ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (file contents), Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40 + */
41 +
42 + /**
43 + * @file ForceField.cpp
44 + * @author tlin
45 + * @date 11/04/2004
46 + * @time 22:51am
47 + * @version 1.0
48 + */
49 +  
50 + #include <algorithm>
51   #include "UseTheForce/ForceField.hpp"
52 + #include "utils/simError.h"
53 + #include "utils/Tuple.hpp"
54 + namespace OpenMD {
55  
56 < AtomType* ForceField::getMatchingAtomType(const string &at) {
56 >  ForceField::ForceField() {
57  
58 <  map<string, AtomType*>::iterator iter;
59 <  
60 <  iter = atomTypeMap.find(at);
61 <  if (iter != atomTypeMap.end()) {
62 <    return iter->second;
63 <  } else {
64 <    return NULL;
58 >    char* tempPath;
59 >    tempPath = getenv("FORCE_PARAM_PATH");
60 >    
61 >    if (tempPath == NULL) {
62 >      //convert a macro from compiler to a string in c++
63 >      STR_DEFINE(ffPath_, FRC_PATH );
64 >    } else {
65 >      ffPath_ = tempPath;
66 >    }
67    }
13 }
68  
69 < BondType* ForceField::getMatchingBondType(const string &at1,
70 <                                          const string &at2) {
69 >  AtomType* ForceField::getAtomType(const std::string &at) {
70 >    std::vector<std::string> keys;
71 >    keys.push_back(at);
72 >    return atomTypeCont_.find(keys);
73 >  }
74  
75 <  map<pair<string,string>, BondType*>::iterator iter;
76 <  vector<BondType*> foundTypes;
75 >  BondType* ForceField::getBondType(const std::string &at1,
76 >                                    const std::string &at2) {
77 >    std::vector<std::string> keys;
78 >    keys.push_back(at1);
79 >    keys.push_back(at2);    
80  
81 <  iter = bondTypeMap.find(pair<at1, at2>);
82 <  if (iter != bondTypeMap.end()) {
83 <    // exact match, so just return it
84 <    return iter->second;
85 <  }
81 >    //try exact match first
82 >    BondType* bondType = bondTypeCont_.find(keys);
83 >    if (bondType) {
84 >      return bondType;
85 >    } else {
86 >      AtomType* atype1;
87 >      AtomType* atype2;
88 >      std::vector<std::string> at1key;
89 >      at1key.push_back(at1);
90 >      atype1 = atomTypeCont_.find(at1key);
91 >  
92 >      std::vector<std::string> at2key;
93 >      at2key.push_back(at2);
94 >      atype2 = atomTypeCont_.find(at2key);
95  
96 <  iter = bondTypeMap.find(pair<at2, at1>);
97 <  if (iter != bondTypeMap.end()) {
98 <    // exact match in reverse order, so just return it
30 <    return iter->second;
31 <  }
96 >      // query atom types for their chains of responsibility
97 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
98 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
99  
100 <  iter = bondTypeMap.find(pair<at1, wildCardAtomTypeName>);
101 <  if (iter != bondTypeMap.end()) {
35 <    foundTypes.push_back(iter->second);
36 <  }
100 >      std::vector<AtomType*>::iterator i;
101 >      std::vector<AtomType*>::iterator j;
102  
103 <  iter = bondTypeMap.find(pair<at2, wildCardAtomTypeName>);
104 <  if (iter != bondTypeMap.end()) {
105 <    foundTypes.push_back(iter->second);
41 <  }
103 >      int ii = 0;
104 >      int jj = 0;
105 >      int bondTypeScore;
106  
107 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at1>);
44 <  if (iter != bondTypeMap.end()) {
45 <    foundTypes.push_back(iter->second);
46 <  }
107 >      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
108  
109 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at2>);
110 <  if (iter != bondTypeMap.end()) {
111 <    foundTypes.push_back(iter->second);
109 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
110 >        jj = 0;
111 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
112 >
113 >          bondTypeScore = ii + jj;
114 >
115 >          std::vector<std::string> myKeys;
116 >          myKeys.push_back((*i)->getName());
117 >          myKeys.push_back((*j)->getName());
118 >
119 >          BondType* bondType = bondTypeCont_.find(myKeys);
120 >          if (bondType) {
121 >            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
122 >          }
123 >          jj++;
124 >        }
125 >        ii++;
126 >      }
127 >
128 >
129 >      if (foundBonds.size() > 0) {
130 >        // sort the foundBonds by the score:
131 >        std::sort(foundBonds.begin(), foundBonds.end());
132 >    
133 >        int bestScore = foundBonds[0].first;
134 >        std::vector<std::string> theKeys = foundBonds[0].second;
135 >        
136 >        BondType* bestType = bondTypeCont_.find(theKeys);
137 >        
138 >        return bestType;
139 >      } else {
140 >        //if no exact match found, try wild card match
141 >        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
142 >      }
143 >    }
144    }
145    
146 <  if (foundTypes.empty()) {
147 <    return NULL;
148 <  } else {
149 <    
146 >  BendType* ForceField::getBendType(const std::string &at1,
147 >                                    const std::string &at2,
148 >                                    const std::string &at3) {
149 >    std::vector<std::string> keys;
150 >    keys.push_back(at1);
151 >    keys.push_back(at2);    
152 >    keys.push_back(at3);    
153  
154 <
154 >    //try exact match first
155 >    BendType* bendType = bendTypeCont_.find(keys);
156 >    if (bendType) {
157 >      return bendType;
158 >    } else {
159  
160 +      AtomType* atype1;
161 +      AtomType* atype2;
162 +      AtomType* atype3;
163 +      std::vector<std::string> at1key;
164 +      at1key.push_back(at1);
165 +      atype1 = atomTypeCont_.find(at1key);
166 +  
167 +      std::vector<std::string> at2key;
168 +      at2key.push_back(at2);
169 +      atype2 = atomTypeCont_.find(at2key);
170  
171 +      std::vector<std::string> at3key;
172 +      at3key.push_back(at3);
173 +      atype3 = atomTypeCont_.find(at3key);
174  
175 <  
175 >      // query atom types for their chains of responsibility
176 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
177 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
178 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
179  
180 +      std::vector<AtomType*>::iterator i;
181 +      std::vector<AtomType*>::iterator j;
182 +      std::vector<AtomType*>::iterator k;
183  
184 < BendType* ForceField::getMatchingBendType(const string &at1, const string &at2,
185 <                                          const string &at3);
186 < TorsionType* ForceField::getMatchingTorsionType(const string &at1, const string &at2,
187 <                                                const string &at3, const string &at4);
184 >      int ii = 0;
185 >      int jj = 0;
186 >      int kk = 0;
187 >      int IKscore;
188  
189 < double ForceField::getRcutForAtomType(AtomType* at);
189 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
190  
191 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
192 +        ii = 0;
193 +        for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
194 +          kk = 0;
195 +          for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
196 +          
197 +            IKscore = ii + kk;
198  
199 < vector<vector<string> > generateWildcardSequence(const vector<string> atomTypes) {
200 <  
201 <   vector<vector<string> > results;
199 >            std::vector<std::string> myKeys;
200 >            myKeys.push_back((*i)->getName());
201 >            myKeys.push_back((*j)->getName());
202 >            myKeys.push_back((*k)->getName());
203  
204 <  
204 >            BendType* bendType = bendTypeCont_.find(myKeys);
205 >            if (bendType) {
206 >              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
207 >            }
208 >            kk++;
209 >          }
210 >          ii++;
211 >        }
212 >        jj++;
213 >      }
214 >      
215 >      if (foundBends.size() > 0) {
216 >        std::sort(foundBends.begin(), foundBends.end());
217 >        int jscore = foundBends[0].first;
218 >        int ikscore = foundBends[0].second;
219 >        std::vector<std::string> theKeys = foundBends[0].third;      
220 >        
221 >        BendType* bestType = bendTypeCont_.find(theKeys);  
222 >        return bestType;
223 >      } else {        
224 >        //if no exact match found, try wild card match
225 >        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
226 >      }
227 >    }
228 >  }
229  
230 +  TorsionType* ForceField::getTorsionType(const std::string &at1,
231 +                                          const std::string &at2,
232 +                                          const std::string &at3,
233 +                                          const std::string &at4) {
234 +    std::vector<std::string> keys;
235 +    keys.push_back(at1);
236 +    keys.push_back(at2);    
237 +    keys.push_back(at3);    
238 +    keys.push_back(at4);    
239  
80   vector<vector< string> > getAllWildcardPermutations(const vector<string> myAts) {
81    
82     int nStrings;
83     vector<string> oneResult;
84     vector<vector<string> > allResults;
240  
241 <     nStrings = myAts.size();
241 >    //try exact match first
242 >    TorsionType* torsionType = torsionTypeCont_.find(keys);
243 >    if (torsionType) {
244 >      return torsionType;
245 >    } else {
246  
247 <     if (nStrings == 1) {
248 <       oneResult.push_back(wildcardCharacter);
249 <       allResults.push_back(oneResult);
250 <       return allResults;
251 <     } else {
252 <      
253 <       for (i=0; i < nStrings; i++) {
254 <         oneResult = myAts;
255 <         replace(oneResult.begin(), oneResult.end(),
247 >      AtomType* atype1;
248 >      AtomType* atype2;
249 >      AtomType* atype3;
250 >      AtomType* atype4;
251 >      std::vector<std::string> at1key;
252 >      at1key.push_back(at1);
253 >      atype1 = atomTypeCont_.find(at1key);
254 >  
255 >      std::vector<std::string> at2key;
256 >      at2key.push_back(at2);
257 >      atype2 = atomTypeCont_.find(at2key);
258 >
259 >      std::vector<std::string> at3key;
260 >      at3key.push_back(at3);
261 >      atype3 = atomTypeCont_.find(at3key);
262 >
263 >      std::vector<std::string> at4key;
264 >      at4key.push_back(at4);
265 >      atype4 = atomTypeCont_.find(at4key);
266 >
267 >      // query atom types for their chains of responsibility
268 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
269 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
270 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
271 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
272 >
273 >      std::vector<AtomType*>::iterator i;
274 >      std::vector<AtomType*>::iterator j;
275 >      std::vector<AtomType*>::iterator k;
276 >      std::vector<AtomType*>::iterator l;
277 >
278 >      int ii = 0;
279 >      int jj = 0;
280 >      int kk = 0;
281 >      int ll = 0;
282 >      int ILscore;
283 >      int JKscore;
284 >
285 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
286 >
287 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
288 >        kk = 0;
289 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
290 >          ii = 0;      
291 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
292 >            ll = 0;
293 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
294 >          
295 >              ILscore = ii + ll;
296 >              JKscore = jj + kk;
297 >
298 >              std::vector<std::string> myKeys;
299 >              myKeys.push_back((*i)->getName());
300 >              myKeys.push_back((*j)->getName());
301 >              myKeys.push_back((*k)->getName());
302 >              myKeys.push_back((*l)->getName());
303 >
304 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
305 >              if (torsionType) {
306 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
307 >              }
308 >              ll++;
309 >            }
310 >            ii++;
311 >          }
312 >          kk++;
313 >        }
314 >        jj++;
315 >      }
316 >      
317 >      if (foundTorsions.size() > 0) {
318 >        std::sort(foundTorsions.begin(), foundTorsions.end());
319 >        int jkscore = foundTorsions[0].first;
320 >        int ilscore = foundTorsions[0].second;
321 >        std::vector<std::string> theKeys = foundTorsions[0].third;
322 >        
323 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
324 >        return bestType;
325 >      } else {
326 >        //if no exact match found, try wild card match
327 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
328 >      }
329 >    }
330 >  }
331 >
332 >  InversionType* ForceField::getInversionType(const std::string &at1,
333 >                                              const std::string &at2,
334 >                                              const std::string &at3,
335 >                                              const std::string &at4) {
336 >    std::vector<std::string> keys;
337 >    keys.push_back(at1);
338 >    keys.push_back(at2);    
339 >    keys.push_back(at3);    
340 >    keys.push_back(at4);    
341 >
342 >    //try exact match first
343 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
344 >    if (inversionType) {
345 >      return inversionType;
346 >    } else {
347 >      
348 >      AtomType* atype1;
349 >      AtomType* atype2;
350 >      AtomType* atype3;
351 >      AtomType* atype4;
352 >      std::vector<std::string> at1key;
353 >      at1key.push_back(at1);
354 >      atype1 = atomTypeCont_.find(at1key);
355 >      
356 >      std::vector<std::string> at2key;
357 >      at2key.push_back(at2);
358 >      atype2 = atomTypeCont_.find(at2key);
359 >      
360 >      std::vector<std::string> at3key;
361 >      at3key.push_back(at3);
362 >      atype3 = atomTypeCont_.find(at3key);
363 >      
364 >      std::vector<std::string> at4key;
365 >      at4key.push_back(at4);
366 >      atype4 = atomTypeCont_.find(at4key);
367 >
368 >      // query atom types for their chains of responsibility
369 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
370 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
371 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
372 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
373 >
374 >      std::vector<AtomType*>::iterator i;
375 >      std::vector<AtomType*>::iterator j;
376 >      std::vector<AtomType*>::iterator k;
377 >      std::vector<AtomType*>::iterator l;
378 >
379 >      int ii = 0;
380 >      int jj = 0;
381 >      int kk = 0;
382 >      int ll = 0;
383 >      int Iscore;
384 >      int JKLscore;
385 >      
386 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
387 >      
388 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
389 >        kk = 0;
390 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
391 >          ii = 0;      
392 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
393 >            ll = 0;
394 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
395 >              
396 >              Iscore = ii;
397 >              JKLscore = jj + kk + ll;
398 >              
399 >              std::vector<std::string> myKeys;
400 >              myKeys.push_back((*i)->getName());
401 >              myKeys.push_back((*j)->getName());
402 >              myKeys.push_back((*k)->getName());
403 >              myKeys.push_back((*l)->getName());
404 >              
405 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
406 >              if (inversionType) {
407 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
408 >              }
409 >              ll++;
410 >            }
411 >            ii++;
412 >          }
413 >          kk++;
414 >        }
415 >        jj++;
416 >      }
417 >        
418 >      if (foundInversions.size() > 0) {
419 >        std::sort(foundInversions.begin(), foundInversions.end());
420 >        int iscore = foundInversions[0].first;
421 >        int jklscore = foundInversions[0].second;
422 >        std::vector<std::string> theKeys = foundInversions[0].third;
423 >        
424 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
425 >        return bestType;
426 >      } else {
427 >        //if no exact match found, try wild card match
428 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
429 >      }
430 >    }
431 >  }
432 >  
433 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
434 >    std::vector<std::string> keys;
435 >    keys.push_back(at1);
436 >    keys.push_back(at2);    
437 >    
438 >    //try exact match first
439 >    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
440 >    if (nbiType) {
441 >      return nbiType;
442 >    } else {
443 >      //if no exact match found, try wild card match
444 >      return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
445 >    }    
446 >  }
447 >  
448 >  BondType* ForceField::getExactBondType(const std::string &at1,
449 >                                         const std::string &at2){
450 >    std::vector<std::string> keys;
451 >    keys.push_back(at1);
452 >    keys.push_back(at2);    
453 >    return bondTypeCont_.find(keys);
454 >  }
455 >  
456 >  BendType* ForceField::getExactBendType(const std::string &at1,
457 >                                         const std::string &at2,
458 >                                         const std::string &at3){
459 >    std::vector<std::string> keys;
460 >    keys.push_back(at1);
461 >    keys.push_back(at2);    
462 >    keys.push_back(at3);    
463 >    return bendTypeCont_.find(keys);
464 >  }
465 >  
466 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
467 >                                               const std::string &at2,
468 >                                               const std::string &at3,
469 >                                               const std::string &at4){
470 >    std::vector<std::string> keys;
471 >    keys.push_back(at1);
472 >    keys.push_back(at2);    
473 >    keys.push_back(at3);    
474 >    keys.push_back(at4);  
475 >    return torsionTypeCont_.find(keys);
476 >  }
477 >  
478 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
479 >                                                   const std::string &at2,
480 >                                                   const std::string &at3,
481 >                                                   const std::string &at4){
482 >    std::vector<std::string> keys;
483 >    keys.push_back(at1);
484 >    keys.push_back(at2);    
485 >    keys.push_back(at3);    
486 >    keys.push_back(at4);  
487 >    return inversionTypeCont_.find(keys);
488 >  }
489 >  
490 >  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
491 >    std::vector<std::string> keys;
492 >    keys.push_back(at1);
493 >    keys.push_back(at2);    
494 >    return nonBondedInteractionTypeCont_.find(keys);
495 >  }
496 >  
497 >
498 >  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
499 >    std::vector<std::string> keys;
500 >    keys.push_back(at);
501 >    return atomTypeCont_.add(keys, atomType);
502 >  }
503 >
504 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
505 >    std::vector<std::string> keys;
506 >    keys.push_back(at);
507 >    return atomTypeCont_.replace(keys, atomType);
508 >  }
509 >
510 >  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
511 >                               BondType* bondType) {
512 >    std::vector<std::string> keys;
513 >    keys.push_back(at1);
514 >    keys.push_back(at2);    
515 >    return bondTypeCont_.add(keys, bondType);    
516 >  }
517 >  
518 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
519 >                               const std::string &at3, BendType* bendType) {
520 >    std::vector<std::string> keys;
521 >    keys.push_back(at1);
522 >    keys.push_back(at2);    
523 >    keys.push_back(at3);    
524 >    return bendTypeCont_.add(keys, bendType);
525 >  }
526 >  
527 >  bool ForceField::addTorsionType(const std::string &at1,
528 >                                  const std::string &at2,
529 >                                  const std::string &at3,
530 >                                  const std::string &at4,
531 >                                  TorsionType* torsionType) {
532 >    std::vector<std::string> keys;
533 >    keys.push_back(at1);
534 >    keys.push_back(at2);    
535 >    keys.push_back(at3);    
536 >    keys.push_back(at4);    
537 >    return torsionTypeCont_.add(keys, torsionType);
538 >  }
539 >
540 >  bool ForceField::addInversionType(const std::string &at1,
541 >                                    const std::string &at2,
542 >                                    const std::string &at3,
543 >                                    const std::string &at4,
544 >                                    InversionType* inversionType) {
545 >    std::vector<std::string> keys;
546 >    keys.push_back(at1);
547 >    keys.push_back(at2);    
548 >    keys.push_back(at3);    
549 >    keys.push_back(at4);    
550 >    return inversionTypeCont_.add(keys, inversionType);
551 >  }
552 >  
553 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
554 >                                               const std::string &at2,
555 >                                               NonBondedInteractionType* nbiType) {
556 >    std::vector<std::string> keys;
557 >    keys.push_back(at1);
558 >    keys.push_back(at2);    
559 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
560 >  }
561 >  
562 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
563 >    /**@todo */
564 >    GenericData* data;
565 >    RealType rcut = 0.0;
566 >    
567 >    if (at->isLennardJones()) {
568 >      data = at->getPropertyByName("LennardJones");
569 >      if (data != NULL) {
570 >        LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
571 >        
572 >        if (ljData != NULL) {
573 >          LJParam ljParam = ljData->getData();
574 >          
575 >          //by default use 2.5*sigma as cutoff radius
576 >          rcut = 2.5 * ljParam.sigma;
577 >          
578 >        } else {
579 >          sprintf( painCave.errMsg,
580 >                   "Can not cast GenericData to LJParam\n");
581 >          painCave.severity = OPENMD_ERROR;
582 >          painCave.isFatal = 1;
583 >          simError();          
584 >        }            
585 >      } else {
586 >        sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n");
587 >        painCave.severity = OPENMD_ERROR;
588 >        painCave.isFatal = 1;
589 >        simError();          
590 >      }
591 >    }
592 >    return rcut;    
593 >  }
594 >  
595 >
596 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
597 >    std::string forceFieldFilename(filename);
598 >    ifstrstream* ffStream = new ifstrstream();
599 >    
600 >    //try to open the force filed file in current directory first    
601 >    ffStream->open(forceFieldFilename.c_str());
602 >    if(!ffStream->is_open()){
603 >
604 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
605 >      ffStream->open( forceFieldFilename.c_str() );
606 >
607 >      //if current directory does not contain the force field file,
608 >      //try to open it in the path        
609 >      if(!ffStream->is_open()){
610 >
611 >        sprintf( painCave.errMsg,
612 >                 "Error opening the force field parameter file:\n"
613 >                 "\t%s\n"
614 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
615 >                 "variable?\n",
616 >                 forceFieldFilename.c_str() );
617 >        painCave.severity = OPENMD_ERROR;
618 >        painCave.isFatal = 1;
619 >        simError();
620 >      }
621 >    }  
622 >    return ffStream;
623 >  }
624 >
625 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines