ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
trunk/src/brains/ForceField.cpp (file contents), Revision 1880 by gezelter, Mon Jun 17 18:28:30 2013 UTC

# Line 1 | Line 1
1 < #include "UseTheForce/ForceField.hpp"
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file ForceField.cpp
45 > * @author tlin
46 > * @date 11/04/2004
47 > * @version 1.0
48 > */
49 >  
50 > #include <algorithm>
51 > #include "brains/ForceField.hpp"
52 > #include "utils/simError.h"
53  
54 < AtomType* ForceField::getMatchingAtomType(const string &at) {
54 > #include "io/OptionSectionParser.hpp"
55 > #include "io/BaseAtomTypesSectionParser.hpp"
56 > #include "io/DirectionalAtomTypesSectionParser.hpp"
57 > #include "io/AtomTypesSectionParser.hpp"
58 > #include "io/BendTypesSectionParser.hpp"
59 > #include "io/BondTypesSectionParser.hpp"
60 > #include "io/ChargeAtomTypesSectionParser.hpp"
61 > #include "io/EAMAtomTypesSectionParser.hpp"
62 > #include "io/FluctuatingChargeAtomTypesSectionParser.hpp"
63 > #include "io/GayBerneAtomTypesSectionParser.hpp"
64 > #include "io/InversionTypesSectionParser.hpp"
65 > #include "io/LennardJonesAtomTypesSectionParser.hpp"
66 > #include "io/MultipoleAtomTypesSectionParser.hpp"
67 > #include "io/NonBondedInteractionsSectionParser.hpp"
68 > #include "io/PolarizableAtomTypesSectionParser.hpp"
69 > #include "io/SCAtomTypesSectionParser.hpp"
70 > #include "io/ShapeAtomTypesSectionParser.hpp"
71 > #include "io/StickyAtomTypesSectionParser.hpp"
72 > #include "io/StickyPowerAtomTypesSectionParser.hpp"
73 > #include "io/TorsionTypesSectionParser.hpp"
74  
75 <  map<string, AtomType*>::iterator iter;
76 <  
77 <  iter = atomTypeMap.find(at);
78 <  if (iter != atomTypeMap.end()) {
79 <    return iter->second;
10 <  } else {
11 <    return NULL;
12 <  }
13 < }
75 > #include "types/LennardJonesAdapter.hpp"
76 > #include "types/EAMAdapter.hpp"
77 > #include "types/SuttonChenAdapter.hpp"
78 > #include "types/GayBerneAdapter.hpp"
79 > #include "types/StickyAdapter.hpp"
80  
81 < BondType* ForceField::getMatchingBondType(const string &at1,
16 <                                          const string &at2) {
81 > namespace OpenMD {
82  
83 <  map<pair<string,string>, BondType*>::iterator iter;
19 <  vector<BondType*> foundTypes;
83 >  ForceField::ForceField(std::string ffName) {
84  
85 <  iter = bondTypeMap.find(pair<at1, at2>);
86 <  if (iter != bondTypeMap.end()) {
87 <    // exact match, so just return it
88 <    return iter->second;
89 <  }
85 >    char* tempPath;
86 >    tempPath = getenv("FORCE_PARAM_PATH");
87 >    
88 >    if (tempPath == NULL) {
89 >      //convert a macro from compiler to a string in c++
90 >      STR_DEFINE(ffPath_, FRC_PATH );
91 >    } else {
92 >      ffPath_ = tempPath;
93 >    }
94  
95 <  iter = bondTypeMap.find(pair<at2, at1>);
28 <  if (iter != bondTypeMap.end()) {
29 <    // exact match in reverse order, so just return it
30 <    return iter->second;
31 <  }
95 >    setForceFieldFileName(ffName + ".frc");
96  
97 <  iter = bondTypeMap.find(pair<at1, wildCardAtomTypeName>);
98 <  if (iter != bondTypeMap.end()) {
99 <    foundTypes.push_back(iter->second);
97 >    /**
98 >     * The order of adding section parsers is important.
99 >     *
100 >     * OptionSectionParser must come first to set options for other
101 >     * parsers
102 >     *
103 >     * DirectionalAtomTypesSectionParser should be added before
104 >     * AtomTypesSectionParser, and these two section parsers will
105 >     * actually create "real" AtomTypes (AtomTypesSectionParser will
106 >     * create AtomType and DirectionalAtomTypesSectionParser will
107 >     * create DirectionalAtomType, which is a subclass of AtomType and
108 >     * should come first).
109 >     *
110 >     * Other AtomTypes Section Parsers will not create the "real"
111 >     * AtomType, they only add and set some attributes of the AtomType
112 >     * (via the Adapters). Thus ordering of these is not important.
113 >     * AtomTypesSectionParser should be added before other atom type
114 >     *
115 >     * The order of BondTypesSectionParser, BendTypesSectionParser and
116 >     * TorsionTypesSectionParser, etc. are not important.
117 >     */
118 >
119 >    spMan_.push_back(new OptionSectionParser(forceFieldOptions_));
120 >    spMan_.push_back(new BaseAtomTypesSectionParser());
121 >    spMan_.push_back(new DirectionalAtomTypesSectionParser(forceFieldOptions_));
122 >    spMan_.push_back(new AtomTypesSectionParser());
123 >
124 >    spMan_.push_back(new LennardJonesAtomTypesSectionParser(forceFieldOptions_));
125 >    spMan_.push_back(new ChargeAtomTypesSectionParser(forceFieldOptions_));
126 >    spMan_.push_back(new MultipoleAtomTypesSectionParser(forceFieldOptions_));
127 >    spMan_.push_back(new FluctuatingChargeAtomTypesSectionParser(forceFieldOptions_));
128 >    spMan_.push_back(new PolarizableAtomTypesSectionParser(forceFieldOptions_));
129 >    spMan_.push_back(new GayBerneAtomTypesSectionParser(forceFieldOptions_));
130 >    spMan_.push_back(new EAMAtomTypesSectionParser(forceFieldOptions_));
131 >    spMan_.push_back(new SCAtomTypesSectionParser(forceFieldOptions_));
132 >    spMan_.push_back(new ShapeAtomTypesSectionParser(forceFieldOptions_));
133 >    spMan_.push_back(new StickyAtomTypesSectionParser(forceFieldOptions_));
134 >    spMan_.push_back(new StickyPowerAtomTypesSectionParser(forceFieldOptions_));
135 >
136 >    spMan_.push_back(new BondTypesSectionParser(forceFieldOptions_));
137 >    spMan_.push_back(new BendTypesSectionParser(forceFieldOptions_));
138 >    spMan_.push_back(new TorsionTypesSectionParser(forceFieldOptions_));
139 >    spMan_.push_back(new InversionTypesSectionParser(forceFieldOptions_));
140 >
141 >    spMan_.push_back(new NonBondedInteractionsSectionParser(forceFieldOptions_));    
142    }
143  
144 <  iter = bondTypeMap.find(pair<at2, wildCardAtomTypeName>);
145 <  if (iter != bondTypeMap.end()) {
146 <    foundTypes.push_back(iter->second);
144 >  void ForceField::parse(const std::string& filename) {
145 >    ifstrstream* ffStream;
146 >
147 >    ffStream = openForceFieldFile(filename);
148 >
149 >    spMan_.parse(*ffStream, *this);
150 >
151 >    ForceField::AtomTypeContainer::MapTypeIterator i;
152 >    AtomType* at;
153 >
154 >    for (at = atomTypeCont_.beginType(i); at != NULL;
155 >         at = atomTypeCont_.nextType(i)) {
156 >
157 >      // useBase sets the responsibilities, and these have to be done
158 >      // after the atomTypes and Base types have all been scanned:
159 >
160 >      std::vector<AtomType*> ayb = at->allYourBase();      
161 >      if (ayb.size() > 1) {
162 >        for (int j = ayb.size()-1; j > 0; j--) {
163 >          
164 >          ayb[j-1]->useBase(ayb[j]);
165 >
166 >        }
167 >      }
168 >    }
169 >
170 >    delete ffStream;
171    }
172  
173 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at1>);
174 <  if (iter != bondTypeMap.end()) {
175 <    foundTypes.push_back(iter->second);
173 >  /**
174 >   * getAtomType by string
175 >   *
176 >   * finds the requested atom type in this force field using the string
177 >   * name of the atom type.
178 >   */
179 >  AtomType* ForceField::getAtomType(const std::string &at) {
180 >    std::vector<std::string> keys;
181 >    keys.push_back(at);
182 >    return atomTypeCont_.find(keys);
183    }
184  
185 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at2>);
186 <  if (iter != bondTypeMap.end()) {
187 <    foundTypes.push_back(iter->second);
185 >  /**
186 >   * getAtomType by ident
187 >   *
188 >   * finds the requested atom type in this force field using the
189 >   * integer ident instead of the string name of the atom type.
190 >   */
191 >  AtomType* ForceField::getAtomType(int ident) {  
192 >    std::string at = atypeIdentToName.find(ident)->second;
193 >    return getAtomType(at);
194    }
195 +
196 +  BondType* ForceField::getBondType(const std::string &at1,
197 +                                    const std::string &at2) {
198 +    std::vector<std::string> keys;
199 +    keys.push_back(at1);
200 +    keys.push_back(at2);    
201 +
202 +    //try exact match first
203 +    BondType* bondType = bondTypeCont_.find(keys);
204 +    if (bondType) {
205 +      return bondType;
206 +    } else {
207 +      AtomType* atype1;
208 +      AtomType* atype2;
209 +      std::vector<std::string> at1key;
210 +      at1key.push_back(at1);
211 +      atype1 = atomTypeCont_.find(at1key);
212    
213 <  if (foundTypes.empty()) {
214 <    return NULL;
215 <  } else {
56 <    
213 >      std::vector<std::string> at2key;
214 >      at2key.push_back(at2);
215 >      atype2 = atomTypeCont_.find(at2key);
216  
217 <
217 >      // query atom types for their chains of responsibility
218 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
219 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
220  
221 +      std::vector<AtomType*>::iterator i;
222 +      std::vector<AtomType*>::iterator j;
223  
224 +      int ii = 0;
225 +      int jj = 0;
226 +      int bondTypeScore;
227  
228 +      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
229 +
230 +      for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
231 +        jj = 0;
232 +        for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
233 +
234 +          bondTypeScore = ii + jj;
235 +
236 +          std::vector<std::string> myKeys;
237 +          myKeys.push_back((*i)->getName());
238 +          myKeys.push_back((*j)->getName());
239 +
240 +          BondType* bondType = bondTypeCont_.find(myKeys);
241 +          if (bondType) {
242 +            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
243 +          }
244 +          jj++;
245 +        }
246 +        ii++;
247 +      }
248 +
249 +
250 +      if (!foundBonds.empty()) {
251 +        // sort the foundBonds by the score:
252 +        std::sort(foundBonds.begin(), foundBonds.end());
253 +    
254 +        std::vector<std::string> theKeys = foundBonds[0].second;
255 +        
256 +        BondType* bestType = bondTypeCont_.find(theKeys);
257 +        
258 +        return bestType;
259 +      } else {
260 +        //if no exact match found, try wild card match
261 +        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
262 +      }
263 +    }
264 +  }
265    
266 +  BendType* ForceField::getBendType(const std::string &at1,
267 +                                    const std::string &at2,
268 +                                    const std::string &at3) {
269 +    std::vector<std::string> keys;
270 +    keys.push_back(at1);
271 +    keys.push_back(at2);    
272 +    keys.push_back(at3);    
273  
274 +    //try exact match first
275 +    BendType* bendType = bendTypeCont_.find(keys);
276 +    if (bendType) {
277 +      return bendType;
278 +    } else {
279  
280 < BendType* ForceField::getMatchingBendType(const string &at1, const string &at2,
281 <                                          const string &at3);
282 < TorsionType* ForceField::getMatchingTorsionType(const string &at1, const string &at2,
283 <                                                const string &at3, const string &at4);
280 >      AtomType* atype1;
281 >      AtomType* atype2;
282 >      AtomType* atype3;
283 >      std::vector<std::string> at1key;
284 >      at1key.push_back(at1);
285 >      atype1 = atomTypeCont_.find(at1key);
286 >  
287 >      std::vector<std::string> at2key;
288 >      at2key.push_back(at2);
289 >      atype2 = atomTypeCont_.find(at2key);
290  
291 < double ForceField::getRcutForAtomType(AtomType* at);
291 >      std::vector<std::string> at3key;
292 >      at3key.push_back(at3);
293 >      atype3 = atomTypeCont_.find(at3key);
294  
295 +      // query atom types for their chains of responsibility
296 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
297 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
298 +      std::vector<AtomType*> at3Chain = atype3->allYourBase();
299  
300 < vector<vector<string> > generateWildcardSequence(const vector<string> atomTypes) {
301 <  
302 <   vector<vector<string> > results;
300 >      std::vector<AtomType*>::iterator i;
301 >      std::vector<AtomType*>::iterator j;
302 >      std::vector<AtomType*>::iterator k;
303  
304 <  
304 >      int ii = 0;
305 >      int jj = 0;
306 >      int kk = 0;
307 >      int IKscore;
308  
309 +      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
310  
311 <   vector<vector< string> > getAllWildcardPermutations(const vector<string> myAts) {
312 <    
313 <     int nStrings;
314 <     vector<string> oneResult;
315 <     vector<vector<string> > allResults;
311 >      for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
312 >        ii = 0;
313 >        for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
314 >          kk = 0;
315 >          for (k = at3Chain.begin(); k != at3Chain.end(); ++k) {
316 >          
317 >            IKscore = ii + kk;
318  
319 <     nStrings = myAts.size();
319 >            std::vector<std::string> myKeys;
320 >            myKeys.push_back((*i)->getName());
321 >            myKeys.push_back((*j)->getName());
322 >            myKeys.push_back((*k)->getName());
323  
324 <     if (nStrings == 1) {
325 <       oneResult.push_back(wildcardCharacter);
326 <       allResults.push_back(oneResult);
327 <       return allResults;
328 <     } else {
329 <      
330 <       for (i=0; i < nStrings; i++) {
331 <         oneResult = myAts;
332 <         replace(oneResult.begin(), oneResult.end(),
324 >            BendType* bendType = bendTypeCont_.find(myKeys);
325 >            if (bendType) {
326 >              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
327 >            }
328 >            kk++;
329 >          }
330 >          ii++;
331 >        }
332 >        jj++;
333 >      }
334 >      
335 >      if (!foundBends.empty()) {
336 >        std::sort(foundBends.begin(), foundBends.end());
337 >        std::vector<std::string> theKeys = foundBends[0].third;      
338 >        
339 >        BendType* bestType = bendTypeCont_.find(theKeys);  
340 >        return bestType;
341 >      } else {        
342 >        //if no exact match found, try wild card match
343 >        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
344 >      }
345 >    }
346 >  }
347 >
348 >  TorsionType* ForceField::getTorsionType(const std::string &at1,
349 >                                          const std::string &at2,
350 >                                          const std::string &at3,
351 >                                          const std::string &at4) {
352 >    std::vector<std::string> keys;
353 >    keys.push_back(at1);
354 >    keys.push_back(at2);    
355 >    keys.push_back(at3);    
356 >    keys.push_back(at4);    
357 >
358 >
359 >    //try exact match first
360 >    TorsionType* torsionType = torsionTypeCont_.find(keys);
361 >    if (torsionType) {
362 >      return torsionType;
363 >    } else {
364 >
365 >      AtomType* atype1;
366 >      AtomType* atype2;
367 >      AtomType* atype3;
368 >      AtomType* atype4;
369 >      std::vector<std::string> at1key;
370 >      at1key.push_back(at1);
371 >      atype1 = atomTypeCont_.find(at1key);
372 >  
373 >      std::vector<std::string> at2key;
374 >      at2key.push_back(at2);
375 >      atype2 = atomTypeCont_.find(at2key);
376 >
377 >      std::vector<std::string> at3key;
378 >      at3key.push_back(at3);
379 >      atype3 = atomTypeCont_.find(at3key);
380 >
381 >      std::vector<std::string> at4key;
382 >      at4key.push_back(at4);
383 >      atype4 = atomTypeCont_.find(at4key);
384 >
385 >      // query atom types for their chains of responsibility
386 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
387 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
388 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
389 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
390 >
391 >      std::vector<AtomType*>::iterator i;
392 >      std::vector<AtomType*>::iterator j;
393 >      std::vector<AtomType*>::iterator k;
394 >      std::vector<AtomType*>::iterator l;
395 >
396 >      int ii = 0;
397 >      int jj = 0;
398 >      int kk = 0;
399 >      int ll = 0;
400 >      int ILscore;
401 >      int JKscore;
402 >
403 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
404 >
405 >      for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
406 >        kk = 0;
407 >        for (k = at3Chain.begin(); k != at3Chain.end(); ++k) {
408 >          ii = 0;      
409 >          for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
410 >            ll = 0;
411 >            for (l = at4Chain.begin(); l != at4Chain.end(); ++l) {
412 >          
413 >              ILscore = ii + ll;
414 >              JKscore = jj + kk;
415 >
416 >              std::vector<std::string> myKeys;
417 >              myKeys.push_back((*i)->getName());
418 >              myKeys.push_back((*j)->getName());
419 >              myKeys.push_back((*k)->getName());
420 >              myKeys.push_back((*l)->getName());
421 >
422 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
423 >              if (torsionType) {
424 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
425 >              }
426 >              ll++;
427 >            }
428 >            ii++;
429 >          }
430 >          kk++;
431 >        }
432 >        jj++;
433 >      }
434 >      
435 >      if (!foundTorsions.empty()) {
436 >        std::sort(foundTorsions.begin(), foundTorsions.end());
437 >        std::vector<std::string> theKeys = foundTorsions[0].third;
438 >        
439 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
440 >        return bestType;
441 >      } else {
442 >        //if no exact match found, try wild card match
443 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
444 >      }
445 >    }
446 >  }
447 >
448 >  InversionType* ForceField::getInversionType(const std::string &at1,
449 >                                              const std::string &at2,
450 >                                              const std::string &at3,
451 >                                              const std::string &at4) {
452 >    std::vector<std::string> keys;
453 >    keys.push_back(at1);
454 >    keys.push_back(at2);    
455 >    keys.push_back(at3);    
456 >    keys.push_back(at4);    
457 >
458 >    //try exact match first
459 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
460 >    if (inversionType) {
461 >      return inversionType;
462 >    } else {
463 >      
464 >      AtomType* atype1;
465 >      AtomType* atype2;
466 >      AtomType* atype3;
467 >      AtomType* atype4;
468 >      std::vector<std::string> at1key;
469 >      at1key.push_back(at1);
470 >      atype1 = atomTypeCont_.find(at1key);
471 >      
472 >      std::vector<std::string> at2key;
473 >      at2key.push_back(at2);
474 >      atype2 = atomTypeCont_.find(at2key);
475 >      
476 >      std::vector<std::string> at3key;
477 >      at3key.push_back(at3);
478 >      atype3 = atomTypeCont_.find(at3key);
479 >      
480 >      std::vector<std::string> at4key;
481 >      at4key.push_back(at4);
482 >      atype4 = atomTypeCont_.find(at4key);
483 >
484 >      // query atom types for their chains of responsibility
485 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
486 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
487 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
488 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
489 >
490 >      std::vector<AtomType*>::iterator i;
491 >      std::vector<AtomType*>::iterator j;
492 >      std::vector<AtomType*>::iterator k;
493 >      std::vector<AtomType*>::iterator l;
494 >
495 >      int ii = 0;
496 >      int jj = 0;
497 >      int kk = 0;
498 >      int ll = 0;
499 >      int Iscore;
500 >      int JKLscore;
501 >      
502 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
503 >      
504 >      for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
505 >        kk = 0;
506 >        for (k = at3Chain.begin(); k != at3Chain.end(); ++k) {
507 >          ii = 0;      
508 >          for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
509 >            ll = 0;
510 >            for (l = at4Chain.begin(); l != at4Chain.end(); ++l) {
511 >              
512 >              Iscore = ii;
513 >              JKLscore = jj + kk + ll;
514 >              
515 >              std::vector<std::string> myKeys;
516 >              myKeys.push_back((*i)->getName());
517 >              myKeys.push_back((*j)->getName());
518 >              myKeys.push_back((*k)->getName());
519 >              myKeys.push_back((*l)->getName());
520 >              
521 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
522 >              if (inversionType) {
523 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
524 >              }
525 >              ll++;
526 >            }
527 >            ii++;
528 >          }
529 >          kk++;
530 >        }
531 >        jj++;
532 >      }
533 >        
534 >      if (!foundInversions.empty()) {
535 >        std::sort(foundInversions.begin(), foundInversions.end());
536 >        std::vector<std::string> theKeys = foundInversions[0].third;
537 >        
538 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
539 >        return bestType;
540 >      } else {
541 >        //if no exact match found, try wild card match
542 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
543 >      }
544 >    }
545 >  }
546 >  
547 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
548 >    
549 >    std::vector<std::string> keys;
550 >    keys.push_back(at1);
551 >    keys.push_back(at2);    
552 >    
553 >    //try exact match first
554 >    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
555 >    if (nbiType) {
556 >      return nbiType;
557 >    } else {
558 >      AtomType* atype1;
559 >      AtomType* atype2;
560 >      std::vector<std::string> at1key;
561 >      at1key.push_back(at1);
562 >      atype1 = atomTypeCont_.find(at1key);
563 >      
564 >      std::vector<std::string> at2key;
565 >      at2key.push_back(at2);
566 >      atype2 = atomTypeCont_.find(at2key);
567 >      
568 >      // query atom types for their chains of responsibility
569 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
570 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
571 >      
572 >      std::vector<AtomType*>::iterator i;
573 >      std::vector<AtomType*>::iterator j;
574 >      
575 >      int ii = 0;
576 >      int jj = 0;
577 >      int nbiTypeScore;
578 >      
579 >      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
580 >      
581 >      for (i = at1Chain.begin(); i != at1Chain.end(); ++i) {
582 >        jj = 0;
583 >        for (j = at2Chain.begin(); j != at2Chain.end(); ++j) {
584 >          
585 >          nbiTypeScore = ii + jj;
586 >          
587 >          std::vector<std::string> myKeys;
588 >          myKeys.push_back((*i)->getName());
589 >          myKeys.push_back((*j)->getName());
590 >          
591 >          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
592 >          if (nbiType) {
593 >            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
594 >          }
595 >          jj++;
596 >        }
597 >        ii++;
598 >      }
599 >      
600 >      
601 >      if (!foundNBI.empty()) {
602 >        // sort the foundNBI by the score:
603 >        std::sort(foundNBI.begin(), foundNBI.end());      
604 >        std::vector<std::string> theKeys = foundNBI[0].second;
605 >        
606 >        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
607 >        return bestType;
608 >      } else {
609 >        //if no exact match found, try wild card match
610 >        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
611 >      }
612 >    }
613 >  }
614 >  
615 >  BondType* ForceField::getExactBondType(const std::string &at1,
616 >                                         const std::string &at2){
617 >    std::vector<std::string> keys;
618 >    keys.push_back(at1);
619 >    keys.push_back(at2);    
620 >    return bondTypeCont_.find(keys);
621 >  }
622 >  
623 >  BendType* ForceField::getExactBendType(const std::string &at1,
624 >                                         const std::string &at2,
625 >                                         const std::string &at3){
626 >    std::vector<std::string> keys;
627 >    keys.push_back(at1);
628 >    keys.push_back(at2);    
629 >    keys.push_back(at3);    
630 >    return bendTypeCont_.find(keys);
631 >  }
632 >  
633 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
634 >                                               const std::string &at2,
635 >                                               const std::string &at3,
636 >                                               const std::string &at4){
637 >    std::vector<std::string> keys;
638 >    keys.push_back(at1);
639 >    keys.push_back(at2);    
640 >    keys.push_back(at3);    
641 >    keys.push_back(at4);  
642 >    return torsionTypeCont_.find(keys);
643 >  }
644 >  
645 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
646 >                                                   const std::string &at2,
647 >                                                   const std::string &at3,
648 >                                                   const std::string &at4){
649 >    std::vector<std::string> keys;
650 >    keys.push_back(at1);
651 >    keys.push_back(at2);    
652 >    keys.push_back(at3);    
653 >    keys.push_back(at4);  
654 >    return inversionTypeCont_.find(keys);
655 >  }
656 >  
657 >  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
658 >    std::vector<std::string> keys;
659 >    keys.push_back(at1);
660 >    keys.push_back(at2);    
661 >    return nonBondedInteractionTypeCont_.find(keys);
662 >  }
663 >  
664 >
665 >  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
666 >    std::vector<std::string> keys;
667 >    keys.push_back(at);
668 >    atypeIdentToName[atomType->getIdent()] = at;
669 >    return atomTypeCont_.add(keys, atomType);
670 >  }
671 >
672 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
673 >    std::vector<std::string> keys;
674 >    keys.push_back(at);
675 >    atypeIdentToName[atomType->getIdent()] = at;
676 >    return atomTypeCont_.replace(keys, atomType);
677 >  }
678 >
679 >  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
680 >                               BondType* bondType) {
681 >    std::vector<std::string> keys;
682 >    keys.push_back(at1);
683 >    keys.push_back(at2);    
684 >    return bondTypeCont_.add(keys, bondType);    
685 >  }
686 >  
687 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
688 >                               const std::string &at3, BendType* bendType) {
689 >    std::vector<std::string> keys;
690 >    keys.push_back(at1);
691 >    keys.push_back(at2);    
692 >    keys.push_back(at3);    
693 >    return bendTypeCont_.add(keys, bendType);
694 >  }
695 >  
696 >  bool ForceField::addTorsionType(const std::string &at1,
697 >                                  const std::string &at2,
698 >                                  const std::string &at3,
699 >                                  const std::string &at4,
700 >                                  TorsionType* torsionType) {
701 >    std::vector<std::string> keys;
702 >    keys.push_back(at1);
703 >    keys.push_back(at2);    
704 >    keys.push_back(at3);    
705 >    keys.push_back(at4);    
706 >    return torsionTypeCont_.add(keys, torsionType);
707 >  }
708 >
709 >  bool ForceField::addInversionType(const std::string &at1,
710 >                                    const std::string &at2,
711 >                                    const std::string &at3,
712 >                                    const std::string &at4,
713 >                                    InversionType* inversionType) {
714 >    std::vector<std::string> keys;
715 >    keys.push_back(at1);
716 >    keys.push_back(at2);    
717 >    keys.push_back(at3);    
718 >    keys.push_back(at4);    
719 >    return inversionTypeCont_.add(keys, inversionType);
720 >  }
721 >  
722 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
723 >                                               const std::string &at2,
724 >                                               NonBondedInteractionType* nbiType) {
725 >    std::vector<std::string> keys;
726 >    keys.push_back(at1);
727 >    keys.push_back(at2);    
728 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
729 >  }
730 >  
731 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
732 >    RealType rcut(0.0);
733 >    
734 >    LennardJonesAdapter lja = LennardJonesAdapter(at);
735 >    if (lja.isLennardJones()) {
736 >      rcut = 2.5 * lja.getSigma();
737 >    }
738 >    EAMAdapter ea = EAMAdapter(at);
739 >    if (ea.isEAM()) {
740 >      rcut = max(rcut, ea.getRcut());
741 >    }
742 >    SuttonChenAdapter sca = SuttonChenAdapter(at);
743 >    if (sca.isSuttonChen()) {
744 >      rcut = max(rcut, 2.0 * sca.getAlpha());
745 >    }
746 >    GayBerneAdapter gba = GayBerneAdapter(at);
747 >    if (gba.isGayBerne()) {
748 >      rcut = max(rcut, 2.5 * sqrt(2.0) * max(gba.getD(), gba.getL()));
749 >    }
750 >    StickyAdapter sa = StickyAdapter(at);
751 >    if (sa.isSticky()) {
752 >      rcut = max(rcut, max(sa.getRu(), sa.getRup()));
753 >    }
754 >
755 >    return rcut;    
756 >  }
757 >  
758 >
759 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
760 >    std::string forceFieldFilename(filename);
761 >    ifstrstream* ffStream = new ifstrstream();
762 >    
763 >    //try to open the force filed file in current directory first    
764 >    ffStream->open(forceFieldFilename.c_str());
765 >    if(!ffStream->is_open()){
766 >
767 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
768 >      ffStream->open( forceFieldFilename.c_str() );
769 >
770 >      //if current directory does not contain the force field file,
771 >      //try to open it in the path        
772 >      if(!ffStream->is_open()){
773 >
774 >        sprintf( painCave.errMsg,
775 >                 "Error opening the force field parameter file:\n"
776 >                 "\t%s\n"
777 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
778 >                 "variable?\n",
779 >                 forceFieldFilename.c_str() );
780 >        painCave.severity = OPENMD_ERROR;
781 >        painCave.isFatal = 1;
782 >        simError();
783 >      }
784 >    }  
785 >    return ffStream;
786 >  }
787 >
788 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
trunk/src/brains/ForceField.cpp (property svn:keywords), Revision 1880 by gezelter, Mon Jun 17 18:28:30 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines