ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 475 by tim, Tue Apr 12 18:30:37 2005 UTC vs.
trunk/src/brains/ForceField.cpp (file contents), Revision 1880 by gezelter, Mon Jun 17 18:28:30 2013 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43 < /**
44 <  * @file ForceField.cpp
45 <  * @author tlin
46 <  * @date 11/04/2004
47 <  * @time 22:51am
48 <  * @version 1.0
48 <  */
43 > /**
44 > * @file ForceField.cpp
45 > * @author tlin
46 > * @date 11/04/2004
47 > * @version 1.0
48 > */
49    
50 < #include "UseTheForce/ForceField.hpp"
50 > #include <algorithm>
51 > #include "brains/ForceField.hpp"
52   #include "utils/simError.h"
52 #include "UseTheForce/DarkSide/atype_interface.h"
53 namespace oopse {
53  
54 < ForceField::ForceField() {
54 > #include "io/OptionSectionParser.hpp"
55 > #include "io/BaseAtomTypesSectionParser.hpp"
56 > #include "io/DirectionalAtomTypesSectionParser.hpp"
57 > #include "io/AtomTypesSectionParser.hpp"
58 > #include "io/BendTypesSectionParser.hpp"
59 > #include "io/BondTypesSectionParser.hpp"
60 > #include "io/ChargeAtomTypesSectionParser.hpp"
61 > #include "io/EAMAtomTypesSectionParser.hpp"
62 > #include "io/FluctuatingChargeAtomTypesSectionParser.hpp"
63 > #include "io/GayBerneAtomTypesSectionParser.hpp"
64 > #include "io/InversionTypesSectionParser.hpp"
65 > #include "io/LennardJonesAtomTypesSectionParser.hpp"
66 > #include "io/MultipoleAtomTypesSectionParser.hpp"
67 > #include "io/NonBondedInteractionsSectionParser.hpp"
68 > #include "io/PolarizableAtomTypesSectionParser.hpp"
69 > #include "io/SCAtomTypesSectionParser.hpp"
70 > #include "io/ShapeAtomTypesSectionParser.hpp"
71 > #include "io/StickyAtomTypesSectionParser.hpp"
72 > #include "io/StickyPowerAtomTypesSectionParser.hpp"
73 > #include "io/TorsionTypesSectionParser.hpp"
74 >
75 > #include "types/LennardJonesAdapter.hpp"
76 > #include "types/EAMAdapter.hpp"
77 > #include "types/SuttonChenAdapter.hpp"
78 > #include "types/GayBerneAdapter.hpp"
79 > #include "types/StickyAdapter.hpp"
80 >
81 > namespace OpenMD {
82 >
83 >  ForceField::ForceField(std::string ffName) {
84 >
85      char* tempPath;
86      tempPath = getenv("FORCE_PARAM_PATH");
87 <
87 >    
88      if (tempPath == NULL) {
89 <        //convert a macro from compiler to a string in c++
90 <        STR_DEFINE(ffPath_, FRC_PATH );
89 >      //convert a macro from compiler to a string in c++
90 >      STR_DEFINE(ffPath_, FRC_PATH );
91      } else {
92 <        ffPath_ = tempPath;
92 >      ffPath_ = tempPath;
93      }
65 }
94  
95 +    setForceFieldFileName(ffName + ".frc");
96  
97 < ForceField::~ForceField() {
98 <    deleteAtypes();
99 < }
97 >    /**
98 >     * The order of adding section parsers is important.
99 >     *
100 >     * OptionSectionParser must come first to set options for other
101 >     * parsers
102 >     *
103 >     * DirectionalAtomTypesSectionParser should be added before
104 >     * AtomTypesSectionParser, and these two section parsers will
105 >     * actually create "real" AtomTypes (AtomTypesSectionParser will
106 >     * create AtomType and DirectionalAtomTypesSectionParser will
107 >     * create DirectionalAtomType, which is a subclass of AtomType and
108 >     * should come first).
109 >     *
110 >     * Other AtomTypes Section Parsers will not create the "real"
111 >     * AtomType, they only add and set some attributes of the AtomType
112 >     * (via the Adapters). Thus ordering of these is not important.
113 >     * AtomTypesSectionParser should be added before other atom type
114 >     *
115 >     * The order of BondTypesSectionParser, BendTypesSectionParser and
116 >     * TorsionTypesSectionParser, etc. are not important.
117 >     */
118  
119 < AtomType* ForceField::getAtomType(const std::string &at) {
119 >    spMan_.push_back(new OptionSectionParser(forceFieldOptions_));
120 >    spMan_.push_back(new BaseAtomTypesSectionParser());
121 >    spMan_.push_back(new DirectionalAtomTypesSectionParser(forceFieldOptions_));
122 >    spMan_.push_back(new AtomTypesSectionParser());
123 >
124 >    spMan_.push_back(new LennardJonesAtomTypesSectionParser(forceFieldOptions_));
125 >    spMan_.push_back(new ChargeAtomTypesSectionParser(forceFieldOptions_));
126 >    spMan_.push_back(new MultipoleAtomTypesSectionParser(forceFieldOptions_));
127 >    spMan_.push_back(new FluctuatingChargeAtomTypesSectionParser(forceFieldOptions_));
128 >    spMan_.push_back(new PolarizableAtomTypesSectionParser(forceFieldOptions_));
129 >    spMan_.push_back(new GayBerneAtomTypesSectionParser(forceFieldOptions_));
130 >    spMan_.push_back(new EAMAtomTypesSectionParser(forceFieldOptions_));
131 >    spMan_.push_back(new SCAtomTypesSectionParser(forceFieldOptions_));
132 >    spMan_.push_back(new ShapeAtomTypesSectionParser(forceFieldOptions_));
133 >    spMan_.push_back(new StickyAtomTypesSectionParser(forceFieldOptions_));
134 >    spMan_.push_back(new StickyPowerAtomTypesSectionParser(forceFieldOptions_));
135 >
136 >    spMan_.push_back(new BondTypesSectionParser(forceFieldOptions_));
137 >    spMan_.push_back(new BendTypesSectionParser(forceFieldOptions_));
138 >    spMan_.push_back(new TorsionTypesSectionParser(forceFieldOptions_));
139 >    spMan_.push_back(new InversionTypesSectionParser(forceFieldOptions_));
140 >
141 >    spMan_.push_back(new NonBondedInteractionsSectionParser(forceFieldOptions_));    
142 >  }
143 >
144 >  void ForceField::parse(const std::string& filename) {
145 >    ifstrstream* ffStream;
146 >
147 >    ffStream = openForceFieldFile(filename);
148 >
149 >    spMan_.parse(*ffStream, *this);
150 >
151 >    ForceField::AtomTypeContainer::MapTypeIterator i;
152 >    AtomType* at;
153 >
154 >    for (at = atomTypeCont_.beginType(i); at != NULL;
155 >         at = atomTypeCont_.nextType(i)) {
156 >
157 >      // useBase sets the responsibilities, and these have to be done
158 >      // after the atomTypes and Base types have all been scanned:
159 >
160 >      std::vector<AtomType*> ayb = at->allYourBase();      
161 >      if (ayb.size() > 1) {
162 >        for (int j = ayb.size()-1; j > 0; j--) {
163 >          
164 >          ayb[j-1]->useBase(ayb[j]);
165 >
166 >        }
167 >      }
168 >    }
169 >
170 >    delete ffStream;
171 >  }
172 >
173 >  /**
174 >   * getAtomType by string
175 >   *
176 >   * finds the requested atom type in this force field using the string
177 >   * name of the atom type.
178 >   */
179 >  AtomType* ForceField::getAtomType(const std::string &at) {
180      std::vector<std::string> keys;
181      keys.push_back(at);
182      return atomTypeCont_.find(keys);
183 < }
183 >  }
184  
185 < BondType* ForceField::getBondType(const std::string &at1, const std::string &at2) {
185 >  /**
186 >   * getAtomType by ident
187 >   *
188 >   * finds the requested atom type in this force field using the
189 >   * integer ident instead of the string name of the atom type.
190 >   */
191 >  AtomType* ForceField::getAtomType(int ident) {  
192 >    std::string at = atypeIdentToName.find(ident)->second;
193 >    return getAtomType(at);
194 >  }
195 >
196 >  BondType* ForceField::getBondType(const std::string &at1,
197 >                                    const std::string &at2) {
198      std::vector<std::string> keys;
199      keys.push_back(at1);
200      keys.push_back(at2);    
# Line 83 | Line 202 | BondType* ForceField::getBondType(const std::string &a
202      //try exact match first
203      BondType* bondType = bondTypeCont_.find(keys);
204      if (bondType) {
205 <        return bondType;
205 >      return bondType;
206      } else {
207 <        //if no exact match found, try wild card match
208 <        return bondTypeCont_.find(keys, wildCardAtomTypeName_);
209 <    }
207 >      AtomType* atype1;
208 >      AtomType* atype2;
209 >      std::vector<std::string> at1key;
210 >      at1key.push_back(at1);
211 >      atype1 = atomTypeCont_.find(at1key);
212 >  
213 >      std::vector<std::string> at2key;
214 >      at2key.push_back(at2);
215 >      atype2 = atomTypeCont_.find(at2key);
216  
217 < }
217 >      // query atom types for their chains of responsibility
218 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
219 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
220  
221 < BendType* ForceField::getBendType(const std::string &at1, const std::string &at2,
222 <                        const std::string &at3) {
221 >      std::vector<AtomType*>::iterator i;
222 >      std::vector<AtomType*>::iterator j;
223 >
224 >      int ii = 0;
225 >      int jj = 0;
226 >      int bondTypeScore;
227 >
228 >      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
229 >
230 >      for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
231 >        jj = 0;
232 >        for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
233 >
234 >          bondTypeScore = ii + jj;
235 >
236 >          std::vector<std::string> myKeys;
237 >          myKeys.push_back((*i)->getName());
238 >          myKeys.push_back((*j)->getName());
239 >
240 >          BondType* bondType = bondTypeCont_.find(myKeys);
241 >          if (bondType) {
242 >            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
243 >          }
244 >          jj++;
245 >        }
246 >        ii++;
247 >      }
248 >
249 >
250 >      if (!foundBonds.empty()) {
251 >        // sort the foundBonds by the score:
252 >        std::sort(foundBonds.begin(), foundBonds.end());
253 >    
254 >        std::vector<std::string> theKeys = foundBonds[0].second;
255 >        
256 >        BondType* bestType = bondTypeCont_.find(theKeys);
257 >        
258 >        return bestType;
259 >      } else {
260 >        //if no exact match found, try wild card match
261 >        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
262 >      }
263 >    }
264 >  }
265 >  
266 >  BendType* ForceField::getBendType(const std::string &at1,
267 >                                    const std::string &at2,
268 >                                    const std::string &at3) {
269      std::vector<std::string> keys;
270      keys.push_back(at1);
271      keys.push_back(at2);    
# Line 101 | Line 274 | BendType* ForceField::getBendType(const std::string &a
274      //try exact match first
275      BendType* bendType = bendTypeCont_.find(keys);
276      if (bendType) {
277 <        return bendType;
277 >      return bendType;
278      } else {
279 <        //if no exact match found, try wild card match
280 <        return bendTypeCont_.find(keys, wildCardAtomTypeName_);
279 >
280 >      AtomType* atype1;
281 >      AtomType* atype2;
282 >      AtomType* atype3;
283 >      std::vector<std::string> at1key;
284 >      at1key.push_back(at1);
285 >      atype1 = atomTypeCont_.find(at1key);
286 >  
287 >      std::vector<std::string> at2key;
288 >      at2key.push_back(at2);
289 >      atype2 = atomTypeCont_.find(at2key);
290 >
291 >      std::vector<std::string> at3key;
292 >      at3key.push_back(at3);
293 >      atype3 = atomTypeCont_.find(at3key);
294 >
295 >      // query atom types for their chains of responsibility
296 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
297 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
298 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
299 >
300 >      std::vector<AtomType*>::iterator i;
301 >      std::vector<AtomType*>::iterator j;
302 >      std::vector<AtomType*>::iterator k;
303 >
304 >      int ii = 0;
305 >      int jj = 0;
306 >      int kk = 0;
307 >      int IKscore;
308 >
309 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
310 >
311 >      for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
312 >        ii = 0;
313 >        for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
314 >          kk = 0;
315 >          for (k = at3Chain.begin(); k != at3Chain.end(); ++k) {
316 >          
317 >            IKscore = ii + kk;
318 >
319 >            std::vector<std::string> myKeys;
320 >            myKeys.push_back((*i)->getName());
321 >            myKeys.push_back((*j)->getName());
322 >            myKeys.push_back((*k)->getName());
323 >
324 >            BendType* bendType = bendTypeCont_.find(myKeys);
325 >            if (bendType) {
326 >              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
327 >            }
328 >            kk++;
329 >          }
330 >          ii++;
331 >        }
332 >        jj++;
333 >      }
334 >      
335 >      if (!foundBends.empty()) {
336 >        std::sort(foundBends.begin(), foundBends.end());
337 >        std::vector<std::string> theKeys = foundBends[0].third;      
338 >        
339 >        BendType* bestType = bendTypeCont_.find(theKeys);  
340 >        return bestType;
341 >      } else {        
342 >        //if no exact match found, try wild card match
343 >        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
344 >      }
345      }
346 < }
346 >  }
347  
348 < TorsionType* ForceField::getTorsionType(const std::string &at1, const std::string &at2,
349 <                              const std::string &at3, const std::string &at4) {
348 >  TorsionType* ForceField::getTorsionType(const std::string &at1,
349 >                                          const std::string &at2,
350 >                                          const std::string &at3,
351 >                                          const std::string &at4) {
352      std::vector<std::string> keys;
353      keys.push_back(at1);
354      keys.push_back(at2);    
355      keys.push_back(at3);    
356      keys.push_back(at4);    
357  
358 +
359 +    //try exact match first
360      TorsionType* torsionType = torsionTypeCont_.find(keys);
361      if (torsionType) {
362 <        return torsionType;
362 >      return torsionType;
363      } else {
123        //if no exact match found, try wild card match
124        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
125    }
126    
127    return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
364  
365 < }
365 >      AtomType* atype1;
366 >      AtomType* atype2;
367 >      AtomType* atype3;
368 >      AtomType* atype4;
369 >      std::vector<std::string> at1key;
370 >      at1key.push_back(at1);
371 >      atype1 = atomTypeCont_.find(at1key);
372 >  
373 >      std::vector<std::string> at2key;
374 >      at2key.push_back(at2);
375 >      atype2 = atomTypeCont_.find(at2key);
376  
377 < BondType* ForceField::getExactBondType(const std::string &at1, const std::string &at2){
377 >      std::vector<std::string> at3key;
378 >      at3key.push_back(at3);
379 >      atype3 = atomTypeCont_.find(at3key);
380 >
381 >      std::vector<std::string> at4key;
382 >      at4key.push_back(at4);
383 >      atype4 = atomTypeCont_.find(at4key);
384 >
385 >      // query atom types for their chains of responsibility
386 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
387 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
388 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
389 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
390 >
391 >      std::vector<AtomType*>::iterator i;
392 >      std::vector<AtomType*>::iterator j;
393 >      std::vector<AtomType*>::iterator k;
394 >      std::vector<AtomType*>::iterator l;
395 >
396 >      int ii = 0;
397 >      int jj = 0;
398 >      int kk = 0;
399 >      int ll = 0;
400 >      int ILscore;
401 >      int JKscore;
402 >
403 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
404 >
405 >      for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
406 >        kk = 0;
407 >        for (k = at3Chain.begin(); k != at3Chain.end(); ++k) {
408 >          ii = 0;      
409 >          for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
410 >            ll = 0;
411 >            for (l = at4Chain.begin(); l != at4Chain.end(); ++l) {
412 >          
413 >              ILscore = ii + ll;
414 >              JKscore = jj + kk;
415 >
416 >              std::vector<std::string> myKeys;
417 >              myKeys.push_back((*i)->getName());
418 >              myKeys.push_back((*j)->getName());
419 >              myKeys.push_back((*k)->getName());
420 >              myKeys.push_back((*l)->getName());
421 >
422 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
423 >              if (torsionType) {
424 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
425 >              }
426 >              ll++;
427 >            }
428 >            ii++;
429 >          }
430 >          kk++;
431 >        }
432 >        jj++;
433 >      }
434 >      
435 >      if (!foundTorsions.empty()) {
436 >        std::sort(foundTorsions.begin(), foundTorsions.end());
437 >        std::vector<std::string> theKeys = foundTorsions[0].third;
438 >        
439 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
440 >        return bestType;
441 >      } else {
442 >        //if no exact match found, try wild card match
443 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
444 >      }
445 >    }
446 >  }
447 >
448 >  InversionType* ForceField::getInversionType(const std::string &at1,
449 >                                              const std::string &at2,
450 >                                              const std::string &at3,
451 >                                              const std::string &at4) {
452      std::vector<std::string> keys;
453      keys.push_back(at1);
454      keys.push_back(at2);    
455 <    return bondTypeCont_.find(keys);
456 < }
455 >    keys.push_back(at3);    
456 >    keys.push_back(at4);    
457  
458 < BendType* ForceField::getExactBendType(const std::string &at1, const std::string &at2,
459 <                            const std::string &at3){
458 >    //try exact match first
459 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
460 >    if (inversionType) {
461 >      return inversionType;
462 >    } else {
463 >      
464 >      AtomType* atype1;
465 >      AtomType* atype2;
466 >      AtomType* atype3;
467 >      AtomType* atype4;
468 >      std::vector<std::string> at1key;
469 >      at1key.push_back(at1);
470 >      atype1 = atomTypeCont_.find(at1key);
471 >      
472 >      std::vector<std::string> at2key;
473 >      at2key.push_back(at2);
474 >      atype2 = atomTypeCont_.find(at2key);
475 >      
476 >      std::vector<std::string> at3key;
477 >      at3key.push_back(at3);
478 >      atype3 = atomTypeCont_.find(at3key);
479 >      
480 >      std::vector<std::string> at4key;
481 >      at4key.push_back(at4);
482 >      atype4 = atomTypeCont_.find(at4key);
483 >
484 >      // query atom types for their chains of responsibility
485 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
486 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
487 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
488 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
489 >
490 >      std::vector<AtomType*>::iterator i;
491 >      std::vector<AtomType*>::iterator j;
492 >      std::vector<AtomType*>::iterator k;
493 >      std::vector<AtomType*>::iterator l;
494 >
495 >      int ii = 0;
496 >      int jj = 0;
497 >      int kk = 0;
498 >      int ll = 0;
499 >      int Iscore;
500 >      int JKLscore;
501 >      
502 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
503 >      
504 >      for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
505 >        kk = 0;
506 >        for (k = at3Chain.begin(); k != at3Chain.end(); ++k) {
507 >          ii = 0;      
508 >          for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
509 >            ll = 0;
510 >            for (l = at4Chain.begin(); l != at4Chain.end(); ++l) {
511 >              
512 >              Iscore = ii;
513 >              JKLscore = jj + kk + ll;
514 >              
515 >              std::vector<std::string> myKeys;
516 >              myKeys.push_back((*i)->getName());
517 >              myKeys.push_back((*j)->getName());
518 >              myKeys.push_back((*k)->getName());
519 >              myKeys.push_back((*l)->getName());
520 >              
521 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
522 >              if (inversionType) {
523 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
524 >              }
525 >              ll++;
526 >            }
527 >            ii++;
528 >          }
529 >          kk++;
530 >        }
531 >        jj++;
532 >      }
533 >        
534 >      if (!foundInversions.empty()) {
535 >        std::sort(foundInversions.begin(), foundInversions.end());
536 >        std::vector<std::string> theKeys = foundInversions[0].third;
537 >        
538 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
539 >        return bestType;
540 >      } else {
541 >        //if no exact match found, try wild card match
542 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
543 >      }
544 >    }
545 >  }
546 >  
547 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
548 >    
549      std::vector<std::string> keys;
550      keys.push_back(at1);
551      keys.push_back(at2);    
552 +    
553 +    //try exact match first
554 +    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
555 +    if (nbiType) {
556 +      return nbiType;
557 +    } else {
558 +      AtomType* atype1;
559 +      AtomType* atype2;
560 +      std::vector<std::string> at1key;
561 +      at1key.push_back(at1);
562 +      atype1 = atomTypeCont_.find(at1key);
563 +      
564 +      std::vector<std::string> at2key;
565 +      at2key.push_back(at2);
566 +      atype2 = atomTypeCont_.find(at2key);
567 +      
568 +      // query atom types for their chains of responsibility
569 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
570 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
571 +      
572 +      std::vector<AtomType*>::iterator i;
573 +      std::vector<AtomType*>::iterator j;
574 +      
575 +      int ii = 0;
576 +      int jj = 0;
577 +      int nbiTypeScore;
578 +      
579 +      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
580 +      
581 +      for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
582 +        jj = 0;
583 +        for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
584 +          
585 +          nbiTypeScore = ii + jj;
586 +          
587 +          std::vector<std::string> myKeys;
588 +          myKeys.push_back((*i)->getName());
589 +          myKeys.push_back((*j)->getName());
590 +          
591 +          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
592 +          if (nbiType) {
593 +            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
594 +          }
595 +          jj++;
596 +        }
597 +        ii++;
598 +      }
599 +      
600 +      
601 +      if (!foundNBI.empty()) {
602 +        // sort the foundNBI by the score:
603 +        std::sort(foundNBI.begin(), foundNBI.end());      
604 +        std::vector<std::string> theKeys = foundNBI[0].second;
605 +        
606 +        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
607 +        return bestType;
608 +      } else {
609 +        //if no exact match found, try wild card match
610 +        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
611 +      }
612 +    }
613 +  }
614 +  
615 +  BondType* ForceField::getExactBondType(const std::string &at1,
616 +                                         const std::string &at2){
617 +    std::vector<std::string> keys;
618 +    keys.push_back(at1);
619 +    keys.push_back(at2);    
620 +    return bondTypeCont_.find(keys);
621 +  }
622 +  
623 +  BendType* ForceField::getExactBendType(const std::string &at1,
624 +                                         const std::string &at2,
625 +                                         const std::string &at3){
626 +    std::vector<std::string> keys;
627 +    keys.push_back(at1);
628 +    keys.push_back(at2);    
629      keys.push_back(at3);    
630      return bendTypeCont_.find(keys);
631 < }
632 <
633 < TorsionType* ForceField::getExactTorsionType(const std::string &at1, const std::string &at2,
634 <                                  const std::string &at3, const std::string &at4){
631 >  }
632 >  
633 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
634 >                                               const std::string &at2,
635 >                                               const std::string &at3,
636 >                                               const std::string &at4){
637      std::vector<std::string> keys;
638      keys.push_back(at1);
639      keys.push_back(at2);    
640      keys.push_back(at3);    
641      keys.push_back(at4);  
642      return torsionTypeCont_.find(keys);
643 < }
644 < bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
643 >  }
644 >  
645 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
646 >                                                   const std::string &at2,
647 >                                                   const std::string &at3,
648 >                                                   const std::string &at4){
649      std::vector<std::string> keys;
650 +    keys.push_back(at1);
651 +    keys.push_back(at2);    
652 +    keys.push_back(at3);    
653 +    keys.push_back(at4);  
654 +    return inversionTypeCont_.find(keys);
655 +  }
656 +  
657 +  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
658 +    std::vector<std::string> keys;
659 +    keys.push_back(at1);
660 +    keys.push_back(at2);    
661 +    return nonBondedInteractionTypeCont_.find(keys);
662 +  }
663 +  
664 +
665 +  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
666 +    std::vector<std::string> keys;
667      keys.push_back(at);
668 +    atypeIdentToName[atomType->getIdent()] = at;
669      return atomTypeCont_.add(keys, atomType);
670 < }
670 >  }
671  
672 < bool ForceField::addBondType(const std::string &at1, const std::string &at2, BondType* bondType) {
672 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
673      std::vector<std::string> keys;
674 +    keys.push_back(at);
675 +    atypeIdentToName[atomType->getIdent()] = at;
676 +    return atomTypeCont_.replace(keys, atomType);
677 +  }
678 +
679 +  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
680 +                               BondType* bondType) {
681 +    std::vector<std::string> keys;
682      keys.push_back(at1);
683      keys.push_back(at2);    
684 <    return bondTypeCont_.add(keys, bondType);
685 <
686 < }
687 <
688 < bool ForceField::addBendType(const std::string &at1, const std::string &at2,
171 <                        const std::string &at3, BendType* bendType) {
684 >    return bondTypeCont_.add(keys, bondType);    
685 >  }
686 >  
687 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
688 >                               const std::string &at3, BendType* bendType) {
689      std::vector<std::string> keys;
690      keys.push_back(at1);
691      keys.push_back(at2);    
692      keys.push_back(at3);    
693      return bendTypeCont_.add(keys, bendType);
694 < }
695 <
696 < bool ForceField::addTorsionType(const std::string &at1, const std::string &at2,
697 <                              const std::string &at3, const std::string &at4, TorsionType* torsionType) {
694 >  }
695 >  
696 >  bool ForceField::addTorsionType(const std::string &at1,
697 >                                  const std::string &at2,
698 >                                  const std::string &at3,
699 >                                  const std::string &at4,
700 >                                  TorsionType* torsionType) {
701      std::vector<std::string> keys;
702      keys.push_back(at1);
703      keys.push_back(at2);    
704      keys.push_back(at3);    
705      keys.push_back(at4);    
706      return torsionTypeCont_.add(keys, torsionType);
707 < }
707 >  }
708  
709 < double ForceField::getRcutFromAtomType(AtomType* at) {
710 <    /**@todo */
711 <    GenericData* data;
712 <    double rcut = 0.0;
713 <
714 <    if (at->isLennardJones()) {
715 <        data = at->getPropertyByName("LennardJones");
716 <        if (data != NULL) {
717 <            LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
718 <
719 <            if (ljData != NULL) {
720 <                LJParam ljParam = ljData->getData();
721 <
722 <                //by default use 2.5*sigma as cutoff radius
723 <                rcut = 2.5 * ljParam.sigma;
724 <                
725 <            } else {
726 <                    sprintf( painCave.errMsg,
727 <                           "Can not cast GenericData to LJParam\n");
728 <                    painCave.severity = OOPSE_ERROR;
729 <                    painCave.isFatal = 1;
730 <                    simError();          
731 <            }            
732 <        } else {
733 <            sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n");
734 <            painCave.severity = OOPSE_ERROR;
735 <            painCave.isFatal = 1;
736 <            simError();          
217 <        }
709 >  bool ForceField::addInversionType(const std::string &at1,
710 >                                    const std::string &at2,
711 >                                    const std::string &at3,
712 >                                    const std::string &at4,
713 >                                    InversionType* inversionType) {
714 >    std::vector<std::string> keys;
715 >    keys.push_back(at1);
716 >    keys.push_back(at2);    
717 >    keys.push_back(at3);    
718 >    keys.push_back(at4);    
719 >    return inversionTypeCont_.add(keys, inversionType);
720 >  }
721 >  
722 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
723 >                                               const std::string &at2,
724 >                                               NonBondedInteractionType* nbiType) {
725 >    std::vector<std::string> keys;
726 >    keys.push_back(at1);
727 >    keys.push_back(at2);    
728 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
729 >  }
730 >  
731 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
732 >    RealType rcut(0.0);
733 >    
734 >    LennardJonesAdapter lja = LennardJonesAdapter(at);
735 >    if (lja.isLennardJones()) {
736 >      rcut = 2.5 * lja.getSigma();
737      }
738 +    EAMAdapter ea = EAMAdapter(at);
739 +    if (ea.isEAM()) {
740 +      rcut = max(rcut, ea.getRcut());
741 +    }
742 +    SuttonChenAdapter sca = SuttonChenAdapter(at);
743 +    if (sca.isSuttonChen()) {
744 +      rcut = max(rcut, 2.0 * sca.getAlpha());
745 +    }
746 +    GayBerneAdapter gba = GayBerneAdapter(at);
747 +    if (gba.isGayBerne()) {
748 +      rcut = max(rcut, 2.5 * sqrt(2.0) * max(gba.getD(), gba.getL()));
749 +    }
750 +    StickyAdapter sa = StickyAdapter(at);
751 +    if (sa.isSticky()) {
752 +      rcut = max(rcut, max(sa.getRu(), sa.getRup()));
753 +    }
754  
755      return rcut;    
756 < }
756 >  }
757 >  
758  
759 <
224 < ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
759 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
760      std::string forceFieldFilename(filename);
761      ifstrstream* ffStream = new ifstrstream();
762      
# Line 229 | Line 764 | ifstrstream* ForceField::openForceFieldFile(const std:
764      ffStream->open(forceFieldFilename.c_str());
765      if(!ffStream->is_open()){
766  
767 <        forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
768 <        ffStream->open( forceFieldFilename.c_str() );
767 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
768 >      ffStream->open( forceFieldFilename.c_str() );
769  
770 <        //if current directory does not contain the force field file,
771 <        //try to open it in the path        
772 <        if(!ffStream->is_open()){
770 >      //if current directory does not contain the force field file,
771 >      //try to open it in the path        
772 >      if(!ffStream->is_open()){
773  
774 <            sprintf( painCave.errMsg,
775 <               "Error opening the force field parameter file:\n"
776 <               "\t%s\n"
777 <               "\tHave you tried setting the FORCE_PARAM_PATH environment "
778 <               "variable?\n",
779 <               forceFieldFilename.c_str() );
780 <            painCave.severity = OOPSE_ERROR;
781 <            painCave.isFatal = 1;
782 <            simError();
783 <        }
774 >        sprintf( painCave.errMsg,
775 >                 "Error opening the force field parameter file:\n"
776 >                 "\t%s\n"
777 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
778 >                 "variable?\n",
779 >                 forceFieldFilename.c_str() );
780 >        painCave.severity = OPENMD_ERROR;
781 >        painCave.isFatal = 1;
782 >        simError();
783 >      }
784      }  
250
785      return ffStream;
786 +  }
787  
788 < }
254 <
255 < } //end namespace oopse
788 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 475 by tim, Tue Apr 12 18:30:37 2005 UTC vs.
trunk/src/brains/ForceField.cpp (property svn:keywords), Revision 1880 by gezelter, Mon Jun 17 18:28:30 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines