ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (file contents), Revision 1629 by gezelter, Wed Sep 14 21:15:17 2011 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40 + */
41 +
42 + /**
43 + * @file ForceField.cpp
44 + * @author tlin
45 + * @date 11/04/2004
46 + * @time 22:51am
47 + * @version 1.0
48 + */
49 +  
50 + #include <algorithm>
51   #include "UseTheForce/ForceField.hpp"
52 + #include "utils/simError.h"
53 + #include "utils/Tuple.hpp"
54 + namespace OpenMD {
55  
56 < AtomType* ForceField::getMatchingAtomType(const string &at) {
56 >  ForceField::ForceField() {
57  
58 <  map<string, AtomType*>::iterator iter;
59 <  
60 <  iter = atomTypeMap.find(at);
61 <  if (iter != atomTypeMap.end()) {
62 <    return iter->second;
63 <  } else {
64 <    return NULL;
58 >    char* tempPath;
59 >    tempPath = getenv("FORCE_PARAM_PATH");
60 >    
61 >    if (tempPath == NULL) {
62 >      //convert a macro from compiler to a string in c++
63 >      STR_DEFINE(ffPath_, FRC_PATH );
64 >    } else {
65 >      ffPath_ = tempPath;
66 >    }
67    }
13 }
68  
69 < BondType* ForceField::getMatchingBondType(const string &at1,
70 <                                          const string &at2) {
69 >  /**
70 >   * getAtomType by string
71 >   *
72 >   * finds the requested atom type in this force field using the string
73 >   * name of the atom type.
74 >   */
75 >  AtomType* ForceField::getAtomType(const std::string &at) {
76 >    std::vector<std::string> keys;
77 >    keys.push_back(at);
78 >    return atomTypeCont_.find(keys);
79 >  }
80  
81 <  map<pair<string,string>, BondType*>::iterator iter;
82 <  vector<BondType*> foundTypes;
81 >  /**
82 >   * getAtomType by ident
83 >   *
84 >   * finds the requested atom type in this force field using the
85 >   * integer ident instead of the string name of the atom type.
86 >   */
87 >  AtomType* ForceField::getAtomType(int ident) {  
88 >    std::string at = atypeIdentToName.find(ident)->second;
89 >    return getAtomType(at);
90 >  }
91  
92 <  iter = bondTypeMap.find(pair<at1, at2>);
93 <  if (iter != bondTypeMap.end()) {
94 <    // exact match, so just return it
95 <    return iter->second;
96 <  }
92 >  BondType* ForceField::getBondType(const std::string &at1,
93 >                                    const std::string &at2) {
94 >    std::vector<std::string> keys;
95 >    keys.push_back(at1);
96 >    keys.push_back(at2);    
97  
98 <  iter = bondTypeMap.find(pair<at2, at1>);
99 <  if (iter != bondTypeMap.end()) {
100 <    // exact match in reverse order, so just return it
101 <    return iter->second;
102 <  }
98 >    //try exact match first
99 >    BondType* bondType = bondTypeCont_.find(keys);
100 >    if (bondType) {
101 >      return bondType;
102 >    } else {
103 >      AtomType* atype1;
104 >      AtomType* atype2;
105 >      std::vector<std::string> at1key;
106 >      at1key.push_back(at1);
107 >      atype1 = atomTypeCont_.find(at1key);
108 >  
109 >      std::vector<std::string> at2key;
110 >      at2key.push_back(at2);
111 >      atype2 = atomTypeCont_.find(at2key);
112  
113 <  iter = bondTypeMap.find(pair<at1, wildCardAtomTypeName>);
114 <  if (iter != bondTypeMap.end()) {
115 <    foundTypes.push_back(iter->second);
36 <  }
113 >      // query atom types for their chains of responsibility
114 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
115 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
116  
117 <  iter = bondTypeMap.find(pair<at2, wildCardAtomTypeName>);
118 <  if (iter != bondTypeMap.end()) {
40 <    foundTypes.push_back(iter->second);
41 <  }
117 >      std::vector<AtomType*>::iterator i;
118 >      std::vector<AtomType*>::iterator j;
119  
120 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at1>);
121 <  if (iter != bondTypeMap.end()) {
122 <    foundTypes.push_back(iter->second);
46 <  }
120 >      int ii = 0;
121 >      int jj = 0;
122 >      int bondTypeScore;
123  
124 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at2>);
125 <  if (iter != bondTypeMap.end()) {
126 <    foundTypes.push_back(iter->second);
124 >      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
125 >
126 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
127 >        jj = 0;
128 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
129 >
130 >          bondTypeScore = ii + jj;
131 >
132 >          std::vector<std::string> myKeys;
133 >          myKeys.push_back((*i)->getName());
134 >          myKeys.push_back((*j)->getName());
135 >
136 >          BondType* bondType = bondTypeCont_.find(myKeys);
137 >          if (bondType) {
138 >            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
139 >          }
140 >          jj++;
141 >        }
142 >        ii++;
143 >      }
144 >
145 >
146 >      if (foundBonds.size() > 0) {
147 >        // sort the foundBonds by the score:
148 >        std::sort(foundBonds.begin(), foundBonds.end());
149 >    
150 >        int bestScore = foundBonds[0].first;
151 >        std::vector<std::string> theKeys = foundBonds[0].second;
152 >        
153 >        BondType* bestType = bondTypeCont_.find(theKeys);
154 >        
155 >        return bestType;
156 >      } else {
157 >        //if no exact match found, try wild card match
158 >        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
159 >      }
160 >    }
161    }
162    
163 <  if (foundTypes.empty()) {
164 <    return NULL;
165 <  } else {
166 <    
163 >  BendType* ForceField::getBendType(const std::string &at1,
164 >                                    const std::string &at2,
165 >                                    const std::string &at3) {
166 >    std::vector<std::string> keys;
167 >    keys.push_back(at1);
168 >    keys.push_back(at2);    
169 >    keys.push_back(at3);    
170  
171 <
171 >    //try exact match first
172 >    BendType* bendType = bendTypeCont_.find(keys);
173 >    if (bendType) {
174 >      return bendType;
175 >    } else {
176  
177 +      AtomType* atype1;
178 +      AtomType* atype2;
179 +      AtomType* atype3;
180 +      std::vector<std::string> at1key;
181 +      at1key.push_back(at1);
182 +      atype1 = atomTypeCont_.find(at1key);
183 +  
184 +      std::vector<std::string> at2key;
185 +      at2key.push_back(at2);
186 +      atype2 = atomTypeCont_.find(at2key);
187  
188 +      std::vector<std::string> at3key;
189 +      at3key.push_back(at3);
190 +      atype3 = atomTypeCont_.find(at3key);
191  
192 +      // query atom types for their chains of responsibility
193 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
194 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
195 +      std::vector<AtomType*> at3Chain = atype3->allYourBase();
196 +
197 +      std::vector<AtomType*>::iterator i;
198 +      std::vector<AtomType*>::iterator j;
199 +      std::vector<AtomType*>::iterator k;
200 +
201 +      int ii = 0;
202 +      int jj = 0;
203 +      int kk = 0;
204 +      int IKscore;
205 +
206 +      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
207 +
208 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
209 +        ii = 0;
210 +        for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
211 +          kk = 0;
212 +          for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
213 +          
214 +            IKscore = ii + kk;
215 +
216 +            std::vector<std::string> myKeys;
217 +            myKeys.push_back((*i)->getName());
218 +            myKeys.push_back((*j)->getName());
219 +            myKeys.push_back((*k)->getName());
220 +
221 +            BendType* bendType = bendTypeCont_.find(myKeys);
222 +            if (bendType) {
223 +              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
224 +            }
225 +            kk++;
226 +          }
227 +          ii++;
228 +        }
229 +        jj++;
230 +      }
231 +      
232 +      if (foundBends.size() > 0) {
233 +        std::sort(foundBends.begin(), foundBends.end());
234 +        int jscore = foundBends[0].first;
235 +        int ikscore = foundBends[0].second;
236 +        std::vector<std::string> theKeys = foundBends[0].third;      
237 +        
238 +        BendType* bestType = bendTypeCont_.find(theKeys);  
239 +        return bestType;
240 +      } else {        
241 +        //if no exact match found, try wild card match
242 +        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
243 +      }
244 +    }
245 +  }
246 +
247 +  TorsionType* ForceField::getTorsionType(const std::string &at1,
248 +                                          const std::string &at2,
249 +                                          const std::string &at3,
250 +                                          const std::string &at4) {
251 +    std::vector<std::string> keys;
252 +    keys.push_back(at1);
253 +    keys.push_back(at2);    
254 +    keys.push_back(at3);    
255 +    keys.push_back(at4);    
256 +
257 +
258 +    //try exact match first
259 +    TorsionType* torsionType = torsionTypeCont_.find(keys);
260 +    if (torsionType) {
261 +      return torsionType;
262 +    } else {
263 +
264 +      AtomType* atype1;
265 +      AtomType* atype2;
266 +      AtomType* atype3;
267 +      AtomType* atype4;
268 +      std::vector<std::string> at1key;
269 +      at1key.push_back(at1);
270 +      atype1 = atomTypeCont_.find(at1key);
271    
272 +      std::vector<std::string> at2key;
273 +      at2key.push_back(at2);
274 +      atype2 = atomTypeCont_.find(at2key);
275  
276 +      std::vector<std::string> at3key;
277 +      at3key.push_back(at3);
278 +      atype3 = atomTypeCont_.find(at3key);
279  
280 < BendType* ForceField::getMatchingBendType(const string &at1, const string &at2,
281 <                                          const string &at3);
282 < TorsionType* ForceField::getMatchingTorsionType(const string &at1, const string &at2,
68 <                                                const string &at3, const string &at4);
280 >      std::vector<std::string> at4key;
281 >      at4key.push_back(at4);
282 >      atype4 = atomTypeCont_.find(at4key);
283  
284 < double ForceField::getRcutForAtomType(AtomType* at);
284 >      // query atom types for their chains of responsibility
285 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
286 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
287 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
288 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
289  
290 +      std::vector<AtomType*>::iterator i;
291 +      std::vector<AtomType*>::iterator j;
292 +      std::vector<AtomType*>::iterator k;
293 +      std::vector<AtomType*>::iterator l;
294  
295 < vector<vector<string> > generateWildcardSequence(const vector<string> atomTypes) {
296 <  
297 <   vector<vector<string> > results;
295 >      int ii = 0;
296 >      int jj = 0;
297 >      int kk = 0;
298 >      int ll = 0;
299 >      int ILscore;
300 >      int JKscore;
301  
302 <  
302 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
303  
304 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
305 +        kk = 0;
306 +        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
307 +          ii = 0;      
308 +          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
309 +            ll = 0;
310 +            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
311 +          
312 +              ILscore = ii + ll;
313 +              JKscore = jj + kk;
314  
315 <   vector<vector< string> > getAllWildcardPermutations(const vector<string> myAts) {
316 <    
317 <     int nStrings;
318 <     vector<string> oneResult;
319 <     vector<vector<string> > allResults;
315 >              std::vector<std::string> myKeys;
316 >              myKeys.push_back((*i)->getName());
317 >              myKeys.push_back((*j)->getName());
318 >              myKeys.push_back((*k)->getName());
319 >              myKeys.push_back((*l)->getName());
320  
321 <     nStrings = myAts.size();
321 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
322 >              if (torsionType) {
323 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
324 >              }
325 >              ll++;
326 >            }
327 >            ii++;
328 >          }
329 >          kk++;
330 >        }
331 >        jj++;
332 >      }
333 >      
334 >      if (foundTorsions.size() > 0) {
335 >        std::sort(foundTorsions.begin(), foundTorsions.end());
336 >        int jkscore = foundTorsions[0].first;
337 >        int ilscore = foundTorsions[0].second;
338 >        std::vector<std::string> theKeys = foundTorsions[0].third;
339 >        
340 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
341 >        return bestType;
342 >      } else {
343 >        //if no exact match found, try wild card match
344 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
345 >      }
346 >    }
347 >  }
348  
349 <     if (nStrings == 1) {
350 <       oneResult.push_back(wildcardCharacter);
351 <       allResults.push_back(oneResult);
352 <       return allResults;
353 <     } else {
354 <      
355 <       for (i=0; i < nStrings; i++) {
356 <         oneResult = myAts;
357 <         replace(oneResult.begin(), oneResult.end(),
349 >  InversionType* ForceField::getInversionType(const std::string &at1,
350 >                                              const std::string &at2,
351 >                                              const std::string &at3,
352 >                                              const std::string &at4) {
353 >    std::vector<std::string> keys;
354 >    keys.push_back(at1);
355 >    keys.push_back(at2);    
356 >    keys.push_back(at3);    
357 >    keys.push_back(at4);    
358 >
359 >    //try exact match first
360 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
361 >    if (inversionType) {
362 >      return inversionType;
363 >    } else {
364 >      
365 >      AtomType* atype1;
366 >      AtomType* atype2;
367 >      AtomType* atype3;
368 >      AtomType* atype4;
369 >      std::vector<std::string> at1key;
370 >      at1key.push_back(at1);
371 >      atype1 = atomTypeCont_.find(at1key);
372 >      
373 >      std::vector<std::string> at2key;
374 >      at2key.push_back(at2);
375 >      atype2 = atomTypeCont_.find(at2key);
376 >      
377 >      std::vector<std::string> at3key;
378 >      at3key.push_back(at3);
379 >      atype3 = atomTypeCont_.find(at3key);
380 >      
381 >      std::vector<std::string> at4key;
382 >      at4key.push_back(at4);
383 >      atype4 = atomTypeCont_.find(at4key);
384 >
385 >      // query atom types for their chains of responsibility
386 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
387 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
388 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
389 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
390 >
391 >      std::vector<AtomType*>::iterator i;
392 >      std::vector<AtomType*>::iterator j;
393 >      std::vector<AtomType*>::iterator k;
394 >      std::vector<AtomType*>::iterator l;
395 >
396 >      int ii = 0;
397 >      int jj = 0;
398 >      int kk = 0;
399 >      int ll = 0;
400 >      int Iscore;
401 >      int JKLscore;
402 >      
403 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
404 >      
405 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
406 >        kk = 0;
407 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
408 >          ii = 0;      
409 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
410 >            ll = 0;
411 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
412 >              
413 >              Iscore = ii;
414 >              JKLscore = jj + kk + ll;
415 >              
416 >              std::vector<std::string> myKeys;
417 >              myKeys.push_back((*i)->getName());
418 >              myKeys.push_back((*j)->getName());
419 >              myKeys.push_back((*k)->getName());
420 >              myKeys.push_back((*l)->getName());
421 >              
422 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
423 >              if (inversionType) {
424 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
425 >              }
426 >              ll++;
427 >            }
428 >            ii++;
429 >          }
430 >          kk++;
431 >        }
432 >        jj++;
433 >      }
434 >        
435 >      if (foundInversions.size() > 0) {
436 >        std::sort(foundInversions.begin(), foundInversions.end());
437 >        int iscore = foundInversions[0].first;
438 >        int jklscore = foundInversions[0].second;
439 >        std::vector<std::string> theKeys = foundInversions[0].third;
440 >        
441 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
442 >        return bestType;
443 >      } else {
444 >        //if no exact match found, try wild card match
445 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
446 >      }
447 >    }
448 >  }
449 >  
450 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
451 >    
452 >    std::vector<std::string> keys;
453 >    keys.push_back(at1);
454 >    keys.push_back(at2);    
455 >    
456 >    //try exact match first
457 >    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
458 >    if (nbiType) {
459 >      return nbiType;
460 >    } else {
461 >      AtomType* atype1;
462 >      AtomType* atype2;
463 >      std::vector<std::string> at1key;
464 >      at1key.push_back(at1);
465 >      atype1 = atomTypeCont_.find(at1key);
466 >      
467 >      std::vector<std::string> at2key;
468 >      at2key.push_back(at2);
469 >      atype2 = atomTypeCont_.find(at2key);
470 >      
471 >      // query atom types for their chains of responsibility
472 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
473 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
474 >      
475 >      std::vector<AtomType*>::iterator i;
476 >      std::vector<AtomType*>::iterator j;
477 >      
478 >      int ii = 0;
479 >      int jj = 0;
480 >      int nbiTypeScore;
481 >      
482 >      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
483 >      
484 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
485 >        jj = 0;
486 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
487 >          
488 >          nbiTypeScore = ii + jj;
489 >          
490 >          std::vector<std::string> myKeys;
491 >          myKeys.push_back((*i)->getName());
492 >          myKeys.push_back((*j)->getName());
493 >          
494 >          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
495 >          if (nbiType) {
496 >            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
497 >          }
498 >          jj++;
499 >        }
500 >        ii++;
501 >      }
502 >      
503 >      
504 >      if (foundNBI.size() > 0) {
505 >        // sort the foundNBI by the score:
506 >        std::sort(foundNBI.begin(), foundNBI.end());
507 >        
508 >        int bestScore = foundNBI[0].first;
509 >        std::vector<std::string> theKeys = foundNBI[0].second;
510 >        
511 >        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
512 >        return bestType;
513 >      } else {
514 >        //if no exact match found, try wild card match
515 >        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
516 >      }
517 >    }
518 >  }
519 >  
520 >  BondType* ForceField::getExactBondType(const std::string &at1,
521 >                                         const std::string &at2){
522 >    std::vector<std::string> keys;
523 >    keys.push_back(at1);
524 >    keys.push_back(at2);    
525 >    return bondTypeCont_.find(keys);
526 >  }
527 >  
528 >  BendType* ForceField::getExactBendType(const std::string &at1,
529 >                                         const std::string &at2,
530 >                                         const std::string &at3){
531 >    std::vector<std::string> keys;
532 >    keys.push_back(at1);
533 >    keys.push_back(at2);    
534 >    keys.push_back(at3);    
535 >    return bendTypeCont_.find(keys);
536 >  }
537 >  
538 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
539 >                                               const std::string &at2,
540 >                                               const std::string &at3,
541 >                                               const std::string &at4){
542 >    std::vector<std::string> keys;
543 >    keys.push_back(at1);
544 >    keys.push_back(at2);    
545 >    keys.push_back(at3);    
546 >    keys.push_back(at4);  
547 >    return torsionTypeCont_.find(keys);
548 >  }
549 >  
550 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
551 >                                                   const std::string &at2,
552 >                                                   const std::string &at3,
553 >                                                   const std::string &at4){
554 >    std::vector<std::string> keys;
555 >    keys.push_back(at1);
556 >    keys.push_back(at2);    
557 >    keys.push_back(at3);    
558 >    keys.push_back(at4);  
559 >    return inversionTypeCont_.find(keys);
560 >  }
561 >  
562 >  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
563 >    std::vector<std::string> keys;
564 >    keys.push_back(at1);
565 >    keys.push_back(at2);    
566 >    return nonBondedInteractionTypeCont_.find(keys);
567 >  }
568 >  
569 >
570 >  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
571 >    std::vector<std::string> keys;
572 >    keys.push_back(at);
573 >    atypeIdentToName[atomType->getIdent()] = at;
574 >    return atomTypeCont_.add(keys, atomType);
575 >  }
576 >
577 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
578 >    std::vector<std::string> keys;
579 >    keys.push_back(at);
580 >    atypeIdentToName[atomType->getIdent()] = at;
581 >    return atomTypeCont_.replace(keys, atomType);
582 >  }
583 >
584 >  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
585 >                               BondType* bondType) {
586 >    std::vector<std::string> keys;
587 >    keys.push_back(at1);
588 >    keys.push_back(at2);    
589 >    return bondTypeCont_.add(keys, bondType);    
590 >  }
591 >  
592 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
593 >                               const std::string &at3, BendType* bendType) {
594 >    std::vector<std::string> keys;
595 >    keys.push_back(at1);
596 >    keys.push_back(at2);    
597 >    keys.push_back(at3);    
598 >    return bendTypeCont_.add(keys, bendType);
599 >  }
600 >  
601 >  bool ForceField::addTorsionType(const std::string &at1,
602 >                                  const std::string &at2,
603 >                                  const std::string &at3,
604 >                                  const std::string &at4,
605 >                                  TorsionType* torsionType) {
606 >    std::vector<std::string> keys;
607 >    keys.push_back(at1);
608 >    keys.push_back(at2);    
609 >    keys.push_back(at3);    
610 >    keys.push_back(at4);    
611 >    return torsionTypeCont_.add(keys, torsionType);
612 >  }
613 >
614 >  bool ForceField::addInversionType(const std::string &at1,
615 >                                    const std::string &at2,
616 >                                    const std::string &at3,
617 >                                    const std::string &at4,
618 >                                    InversionType* inversionType) {
619 >    std::vector<std::string> keys;
620 >    keys.push_back(at1);
621 >    keys.push_back(at2);    
622 >    keys.push_back(at3);    
623 >    keys.push_back(at4);    
624 >    return inversionTypeCont_.add(keys, inversionType);
625 >  }
626 >  
627 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
628 >                                               const std::string &at2,
629 >                                               NonBondedInteractionType* nbiType) {
630 >    std::vector<std::string> keys;
631 >    keys.push_back(at1);
632 >    keys.push_back(at2);    
633 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
634 >  }
635 >  
636 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
637 >    /**@todo */
638 >    GenericData* data;
639 >    RealType rcut = 0.0;
640 >    
641 >    if (at->isLennardJones()) {
642 >      data = at->getPropertyByName("LennardJones");
643 >      if (data != NULL) {
644 >        LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
645 >        
646 >        if (ljData != NULL) {
647 >          LJParam ljParam = ljData->getData();
648 >          
649 >          //by default use 2.5*sigma as cutoff radius
650 >          rcut = 2.5 * ljParam.sigma;
651 >          
652 >        } else {
653 >          sprintf( painCave.errMsg,
654 >                   "Can not cast GenericData to LJParam\n");
655 >          painCave.severity = OPENMD_ERROR;
656 >          painCave.isFatal = 1;
657 >          simError();          
658 >        }            
659 >      } else {
660 >        sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n");
661 >        painCave.severity = OPENMD_ERROR;
662 >        painCave.isFatal = 1;
663 >        simError();          
664 >      }
665 >    }
666 >    return rcut;    
667 >  }
668 >  
669 >
670 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
671 >    std::string forceFieldFilename(filename);
672 >    ifstrstream* ffStream = new ifstrstream();
673 >    
674 >    //try to open the force filed file in current directory first    
675 >    ffStream->open(forceFieldFilename.c_str());
676 >    if(!ffStream->is_open()){
677 >
678 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
679 >      ffStream->open( forceFieldFilename.c_str() );
680 >
681 >      //if current directory does not contain the force field file,
682 >      //try to open it in the path        
683 >      if(!ffStream->is_open()){
684 >
685 >        sprintf( painCave.errMsg,
686 >                 "Error opening the force field parameter file:\n"
687 >                 "\t%s\n"
688 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
689 >                 "variable?\n",
690 >                 forceFieldFilename.c_str() );
691 >        painCave.severity = OPENMD_ERROR;
692 >        painCave.isFatal = 1;
693 >        simError();
694 >      }
695 >    }  
696 >    return ffStream;
697 >  }
698 >
699 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 1629 by gezelter, Wed Sep 14 21:15:17 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines