +      std::vector<AtomType*>::iterator j;
582 +      
583 +      int ii = 0;
584 +      int jj = 0;
585 +      int nbiTypeScore;
586 +      
587 +      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
588 +      
589 +      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
590 +        jj = 0;
591 +        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
592 +          
593 +          nbiTypeScore = ii + jj;
594 +          
595 +          std::vector<std::string> myKeys;
596 +          myKeys.push_back((*i)->getName());
597 +          myKeys.push_back((*j)->getName());
598 +          
599 +          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
600 +          if (nbiType) {
601 +            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
602 +          }
603 +          jj++;
604 +        }
605 +        ii++;
606 +      }
607 +      
608 +      
609 +      if (foundNBI.size() > 0) {
610 +        // sort the foundNBI by the score:
611 +        std::sort(foundNBI.begin(), foundNBI.end());
612 +        
613 +        int bestScore = foundNBI[0].first;
614 +        std::vector<std::string> theKeys = foundNBI[0].second;
615 +        
616 +        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
617 +        return bestType;
618 +      } else {
619 +        //if no exact match found, try wild card match
620 +        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
621 +      }
622 +    }
623 +  }
624 +  
625 +  BondType* ForceField::getExactBondType(const std::string &at1,
626 +                                         const std::string &at2){
627 +    std::vector<std::string> keys;
628 +    keys.push_back(at1);
629 +    keys.push_back(at2);    
630 +    return bondTypeCont_.find(keys);
631 +  }
632 +  
633 +  BendType* ForceField::getExactBendType(const std::string &at1,
634 +                                         const std::string &at2,
635 +                                         const std::string &at3){
636 +    std::vector<std::string> keys;
637 +    keys.push_back(at1);
638 +    keys.push_back(at2);    
639      keys.push_back(at3);    
640      return bendTypeCont_.find(keys);
641 < }
642 <
643 < TorsionType* ForceField::getExactTorsionType(const std::string &at1, const std::string &at2,
644 <                                  const std::string &at3, const std::string &at4){
641 >  }
642 >  
643 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
644 >                                               const std::string &at2,
645 >                                               const std::string &at3,
646 >                                               const std::string &at4){
647      std::vector<std::string> keys;
648      keys.push_back(at1);
649      keys.push_back(at2);    
650      keys.push_back(at3);    
651      keys.push_back(at4);  
652      return torsionTypeCont_.find(keys);
653 < }
654 < bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
653 >  }
654 >  
655 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
656 >                                                   const std::string &at2,
657 >                                                   const std::string &at3,
658 >                                                   const std::string &at4){
659      std::vector<std::string> keys;
660 +    keys.push_back(at1);
661 +    keys.push_back(at2);    
662 +    keys.push_back(at3);    
663 +    keys.push_back(at4);  
664 +    return inversionTypeCont_.find(keys);
665 +  }
666 +  
667 +  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
668 +    std::vector<std::string> keys;
669 +    keys.push_back(at1);
670 +    keys.push_back(at2);    
671 +    return nonBondedInteractionTypeCont_.find(keys);
672 +  }
673 +  
674 +
675 +  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
676 +    std::vector<std::string> keys;
677      keys.push_back(at);
678 +    atypeIdentToName[atomType->getIdent()] = at;
679      return atomTypeCont_.add(keys, atomType);
680 < }
680 >  }
681  
682 < bool ForceField::addBondType(const std::string &at1, const std::string &at2, BondType* bondType) {
682 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
683      std::vector<std::string> keys;
684 +    keys.push_back(at);
685 +    atypeIdentToName[atomType->getIdent()] = at;
686 +    return atomTypeCont_.replace(keys, atomType);
687 +  }
688 +
689 +  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
690 +                               BondType* bondType) {
691 +    std::vector<std::string> keys;
692      keys.push_back(at1);
693      keys.push_back(at2);    
694 <    return bondTypeCont_.add(keys, bondType);
695 <
696 < }
697 <
698 < bool ForceField::addBendType(const std::string &at1, const std::string &at2,
171 <                        const std::string &at3, BendType* bendType) {
694 >    return bondTypeCont_.add(keys, bondType);    
695 >  }
696 >  
697 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
698 >                               const std::string &at3, BendType* bendType) {
699      std::vector<std::string> keys;
700      keys.push_back(at1);
701      keys.push_back(at2);    
702      keys.push_back(at3);    
703      return bendTypeCont_.add(keys, bendType);
704 < }
705 <
706 < bool ForceField::addTorsionType(const std::string &at1, const std::string &at2,
707 <                              const std::string &at3, const std::string &at4, TorsionType* torsionType) {
704 >  }
705 >  
706 >  bool ForceField::addTorsionType(const std::string &at1,
707 >                                  const std::string &at2,
708 >                                  const std::string &at3,
709 >                                  const std::string &at4,
710 >                                  TorsionType* torsionType) {
711      std::vector<std::string> keys;
712      keys.push_back(at1);
713      keys.push_back(at2);    
714      keys.push_back(at3);    
715      keys.push_back(at4);    
716      return torsionTypeCont_.add(keys, torsionType);
717 < }
717 >  }
718  
719 < double ForceField::getRcutFromAtomType(AtomType* at) {
720 <    /**@todo */
721 <    GenericData* data;
722 <    double rcut = 0.0;
723 <
724 <    if (at->isLennardJones()) {
725 <        data = at->getPropertyByName("LennardJones");
726 <        if (data != NULL) {
727 <            LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
728 <
729 <            if (ljData != NULL) {
730 <                LJParam ljParam = ljData->getData();
731 <
732 <                //by default use 2.5*sigma as cutoff radius
733 <                rcut = 2.5 * ljParam.sigma;
734 <                
735 <            } else {
736 <                    sprintf( painCave.errMsg,
737 <                           "Can not cast GenericData to LJParam\n");
738 <                    painCave.severity = OOPSE_ERROR;
739 <                    painCave.isFatal = 1;
740 <                    simError();          
741 <            }            
742 <        } else {
743 <            sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n");
744 <            painCave.severity = OOPSE_ERROR;
745 <            painCave.isFatal = 1;
746 <            simError();          
217 <        }
719 >  bool ForceField::addInversionType(const std::string &at1,
720 >                                    const std::string &at2,
721 >                                    const std::string &at3,
722 >                                    const std::string &at4,
723 >                                    InversionType* inversionType) {
724 >    std::vector<std::string> keys;
725 >    keys.push_back(at1);
726 >    keys.push_back(at2);    
727 >    keys.push_back(at3);    
728 >    keys.push_back(at4);    
729 >    return inversionTypeCont_.add(keys, inversionType);
730 >  }
731 >  
732 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
733 >                                               const std::string &at2,
734 >                                               NonBondedInteractionType* nbiType) {
735 >    std::vector<std::string> keys;
736 >    keys.push_back(at1);
737 >    keys.push_back(at2);    
738 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
739 >  }
740 >  
741 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
742 >    RealType rcut(0.0);
743 >    
744 >    LennardJonesAdapter lja = LennardJonesAdapter(at);
745 >    if (lja.isLennardJones()) {
746 >      rcut = 2.5 * lja.getSigma();
747      }
748 +    EAMAdapter ea = EAMAdapter(at);
749 +    if (ea.isEAM()) {
750 +      rcut = max(rcut, ea.getRcut());
751 +    }
752 +    SuttonChenAdapter sca = SuttonChenAdapter(at);
753 +    if (sca.isSuttonChen()) {
754 +      rcut = max(rcut, 2.0 * sca.getAlpha());
755 +    }
756 +    GayBerneAdapter gba = GayBerneAdapter(at);
757 +    if (gba.isGayBerne()) {
758 +      rcut = max(rcut, 2.5 * sqrt(2.0) * max(gba.getD(), gba.getL()));
759 +    }
760 +    StickyAdapter sa = StickyAdapter(at);
761 +    if (sa.isSticky()) {
762 +      rcut = max(rcut, max(sa.getRu(), sa.getRup()));
763 +    }
764  
765      return rcut;    
766 < }
766 >  }
767 >  
768  
769 <
224 < ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
769 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
770      std::string forceFieldFilename(filename);
771      ifstrstream* ffStream = new ifstrstream();
772      
# Line 229 | Line 774 | ifstrstream* ForceField::openForceFieldFile(const std:
774      ffStream->open(forceFieldFilename.c_str());
775      if(!ffStream->is_open()){
776  
777 <        forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
778 <        ffStream->open( forceFieldFilename.c_str() );
777 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
778 >      ffStream->open( forceFieldFilename.c_str() );
779  
780 <        //if current directory does not contain the force field file,
781 <        //try to open it in the path        
782 <        if(!ffStream->is_open()){
780 >      //if current directory does not contain the force field file,
781 >      //try to open it in the path        
782 >      if(!ffStream->is_open()){
783  
784 <            sprintf( painCave.errMsg,
785 <               "Error opening the force field parameter file:\n"
786 <               "\t%s\n"
787 <               "\tHave you tried setting the FORCE_PARAM_PATH environment "
788 <               "variable?\n",
789 <               forceFieldFilename.c_str() );
790 <            painCave.severity = OOPSE_ERROR;
791 <            painCave.isFatal = 1;
792 <            simError();
793 <        }
784 >        sprintf( painCave.errMsg,
785 >                 "Error opening the force field parameter file:\n"
786 >                 "\t%s\n"
787 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
788 >                 "variable?\n",
789 >                 forceFieldFilename.c_str() );
790 >        painCave.severity = OPENMD_ERROR;
791 >        painCave.isFatal = 1;
792 >        simError();
793 >      }
794      }  
250
795      return ffStream;
796 +  }
797  
798 < }
254 <
255 < } //end namespace oopse
798 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 475 by tim, Tue Apr 12 18:30:37 2005 UTC vs.
branches/development/src/brains/ForceField.cpp (property svn:keywords), Revision 1725 by gezelter, Sat May 26 18:13:43 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines