ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
trunk/src/brains/ForceField.cpp (file contents), Revision 1790 by gezelter, Thu Aug 30 17:18:22 2012 UTC

# Line 1 | Line 1
1 < #include "UseTheForce/ForceField.hpp"
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file ForceField.cpp
45 > * @author tlin
46 > * @date 11/04/2004
47 > * @time 22:51am
48 > * @version 1.0
49 > */
50 >  
51 > #include <algorithm>
52 > #include "brains/ForceField.hpp"
53 > #include "utils/simError.h"
54  
55 < AtomType* ForceField::getMatchingAtomType(const string &at) {
55 > #include "io/OptionSectionParser.hpp"
56 > #include "io/BaseAtomTypesSectionParser.hpp"
57 > #include "io/DirectionalAtomTypesSectionParser.hpp"
58 > #include "io/AtomTypesSectionParser.hpp"
59 > #include "io/BendTypesSectionParser.hpp"
60 > #include "io/BondTypesSectionParser.hpp"
61 > #include "io/ChargeAtomTypesSectionParser.hpp"
62 > #include "io/EAMAtomTypesSectionParser.hpp"
63 > #include "io/FluctuatingChargeAtomTypesSectionParser.hpp"
64 > #include "io/GayBerneAtomTypesSectionParser.hpp"
65 > #include "io/InversionTypesSectionParser.hpp"
66 > #include "io/LennardJonesAtomTypesSectionParser.hpp"
67 > #include "io/MultipoleAtomTypesSectionParser.hpp"
68 > #include "io/NonBondedInteractionsSectionParser.hpp"
69 > #include "io/PolarizableAtomTypesSectionParser.hpp"
70 > #include "io/SCAtomTypesSectionParser.hpp"
71 > #include "io/ShapeAtomTypesSectionParser.hpp"
72 > #include "io/StickyAtomTypesSectionParser.hpp"
73 > #include "io/StickyPowerAtomTypesSectionParser.hpp"
74 > #include "io/TorsionTypesSectionParser.hpp"
75  
76 <  map<string, AtomType*>::iterator iter;
77 <  
78 <  iter = atomTypeMap.find(at);
79 <  if (iter != atomTypeMap.end()) {
80 <    return iter->second;
10 <  } else {
11 <    return NULL;
12 <  }
13 < }
76 > #include "types/LennardJonesAdapter.hpp"
77 > #include "types/EAMAdapter.hpp"
78 > #include "types/SuttonChenAdapter.hpp"
79 > #include "types/GayBerneAdapter.hpp"
80 > #include "types/StickyAdapter.hpp"
81  
82 < BondType* ForceField::getMatchingBondType(const string &at1,
16 <                                          const string &at2) {
82 > namespace OpenMD {
83  
84 <  map<pair<string,string>, BondType*>::iterator iter;
19 <  vector<BondType*> foundTypes;
84 >  ForceField::ForceField(std::string ffName) {
85  
86 <  iter = bondTypeMap.find(pair<at1, at2>);
87 <  if (iter != bondTypeMap.end()) {
88 <    // exact match, so just return it
89 <    return iter->second;
90 <  }
86 >    char* tempPath;
87 >    tempPath = getenv("FORCE_PARAM_PATH");
88 >    
89 >    if (tempPath == NULL) {
90 >      //convert a macro from compiler to a string in c++
91 >      STR_DEFINE(ffPath_, FRC_PATH );
92 >    } else {
93 >      ffPath_ = tempPath;
94 >    }
95  
96 <  iter = bondTypeMap.find(pair<at2, at1>);
28 <  if (iter != bondTypeMap.end()) {
29 <    // exact match in reverse order, so just return it
30 <    return iter->second;
31 <  }
96 >    setForceFieldFileName(ffName + ".frc");
97  
98 <  iter = bondTypeMap.find(pair<at1, wildCardAtomTypeName>);
99 <  if (iter != bondTypeMap.end()) {
100 <    foundTypes.push_back(iter->second);
98 >    /**
99 >     * The order of adding section parsers is important.
100 >     *
101 >     * OptionSectionParser must come first to set options for other
102 >     * parsers
103 >     *
104 >     * DirectionalAtomTypesSectionParser should be added before
105 >     * AtomTypesSectionParser, and these two section parsers will
106 >     * actually create "real" AtomTypes (AtomTypesSectionParser will
107 >     * create AtomType and DirectionalAtomTypesSectionParser will
108 >     * create DirectionalAtomType, which is a subclass of AtomType and
109 >     * should come first).
110 >     *
111 >     * Other AtomTypes Section Parsers will not create the "real"
112 >     * AtomType, they only add and set some attributes of the AtomType
113 >     * (via the Adapters). Thus ordering of these is not important.
114 >     * AtomTypesSectionParser should be added before other atom type
115 >     *
116 >     * The order of BondTypesSectionParser, BendTypesSectionParser and
117 >     * TorsionTypesSectionParser, etc. are not important.
118 >     */
119 >
120 >    spMan_.push_back(new OptionSectionParser(forceFieldOptions_));
121 >    spMan_.push_back(new BaseAtomTypesSectionParser());
122 >    spMan_.push_back(new DirectionalAtomTypesSectionParser(forceFieldOptions_));
123 >    spMan_.push_back(new AtomTypesSectionParser());
124 >
125 >    spMan_.push_back(new LennardJonesAtomTypesSectionParser(forceFieldOptions_));
126 >    spMan_.push_back(new ChargeAtomTypesSectionParser(forceFieldOptions_));
127 >    spMan_.push_back(new MultipoleAtomTypesSectionParser(forceFieldOptions_));
128 >    spMan_.push_back(new FluctuatingChargeAtomTypesSectionParser(forceFieldOptions_));
129 >    spMan_.push_back(new PolarizableAtomTypesSectionParser(forceFieldOptions_));
130 >    spMan_.push_back(new GayBerneAtomTypesSectionParser(forceFieldOptions_));
131 >    spMan_.push_back(new EAMAtomTypesSectionParser(forceFieldOptions_));
132 >    spMan_.push_back(new SCAtomTypesSectionParser(forceFieldOptions_));
133 >    spMan_.push_back(new ShapeAtomTypesSectionParser(forceFieldOptions_));
134 >    spMan_.push_back(new StickyAtomTypesSectionParser(forceFieldOptions_));
135 >    spMan_.push_back(new StickyPowerAtomTypesSectionParser(forceFieldOptions_));
136 >
137 >    spMan_.push_back(new BondTypesSectionParser(forceFieldOptions_));
138 >    spMan_.push_back(new BendTypesSectionParser(forceFieldOptions_));
139 >    spMan_.push_back(new TorsionTypesSectionParser(forceFieldOptions_));
140 >    spMan_.push_back(new InversionTypesSectionParser(forceFieldOptions_));
141 >
142 >    spMan_.push_back(new NonBondedInteractionsSectionParser(forceFieldOptions_));    
143    }
144  
145 <  iter = bondTypeMap.find(pair<at2, wildCardAtomTypeName>);
146 <  if (iter != bondTypeMap.end()) {
147 <    foundTypes.push_back(iter->second);
145 >  void ForceField::parse(const std::string& filename) {
146 >    ifstrstream* ffStream;
147 >
148 >    ffStream = openForceFieldFile(filename);
149 >
150 >    spMan_.parse(*ffStream, *this);
151 >
152 >    ForceField::AtomTypeContainer::MapTypeIterator i;
153 >    AtomType* at;
154 >
155 >    for (at = atomTypeCont_.beginType(i); at != NULL;
156 >         at = atomTypeCont_.nextType(i)) {
157 >
158 >      // useBase sets the responsibilities, and these have to be done
159 >      // after the atomTypes and Base types have all been scanned:
160 >
161 >      std::vector<AtomType*> ayb = at->allYourBase();      
162 >      if (ayb.size() > 1) {
163 >        for (int j = ayb.size()-1; j > 0; j--) {
164 >          
165 >          ayb[j-1]->useBase(ayb[j]);
166 >
167 >        }
168 >      }
169 >    }
170 >
171 >    delete ffStream;
172    }
173  
174 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at1>);
175 <  if (iter != bondTypeMap.end()) {
176 <    foundTypes.push_back(iter->second);
174 >  /**
175 >   * getAtomType by string
176 >   *
177 >   * finds the requested atom type in this force field using the string
178 >   * name of the atom type.
179 >   */
180 >  AtomType* ForceField::getAtomType(const std::string &at) {
181 >    std::vector<std::string> keys;
182 >    keys.push_back(at);
183 >    return atomTypeCont_.find(keys);
184    }
185  
186 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at2>);
187 <  if (iter != bondTypeMap.end()) {
188 <    foundTypes.push_back(iter->second);
186 >  /**
187 >   * getAtomType by ident
188 >   *
189 >   * finds the requested atom type in this force field using the
190 >   * integer ident instead of the string name of the atom type.
191 >   */
192 >  AtomType* ForceField::getAtomType(int ident) {  
193 >    std::string at = atypeIdentToName.find(ident)->second;
194 >    return getAtomType(at);
195    }
196 +
197 +  BondType* ForceField::getBondType(const std::string &at1,
198 +                                    const std::string &at2) {
199 +    std::vector<std::string> keys;
200 +    keys.push_back(at1);
201 +    keys.push_back(at2);    
202 +
203 +    //try exact match first
204 +    BondType* bondType = bondTypeCont_.find(keys);
205 +    if (bondType) {
206 +      return bondType;
207 +    } else {
208 +      AtomType* atype1;
209 +      AtomType* atype2;
210 +      std::vector<std::string> at1key;
211 +      at1key.push_back(at1);
212 +      atype1 = atomTypeCont_.find(at1key);
213    
214 <  if (foundTypes.empty()) {
215 <    return NULL;
216 <  } else {
56 <    
214 >      std::vector<std::string> at2key;
215 >      at2key.push_back(at2);
216 >      atype2 = atomTypeCont_.find(at2key);
217  
218 <
218 >      // query atom types for their chains of responsibility
219 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
220 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
221  
222 +      std::vector<AtomType*>::iterator i;
223 +      std::vector<AtomType*>::iterator j;
224  
225 +      int ii = 0;
226 +      int jj = 0;
227 +      int bondTypeScore;
228  
229 +      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
230 +
231 +      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
232 +        jj = 0;
233 +        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
234 +
235 +          bondTypeScore = ii + jj;
236 +
237 +          std::vector<std::string> myKeys;
238 +          myKeys.push_back((*i)->getName());
239 +          myKeys.push_back((*j)->getName());
240 +
241 +          BondType* bondType = bondTypeCont_.find(myKeys);
242 +          if (bondType) {
243 +            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
244 +          }
245 +          jj++;
246 +        }
247 +        ii++;
248 +      }
249 +
250 +
251 +      if (foundBonds.size() > 0) {
252 +        // sort the foundBonds by the score:
253 +        std::sort(foundBonds.begin(), foundBonds.end());
254 +    
255 +        int bestScore = foundBonds[0].first;
256 +        std::vector<std::string> theKeys = foundBonds[0].second;
257 +        
258 +        BondType* bestType = bondTypeCont_.find(theKeys);
259 +        
260 +        return bestType;
261 +      } else {
262 +        //if no exact match found, try wild card match
263 +        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
264 +      }
265 +    }
266 +  }
267    
268 +  BendType* ForceField::getBendType(const std::string &at1,
269 +                                    const std::string &at2,
270 +                                    const std::string &at3) {
271 +    std::vector<std::string> keys;
272 +    keys.push_back(at1);
273 +    keys.push_back(at2);    
274 +    keys.push_back(at3);    
275  
276 +    //try exact match first
277 +    BendType* bendType = bendTypeCont_.find(keys);
278 +    if (bendType) {
279 +      return bendType;
280 +    } else {
281  
282 < BendType* ForceField::getMatchingBendType(const string &at1, const string &at2,
283 <                                          const string &at3);
284 < TorsionType* ForceField::getMatchingTorsionType(const string &at1, const string &at2,
285 <                                                const string &at3, const string &at4);
282 >      AtomType* atype1;
283 >      AtomType* atype2;
284 >      AtomType* atype3;
285 >      std::vector<std::string> at1key;
286 >      at1key.push_back(at1);
287 >      atype1 = atomTypeCont_.find(at1key);
288 >  
289 >      std::vector<std::string> at2key;
290 >      at2key.push_back(at2);
291 >      atype2 = atomTypeCont_.find(at2key);
292  
293 < double ForceField::getRcutForAtomType(AtomType* at);
293 >      std::vector<std::string> at3key;
294 >      at3key.push_back(at3);
295 >      atype3 = atomTypeCont_.find(at3key);
296  
297 +      // query atom types for their chains of responsibility
298 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
299 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
300 +      std::vector<AtomType*> at3Chain = atype3->allYourBase();
301  
302 < vector<vector<string> > generateWildcardSequence(const vector<string> atomTypes) {
303 <  
304 <   vector<vector<string> > results;
302 >      std::vector<AtomType*>::iterator i;
303 >      std::vector<AtomType*>::iterator j;
304 >      std::vector<AtomType*>::iterator k;
305  
306 <  
306 >      int ii = 0;
307 >      int jj = 0;
308 >      int kk = 0;
309 >      int IKscore;
310  
311 +      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
312  
313 <   vector<vector< string> > getAllWildcardPermutations(const vector<string> myAts) {
314 <    
315 <     int nStrings;
316 <     vector<string> oneResult;
317 <     vector<vector<string> > allResults;
313 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
314 >        ii = 0;
315 >        for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
316 >          kk = 0;
317 >          for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
318 >          
319 >            IKscore = ii + kk;
320  
321 <     nStrings = myAts.size();
321 >            std::vector<std::string> myKeys;
322 >            myKeys.push_back((*i)->getName());
323 >            myKeys.push_back((*j)->getName());
324 >            myKeys.push_back((*k)->getName());
325  
326 <     if (nStrings == 1) {
327 <       oneResult.push_back(wildcardCharacter);
328 <       allResults.push_back(oneResult);
329 <       return allResults;
330 <     } else {
331 <      
332 <       for (i=0; i < nStrings; i++) {
333 <         oneResult = myAts;
334 <         replace(oneResult.begin(), oneResult.end(),
326 >            BendType* bendType = bendTypeCont_.find(myKeys);
327 >            if (bendType) {
328 >              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
329 >            }
330 >            kk++;
331 >          }
332 >          ii++;
333 >        }
334 >        jj++;
335 >      }
336 >      
337 >      if (foundBends.size() > 0) {
338 >        std::sort(foundBends.begin(), foundBends.end());
339 >        int jscore = foundBends[0].first;
340 >        int ikscore = foundBends[0].second;
341 >        std::vector<std::string> theKeys = foundBends[0].third;      
342 >        
343 >        BendType* bestType = bendTypeCont_.find(theKeys);  
344 >        return bestType;
345 >      } else {        
346 >        //if no exact match found, try wild card match
347 >        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
348 >      }
349 >    }
350 >  }
351 >
352 >  TorsionType* ForceField::getTorsionType(const std::string &at1,
353 >                                          const std::string &at2,
354 >                                          const std::string &at3,
355 >                                          const std::string &at4) {
356 >    std::vector<std::string> keys;
357 >    keys.push_back(at1);
358 >    keys.push_back(at2);    
359 >    keys.push_back(at3);    
360 >    keys.push_back(at4);    
361 >
362 >
363 >    //try exact match first
364 >    TorsionType* torsionType = torsionTypeCont_.find(keys);
365 >    if (torsionType) {
366 >      return torsionType;
367 >    } else {
368 >
369 >      AtomType* atype1;
370 >      AtomType* atype2;
371 >      AtomType* atype3;
372 >      AtomType* atype4;
373 >      std::vector<std::string> at1key;
374 >      at1key.push_back(at1);
375 >      atype1 = atomTypeCont_.find(at1key);
376 >  
377 >      std::vector<std::string> at2key;
378 >      at2key.push_back(at2);
379 >      atype2 = atomTypeCont_.find(at2key);
380 >
381 >      std::vector<std::string> at3key;
382 >      at3key.push_back(at3);
383 >      atype3 = atomTypeCont_.find(at3key);
384 >
385 >      std::vector<std::string> at4key;
386 >      at4key.push_back(at4);
387 >      atype4 = atomTypeCont_.find(at4key);
388 >
389 >      // query atom types for their chains of responsibility
390 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
391 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
392 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
393 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
394 >
395 >      std::vector<AtomType*>::iterator i;
396 >      std::vector<AtomType*>::iterator j;
397 >      std::vector<AtomType*>::iterator k;
398 >      std::vector<AtomType*>::iterator l;
399 >
400 >      int ii = 0;
401 >      int jj = 0;
402 >      int kk = 0;
403 >      int ll = 0;
404 >      int ILscore;
405 >      int JKscore;
406 >
407 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
408 >
409 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
410 >        kk = 0;
411 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
412 >          ii = 0;      
413 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
414 >            ll = 0;
415 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
416 >          
417 >              ILscore = ii + ll;
418 >              JKscore = jj + kk;
419 >
420 >              std::vector<std::string> myKeys;
421 >              myKeys.push_back((*i)->getName());
422 >              myKeys.push_back((*j)->getName());
423 >              myKeys.push_back((*k)->getName());
424 >              myKeys.push_back((*l)->getName());
425 >
426 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
427 >              if (torsionType) {
428 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
429 >              }
430 >              ll++;
431 >            }
432 >            ii++;
433 >          }
434 >          kk++;
435 >        }
436 >        jj++;
437 >      }
438 >      
439 >      if (foundTorsions.size() > 0) {
440 >        std::sort(foundTorsions.begin(), foundTorsions.end());
441 >        int jkscore = foundTorsions[0].first;
442 >        int ilscore = foundTorsions[0].second;
443 >        std::vector<std::string> theKeys = foundTorsions[0].third;
444 >        
445 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
446 >        return bestType;
447 >      } else {
448 >        //if no exact match found, try wild card match
449 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
450 >      }
451 >    }
452 >  }
453 >
454 >  InversionType* ForceField::getInversionType(const std::string &at1,
455 >                                              const std::string &at2,
456 >                                              const std::string &at3,
457 >                                              const std::string &at4) {
458 >    std::vector<std::string> keys;
459 >    keys.push_back(at1);
460 >    keys.push_back(at2);    
461 >    keys.push_back(at3);    
462 >    keys.push_back(at4);    
463 >
464 >    //try exact match first
465 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
466 >    if (inversionType) {
467 >      return inversionType;
468 >    } else {
469 >      
470 >      AtomType* atype1;
471 >      AtomType* atype2;
472 >      AtomType* atype3;
473 >      AtomType* atype4;
474 >      std::vector<std::string> at1key;
475 >      at1key.push_back(at1);
476 >      atype1 = atomTypeCont_.find(at1key);
477 >      
478 >      std::vector<std::string> at2key;
479 >      at2key.push_back(at2);
480 >      atype2 = atomTypeCont_.find(at2key);
481 >      
482 >      std::vector<std::string> at3key;
483 >      at3key.push_back(at3);
484 >      atype3 = atomTypeCont_.find(at3key);
485 >      
486 >      std::vector<std::string> at4key;
487 >      at4key.push_back(at4);
488 >      atype4 = atomTypeCont_.find(at4key);
489 >
490 >      // query atom types for their chains of responsibility
491 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
492 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
493 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
494 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
495 >
496 >      std::vector<AtomType*>::iterator i;
497 >      std::vector<AtomType*>::iterator j;
498 >      std::vector<AtomType*>::iterator k;
499 >      std::vector<AtomType*>::iterator l;
500 >
501 >      int ii = 0;
502 >      int jj = 0;
503 >      int kk = 0;
504 >      int ll = 0;
505 >      int Iscore;
506 >      int JKLscore;
507 >      
508 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
509 >      
510 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
511 >        kk = 0;
512 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
513 >          ii = 0;      
514 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
515 >            ll = 0;
516 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
517 >              
518 >              Iscore = ii;
519 >              JKLscore = jj + kk + ll;
520 >              
521 >              std::vector<std::string> myKeys;
522 >              myKeys.push_back((*i)->getName());
523 >              myKeys.push_back((*j)->getName());
524 >              myKeys.push_back((*k)->getName());
525 >              myKeys.push_back((*l)->getName());
526 >              
527 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
528 >              if (inversionType) {
529 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
530 >              }
531 >              ll++;
532 >            }
533 >            ii++;
534 >          }
535 >          kk++;
536 >        }
537 >        jj++;
538 >      }
539 >        
540 >      if (foundInversions.size() > 0) {
541 >        std::sort(foundInversions.begin(), foundInversions.end());
542 >        int iscore = foundInversions[0].first;
543 >        int jklscore = foundInversions[0].second;
544 >        std::vector<std::string> theKeys = foundInversions[0].third;
545 >        
546 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
547 >        return bestType;
548 >      } else {
549 >        //if no exact match found, try wild card match
550 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
551 >      }
552 >    }
553 >  }
554 >  
555 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
556 >    
557 >    std::vector<std::string> keys;
558 >    keys.push_back(at1);
559 >    keys.push_back(at2);    
560 >    
561 >    //try exact match first
562 >    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
563 >    if (nbiType) {
564 >      return nbiType;
565 >    } else {
566 >      AtomType* atype1;
567 >      AtomType* atype2;
568 >      std::vector<std::string> at1key;
569 >      at1key.push_back(at1);
570 >      atype1 = atomTypeCont_.find(at1key);
571 >      
572 >      std::vector<std::string> at2key;
573 >      at2key.push_back(at2);
574 >      atype2 = atomTypeCont_.find(at2key);
575 >      
576 >      // query atom types for their chains of responsibility
577 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
578 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
579 >      
580 >      std::vector<AtomType*>::iterator i;
581 >      std::vector<AtomType*>::iterator j;
582 >      
583 >      int ii = 0;
584 >      int jj = 0;
585 >      int nbiTypeScore;
586 >      
587 >      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
588 >      
589 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
590 >        jj = 0;
591 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
592 >          
593 >          nbiTypeScore = ii + jj;
594 >          
595 >          std::vector<std::string> myKeys;
596 >          myKeys.push_back((*i)->getName());
597 >          myKeys.push_back((*j)->getName());
598 >          
599 >          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
600 >          if (nbiType) {
601 >            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
602 >          }
603 >          jj++;
604 >        }
605 >        ii++;
606 >      }
607 >      
608 >      
609 >      if (foundNBI.size() > 0) {
610 >        // sort the foundNBI by the score:
611 >        std::sort(foundNBI.begin(), foundNBI.end());
612 >        
613 >        int bestScore = foundNBI[0].first;
614 >        std::vector<std::string> theKeys = foundNBI[0].second;
615 >        
616 >        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
617 >        return bestType;
618 >      } else {
619 >        //if no exact match found, try wild card match
620 >        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
621 >      }
622 >    }
623 >  }
624 >  
625 >  BondType* ForceField::getExactBondType(const std::string &at1,
626 >                                         const std::string &at2){
627 >    std::vector<std::string> keys;
628 >    keys.push_back(at1);
629 >    keys.push_back(at2);    
630 >    return bondTypeCont_.find(keys);
631 >  }
632 >  
633 >  BendType* ForceField::getExactBendType(const std::string &at1,
634 >                                         const std::string &at2,
635 >                                         const std::string &at3){
636 >    std::vector<std::string> keys;
637 >    keys.push_back(at1);
638 >    keys.push_back(at2);    
639 >    keys.push_back(at3);    
640 >    return bendTypeCont_.find(keys);
641 >  }
642 >  
643 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
644 >                                               const std::string &at2,
645 >                                               const std::string &at3,
646 >                                               const std::string &at4){
647 >    std::vector<std::string> keys;
648 >    keys.push_back(at1);
649 >    keys.push_back(at2);    
650 >    keys.push_back(at3);    
651 >    keys.push_back(at4);  
652 >    return torsionTypeCont_.find(keys);
653 >  }
654 >  
655 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
656 >                                                   const std::string &at2,
657 >                                                   const std::string &at3,
658 >                                                   const std::string &at4){
659 >    std::vector<std::string> keys;
660 >    keys.push_back(at1);
661 >    keys.push_back(at2);    
662 >    keys.push_back(at3);    
663 >    keys.push_back(at4);  
664 >    return inversionTypeCont_.find(keys);
665 >  }
666 >  
667 >  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
668 >    std::vector<std::string> keys;
669 >    keys.push_back(at1);
670 >    keys.push_back(at2);    
671 >    return nonBondedInteractionTypeCont_.find(keys);
672 >  }
673 >  
674 >
675 >  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
676 >    std::vector<std::string> keys;
677 >    keys.push_back(at);
678 >    atypeIdentToName[atomType->getIdent()] = at;
679 >    return atomTypeCont_.add(keys, atomType);
680 >  }
681 >
682 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
683 >    std::vector<std::string> keys;
684 >    keys.push_back(at);
685 >    atypeIdentToName[atomType->getIdent()] = at;
686 >    return atomTypeCont_.replace(keys, atomType);
687 >  }
688 >
689 >  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
690 >                               BondType* bondType) {
691 >    std::vector<std::string> keys;
692 >    keys.push_back(at1);
693 >    keys.push_back(at2);    
694 >    return bondTypeCont_.add(keys, bondType);    
695 >  }
696 >  
697 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
698 >                               const std::string &at3, BendType* bendType) {
699 >    std::vector<std::string> keys;
700 >    keys.push_back(at1);
701 >    keys.push_back(at2);    
702 >    keys.push_back(at3);    
703 >    return bendTypeCont_.add(keys, bendType);
704 >  }
705 >  
706 >  bool ForceField::addTorsionType(const std::string &at1,
707 >                                  const std::string &at2,
708 >                                  const std::string &at3,
709 >                                  const std::string &at4,
710 >                                  TorsionType* torsionType) {
711 >    std::vector<std::string> keys;
712 >    keys.push_back(at1);
713 >    keys.push_back(at2);    
714 >    keys.push_back(at3);    
715 >    keys.push_back(at4);    
716 >    return torsionTypeCont_.add(keys, torsionType);
717 >  }
718 >
719 >  bool ForceField::addInversionType(const std::string &at1,
720 >                                    const std::string &at2,
721 >                                    const std::string &at3,
722 >                                    const std::string &at4,
723 >                                    InversionType* inversionType) {
724 >    std::vector<std::string> keys;
725 >    keys.push_back(at1);
726 >    keys.push_back(at2);    
727 >    keys.push_back(at3);    
728 >    keys.push_back(at4);    
729 >    return inversionTypeCont_.add(keys, inversionType);
730 >  }
731 >  
732 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
733 >                                               const std::string &at2,
734 >                                               NonBondedInteractionType* nbiType) {
735 >    std::vector<std::string> keys;
736 >    keys.push_back(at1);
737 >    keys.push_back(at2);    
738 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
739 >  }
740 >  
741 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
742 >    RealType rcut(0.0);
743 >    
744 >    LennardJonesAdapter lja = LennardJonesAdapter(at);
745 >    if (lja.isLennardJones()) {
746 >      rcut = 2.5 * lja.getSigma();
747 >    }
748 >    EAMAdapter ea = EAMAdapter(at);
749 >    if (ea.isEAM()) {
750 >      rcut = max(rcut, ea.getRcut());
751 >    }
752 >    SuttonChenAdapter sca = SuttonChenAdapter(at);
753 >    if (sca.isSuttonChen()) {
754 >      rcut = max(rcut, 2.0 * sca.getAlpha());
755 >    }
756 >    GayBerneAdapter gba = GayBerneAdapter(at);
757 >    if (gba.isGayBerne()) {
758 >      rcut = max(rcut, 2.5 * sqrt(2.0) * max(gba.getD(), gba.getL()));
759 >    }
760 >    StickyAdapter sa = StickyAdapter(at);
761 >    if (sa.isSticky()) {
762 >      rcut = max(rcut, max(sa.getRu(), sa.getRup()));
763 >    }
764 >
765 >    return rcut;    
766 >  }
767 >  
768 >
769 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
770 >    std::string forceFieldFilename(filename);
771 >    ifstrstream* ffStream = new ifstrstream();
772 >    
773 >    //try to open the force filed file in current directory first    
774 >    ffStream->open(forceFieldFilename.c_str(), ifstream::in | ifstream::binary);
775 >
776 >    if(!ffStream->is_open()){
777 >
778 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
779 >      ffStream->open( forceFieldFilename.c_str(),  
780 >                      ifstream::in | ifstream::binary );
781 >
782 >      //if current directory does not contain the force field file,
783 >      //try to open it in the path        
784 >      if(!ffStream->is_open()){
785 >
786 >        sprintf( painCave.errMsg,
787 >                 "Error opening the force field parameter file:\n"
788 >                 "\t%s\n"
789 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
790 >                 "variable?\n",
791 >                 forceFieldFilename.c_str() );
792 >        painCave.severity = OPENMD_ERROR;
793 >        painCave.isFatal = 1;
794 >        simError();
795 >      }
796 >    }  
797 >    return ffStream;
798 >  }
799 >
800 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
trunk/src/brains/ForceField.cpp (property svn:keywords), Revision 1790 by gezelter, Thu Aug 30 17:18:22 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines