1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file ForceField.cpp |
45 |
* @author tlin |
46 |
* @date 11/04/2004 |
47 |
* @time 22:51am |
48 |
* @version 1.0 |
49 |
*/ |
50 |
|
51 |
#include <algorithm> |
52 |
#include "brains/ForceField.hpp" |
53 |
#include "utils/simError.h" |
54 |
|
55 |
#include "io/OptionSectionParser.hpp" |
56 |
#include "io/BaseAtomTypesSectionParser.hpp" |
57 |
#include "io/DirectionalAtomTypesSectionParser.hpp" |
58 |
#include "io/AtomTypesSectionParser.hpp" |
59 |
#include "io/BendTypesSectionParser.hpp" |
60 |
#include "io/BondTypesSectionParser.hpp" |
61 |
#include "io/ChargeAtomTypesSectionParser.hpp" |
62 |
#include "io/EAMAtomTypesSectionParser.hpp" |
63 |
#include "io/FluctuatingChargeAtomTypesSectionParser.hpp" |
64 |
#include "io/GayBerneAtomTypesSectionParser.hpp" |
65 |
#include "io/InversionTypesSectionParser.hpp" |
66 |
#include "io/LennardJonesAtomTypesSectionParser.hpp" |
67 |
#include "io/MultipoleAtomTypesSectionParser.hpp" |
68 |
#include "io/NonBondedInteractionsSectionParser.hpp" |
69 |
#include "io/PolarizableAtomTypesSectionParser.hpp" |
70 |
#include "io/SCAtomTypesSectionParser.hpp" |
71 |
#include "io/ShapeAtomTypesSectionParser.hpp" |
72 |
#include "io/StickyAtomTypesSectionParser.hpp" |
73 |
#include "io/StickyPowerAtomTypesSectionParser.hpp" |
74 |
#include "io/TorsionTypesSectionParser.hpp" |
75 |
|
76 |
#include "types/LennardJonesAdapter.hpp" |
77 |
#include "types/EAMAdapter.hpp" |
78 |
#include "types/SuttonChenAdapter.hpp" |
79 |
#include "types/GayBerneAdapter.hpp" |
80 |
#include "types/StickyAdapter.hpp" |
81 |
|
82 |
namespace OpenMD { |
83 |
|
84 |
ForceField::ForceField(std::string ffName) { |
85 |
|
86 |
char* tempPath; |
87 |
tempPath = getenv("FORCE_PARAM_PATH"); |
88 |
|
89 |
if (tempPath == NULL) { |
90 |
//convert a macro from compiler to a string in c++ |
91 |
STR_DEFINE(ffPath_, FRC_PATH ); |
92 |
} else { |
93 |
ffPath_ = tempPath; |
94 |
} |
95 |
|
96 |
setForceFieldFileName(ffName + ".frc"); |
97 |
|
98 |
/** |
99 |
* The order of adding section parsers is important. |
100 |
* |
101 |
* OptionSectionParser must come first to set options for other |
102 |
* parsers |
103 |
* |
104 |
* DirectionalAtomTypesSectionParser should be added before |
105 |
* AtomTypesSectionParser, and these two section parsers will |
106 |
* actually create "real" AtomTypes (AtomTypesSectionParser will |
107 |
* create AtomType and DirectionalAtomTypesSectionParser will |
108 |
* create DirectionalAtomType, which is a subclass of AtomType and |
109 |
* should come first). |
110 |
* |
111 |
* Other AtomTypes Section Parsers will not create the "real" |
112 |
* AtomType, they only add and set some attributes of the AtomType |
113 |
* (via the Adapters). Thus ordering of these is not important. |
114 |
* AtomTypesSectionParser should be added before other atom type |
115 |
* |
116 |
* The order of BondTypesSectionParser, BendTypesSectionParser and |
117 |
* TorsionTypesSectionParser, etc. are not important. |
118 |
*/ |
119 |
|
120 |
spMan_.push_back(new OptionSectionParser(forceFieldOptions_)); |
121 |
spMan_.push_back(new BaseAtomTypesSectionParser()); |
122 |
spMan_.push_back(new DirectionalAtomTypesSectionParser(forceFieldOptions_)); |
123 |
spMan_.push_back(new AtomTypesSectionParser()); |
124 |
|
125 |
spMan_.push_back(new LennardJonesAtomTypesSectionParser(forceFieldOptions_)); |
126 |
spMan_.push_back(new ChargeAtomTypesSectionParser(forceFieldOptions_)); |
127 |
spMan_.push_back(new MultipoleAtomTypesSectionParser(forceFieldOptions_)); |
128 |
spMan_.push_back(new FluctuatingChargeAtomTypesSectionParser(forceFieldOptions_)); |
129 |
spMan_.push_back(new PolarizableAtomTypesSectionParser(forceFieldOptions_)); |
130 |
spMan_.push_back(new GayBerneAtomTypesSectionParser(forceFieldOptions_)); |
131 |
spMan_.push_back(new EAMAtomTypesSectionParser(forceFieldOptions_)); |
132 |
spMan_.push_back(new SCAtomTypesSectionParser(forceFieldOptions_)); |
133 |
spMan_.push_back(new ShapeAtomTypesSectionParser(forceFieldOptions_)); |
134 |
spMan_.push_back(new StickyAtomTypesSectionParser(forceFieldOptions_)); |
135 |
spMan_.push_back(new StickyPowerAtomTypesSectionParser(forceFieldOptions_)); |
136 |
|
137 |
spMan_.push_back(new BondTypesSectionParser(forceFieldOptions_)); |
138 |
spMan_.push_back(new BendTypesSectionParser(forceFieldOptions_)); |
139 |
spMan_.push_back(new TorsionTypesSectionParser(forceFieldOptions_)); |
140 |
spMan_.push_back(new InversionTypesSectionParser(forceFieldOptions_)); |
141 |
|
142 |
spMan_.push_back(new NonBondedInteractionsSectionParser(forceFieldOptions_)); |
143 |
} |
144 |
|
145 |
void ForceField::parse(const std::string& filename) { |
146 |
ifstrstream* ffStream; |
147 |
|
148 |
ffStream = openForceFieldFile(filename); |
149 |
|
150 |
spMan_.parse(*ffStream, *this); |
151 |
|
152 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
153 |
AtomType* at; |
154 |
|
155 |
for (at = atomTypeCont_.beginType(i); at != NULL; |
156 |
at = atomTypeCont_.nextType(i)) { |
157 |
|
158 |
// useBase sets the responsibilities, and these have to be done |
159 |
// after the atomTypes and Base types have all been scanned: |
160 |
|
161 |
std::vector<AtomType*> ayb = at->allYourBase(); |
162 |
if (ayb.size() > 1) { |
163 |
for (int j = ayb.size()-1; j > 0; j--) { |
164 |
|
165 |
ayb[j-1]->useBase(ayb[j]); |
166 |
|
167 |
} |
168 |
} |
169 |
} |
170 |
|
171 |
delete ffStream; |
172 |
} |
173 |
|
174 |
/** |
175 |
* getAtomType by string |
176 |
* |
177 |
* finds the requested atom type in this force field using the string |
178 |
* name of the atom type. |
179 |
*/ |
180 |
AtomType* ForceField::getAtomType(const std::string &at) { |
181 |
std::vector<std::string> keys; |
182 |
keys.push_back(at); |
183 |
return atomTypeCont_.find(keys); |
184 |
} |
185 |
|
186 |
/** |
187 |
* getAtomType by ident |
188 |
* |
189 |
* finds the requested atom type in this force field using the |
190 |
* integer ident instead of the string name of the atom type. |
191 |
*/ |
192 |
AtomType* ForceField::getAtomType(int ident) { |
193 |
std::string at = atypeIdentToName.find(ident)->second; |
194 |
return getAtomType(at); |
195 |
} |
196 |
|
197 |
BondType* ForceField::getBondType(const std::string &at1, |
198 |
const std::string &at2) { |
199 |
std::vector<std::string> keys; |
200 |
keys.push_back(at1); |
201 |
keys.push_back(at2); |
202 |
|
203 |
//try exact match first |
204 |
BondType* bondType = bondTypeCont_.find(keys); |
205 |
if (bondType) { |
206 |
return bondType; |
207 |
} else { |
208 |
AtomType* atype1; |
209 |
AtomType* atype2; |
210 |
std::vector<std::string> at1key; |
211 |
at1key.push_back(at1); |
212 |
atype1 = atomTypeCont_.find(at1key); |
213 |
|
214 |
std::vector<std::string> at2key; |
215 |
at2key.push_back(at2); |
216 |
atype2 = atomTypeCont_.find(at2key); |
217 |
|
218 |
// query atom types for their chains of responsibility |
219 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
220 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
221 |
|
222 |
std::vector<AtomType*>::iterator i; |
223 |
std::vector<AtomType*>::iterator j; |
224 |
|
225 |
int ii = 0; |
226 |
int jj = 0; |
227 |
int bondTypeScore; |
228 |
|
229 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
230 |
|
231 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
232 |
jj = 0; |
233 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
234 |
|
235 |
bondTypeScore = ii + jj; |
236 |
|
237 |
std::vector<std::string> myKeys; |
238 |
myKeys.push_back((*i)->getName()); |
239 |
myKeys.push_back((*j)->getName()); |
240 |
|
241 |
BondType* bondType = bondTypeCont_.find(myKeys); |
242 |
if (bondType) { |
243 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
244 |
} |
245 |
jj++; |
246 |
} |
247 |
ii++; |
248 |
} |
249 |
|
250 |
|
251 |
if (foundBonds.size() > 0) { |
252 |
// sort the foundBonds by the score: |
253 |
std::sort(foundBonds.begin(), foundBonds.end()); |
254 |
|
255 |
int bestScore = foundBonds[0].first; |
256 |
std::vector<std::string> theKeys = foundBonds[0].second; |
257 |
|
258 |
BondType* bestType = bondTypeCont_.find(theKeys); |
259 |
|
260 |
return bestType; |
261 |
} else { |
262 |
//if no exact match found, try wild card match |
263 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
264 |
} |
265 |
} |
266 |
} |
267 |
|
268 |
BendType* ForceField::getBendType(const std::string &at1, |
269 |
const std::string &at2, |
270 |
const std::string &at3) { |
271 |
std::vector<std::string> keys; |
272 |
keys.push_back(at1); |
273 |
keys.push_back(at2); |
274 |
keys.push_back(at3); |
275 |
|
276 |
//try exact match first |
277 |
BendType* bendType = bendTypeCont_.find(keys); |
278 |
if (bendType) { |
279 |
return bendType; |
280 |
} else { |
281 |
|
282 |
AtomType* atype1; |
283 |
AtomType* atype2; |
284 |
AtomType* atype3; |
285 |
std::vector<std::string> at1key; |
286 |
at1key.push_back(at1); |
287 |
atype1 = atomTypeCont_.find(at1key); |
288 |
|
289 |
std::vector<std::string> at2key; |
290 |
at2key.push_back(at2); |
291 |
atype2 = atomTypeCont_.find(at2key); |
292 |
|
293 |
std::vector<std::string> at3key; |
294 |
at3key.push_back(at3); |
295 |
atype3 = atomTypeCont_.find(at3key); |
296 |
|
297 |
// query atom types for their chains of responsibility |
298 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
299 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
300 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
301 |
|
302 |
std::vector<AtomType*>::iterator i; |
303 |
std::vector<AtomType*>::iterator j; |
304 |
std::vector<AtomType*>::iterator k; |
305 |
|
306 |
int ii = 0; |
307 |
int jj = 0; |
308 |
int kk = 0; |
309 |
int IKscore; |
310 |
|
311 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
312 |
|
313 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
314 |
ii = 0; |
315 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
316 |
kk = 0; |
317 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
318 |
|
319 |
IKscore = ii + kk; |
320 |
|
321 |
std::vector<std::string> myKeys; |
322 |
myKeys.push_back((*i)->getName()); |
323 |
myKeys.push_back((*j)->getName()); |
324 |
myKeys.push_back((*k)->getName()); |
325 |
|
326 |
BendType* bendType = bendTypeCont_.find(myKeys); |
327 |
if (bendType) { |
328 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
329 |
} |
330 |
kk++; |
331 |
} |
332 |
ii++; |
333 |
} |
334 |
jj++; |
335 |
} |
336 |
|
337 |
if (foundBends.size() > 0) { |
338 |
std::sort(foundBends.begin(), foundBends.end()); |
339 |
int jscore = foundBends[0].first; |
340 |
int ikscore = foundBends[0].second; |
341 |
std::vector<std::string> theKeys = foundBends[0].third; |
342 |
|
343 |
BendType* bestType = bendTypeCont_.find(theKeys); |
344 |
return bestType; |
345 |
} else { |
346 |
//if no exact match found, try wild card match |
347 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
348 |
} |
349 |
} |
350 |
} |
351 |
|
352 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
353 |
const std::string &at2, |
354 |
const std::string &at3, |
355 |
const std::string &at4) { |
356 |
std::vector<std::string> keys; |
357 |
keys.push_back(at1); |
358 |
keys.push_back(at2); |
359 |
keys.push_back(at3); |
360 |
keys.push_back(at4); |
361 |
|
362 |
|
363 |
//try exact match first |
364 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
365 |
if (torsionType) { |
366 |
return torsionType; |
367 |
} else { |
368 |
|
369 |
AtomType* atype1; |
370 |
AtomType* atype2; |
371 |
AtomType* atype3; |
372 |
AtomType* atype4; |
373 |
std::vector<std::string> at1key; |
374 |
at1key.push_back(at1); |
375 |
atype1 = atomTypeCont_.find(at1key); |
376 |
|
377 |
std::vector<std::string> at2key; |
378 |
at2key.push_back(at2); |
379 |
atype2 = atomTypeCont_.find(at2key); |
380 |
|
381 |
std::vector<std::string> at3key; |
382 |
at3key.push_back(at3); |
383 |
atype3 = atomTypeCont_.find(at3key); |
384 |
|
385 |
std::vector<std::string> at4key; |
386 |
at4key.push_back(at4); |
387 |
atype4 = atomTypeCont_.find(at4key); |
388 |
|
389 |
// query atom types for their chains of responsibility |
390 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
391 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
392 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
393 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
394 |
|
395 |
std::vector<AtomType*>::iterator i; |
396 |
std::vector<AtomType*>::iterator j; |
397 |
std::vector<AtomType*>::iterator k; |
398 |
std::vector<AtomType*>::iterator l; |
399 |
|
400 |
int ii = 0; |
401 |
int jj = 0; |
402 |
int kk = 0; |
403 |
int ll = 0; |
404 |
int ILscore; |
405 |
int JKscore; |
406 |
|
407 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
408 |
|
409 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
410 |
kk = 0; |
411 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
412 |
ii = 0; |
413 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
414 |
ll = 0; |
415 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
416 |
|
417 |
ILscore = ii + ll; |
418 |
JKscore = jj + kk; |
419 |
|
420 |
std::vector<std::string> myKeys; |
421 |
myKeys.push_back((*i)->getName()); |
422 |
myKeys.push_back((*j)->getName()); |
423 |
myKeys.push_back((*k)->getName()); |
424 |
myKeys.push_back((*l)->getName()); |
425 |
|
426 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
427 |
if (torsionType) { |
428 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
429 |
} |
430 |
ll++; |
431 |
} |
432 |
ii++; |
433 |
} |
434 |
kk++; |
435 |
} |
436 |
jj++; |
437 |
} |
438 |
|
439 |
if (foundTorsions.size() > 0) { |
440 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
441 |
int jkscore = foundTorsions[0].first; |
442 |
int ilscore = foundTorsions[0].second; |
443 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
444 |
|
445 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
446 |
return bestType; |
447 |
} else { |
448 |
//if no exact match found, try wild card match |
449 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
450 |
} |
451 |
} |
452 |
} |
453 |
|
454 |
InversionType* ForceField::getInversionType(const std::string &at1, |
455 |
const std::string &at2, |
456 |
const std::string &at3, |
457 |
const std::string &at4) { |
458 |
std::vector<std::string> keys; |
459 |
keys.push_back(at1); |
460 |
keys.push_back(at2); |
461 |
keys.push_back(at3); |
462 |
keys.push_back(at4); |
463 |
|
464 |
//try exact match first |
465 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
466 |
if (inversionType) { |
467 |
return inversionType; |
468 |
} else { |
469 |
|
470 |
AtomType* atype1; |
471 |
AtomType* atype2; |
472 |
AtomType* atype3; |
473 |
AtomType* atype4; |
474 |
std::vector<std::string> at1key; |
475 |
at1key.push_back(at1); |
476 |
atype1 = atomTypeCont_.find(at1key); |
477 |
|
478 |
std::vector<std::string> at2key; |
479 |
at2key.push_back(at2); |
480 |
atype2 = atomTypeCont_.find(at2key); |
481 |
|
482 |
std::vector<std::string> at3key; |
483 |
at3key.push_back(at3); |
484 |
atype3 = atomTypeCont_.find(at3key); |
485 |
|
486 |
std::vector<std::string> at4key; |
487 |
at4key.push_back(at4); |
488 |
atype4 = atomTypeCont_.find(at4key); |
489 |
|
490 |
// query atom types for their chains of responsibility |
491 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
492 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
493 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
494 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
495 |
|
496 |
std::vector<AtomType*>::iterator i; |
497 |
std::vector<AtomType*>::iterator j; |
498 |
std::vector<AtomType*>::iterator k; |
499 |
std::vector<AtomType*>::iterator l; |
500 |
|
501 |
int ii = 0; |
502 |
int jj = 0; |
503 |
int kk = 0; |
504 |
int ll = 0; |
505 |
int Iscore; |
506 |
int JKLscore; |
507 |
|
508 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
509 |
|
510 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
511 |
kk = 0; |
512 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
513 |
ii = 0; |
514 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
515 |
ll = 0; |
516 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
517 |
|
518 |
Iscore = ii; |
519 |
JKLscore = jj + kk + ll; |
520 |
|
521 |
std::vector<std::string> myKeys; |
522 |
myKeys.push_back((*i)->getName()); |
523 |
myKeys.push_back((*j)->getName()); |
524 |
myKeys.push_back((*k)->getName()); |
525 |
myKeys.push_back((*l)->getName()); |
526 |
|
527 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
528 |
if (inversionType) { |
529 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
530 |
} |
531 |
ll++; |
532 |
} |
533 |
ii++; |
534 |
} |
535 |
kk++; |
536 |
} |
537 |
jj++; |
538 |
} |
539 |
|
540 |
if (foundInversions.size() > 0) { |
541 |
std::sort(foundInversions.begin(), foundInversions.end()); |
542 |
int iscore = foundInversions[0].first; |
543 |
int jklscore = foundInversions[0].second; |
544 |
std::vector<std::string> theKeys = foundInversions[0].third; |
545 |
|
546 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
547 |
return bestType; |
548 |
} else { |
549 |
//if no exact match found, try wild card match |
550 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
551 |
} |
552 |
} |
553 |
} |
554 |
|
555 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
556 |
|
557 |
std::vector<std::string> keys; |
558 |
keys.push_back(at1); |
559 |
keys.push_back(at2); |
560 |
|
561 |
//try exact match first |
562 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
563 |
if (nbiType) { |
564 |
return nbiType; |
565 |
} else { |
566 |
AtomType* atype1; |
567 |
AtomType* atype2; |
568 |
std::vector<std::string> at1key; |
569 |
at1key.push_back(at1); |
570 |
atype1 = atomTypeCont_.find(at1key); |
571 |
|
572 |
std::vector<std::string> at2key; |
573 |
at2key.push_back(at2); |
574 |
atype2 = atomTypeCont_.find(at2key); |
575 |
|
576 |
// query atom types for their chains of responsibility |
577 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
578 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
579 |
|
580 |
std::vector<AtomType*>::iterator i; |
581 |
std::vector<AtomType*>::iterator j; |
582 |
|
583 |
int ii = 0; |
584 |
int jj = 0; |
585 |
int nbiTypeScore; |
586 |
|
587 |
std::vector<std::pair<int, std::vector<std::string> > > foundNBI; |
588 |
|
589 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
590 |
jj = 0; |
591 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
592 |
|
593 |
nbiTypeScore = ii + jj; |
594 |
|
595 |
std::vector<std::string> myKeys; |
596 |
myKeys.push_back((*i)->getName()); |
597 |
myKeys.push_back((*j)->getName()); |
598 |
|
599 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys); |
600 |
if (nbiType) { |
601 |
foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys)); |
602 |
} |
603 |
jj++; |
604 |
} |
605 |
ii++; |
606 |
} |
607 |
|
608 |
|
609 |
if (foundNBI.size() > 0) { |
610 |
// sort the foundNBI by the score: |
611 |
std::sort(foundNBI.begin(), foundNBI.end()); |
612 |
|
613 |
int bestScore = foundNBI[0].first; |
614 |
std::vector<std::string> theKeys = foundNBI[0].second; |
615 |
|
616 |
NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys); |
617 |
return bestType; |
618 |
} else { |
619 |
//if no exact match found, try wild card match |
620 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
621 |
} |
622 |
} |
623 |
} |
624 |
|
625 |
BondType* ForceField::getExactBondType(const std::string &at1, |
626 |
const std::string &at2){ |
627 |
std::vector<std::string> keys; |
628 |
keys.push_back(at1); |
629 |
keys.push_back(at2); |
630 |
return bondTypeCont_.find(keys); |
631 |
} |
632 |
|
633 |
BendType* ForceField::getExactBendType(const std::string &at1, |
634 |
const std::string &at2, |
635 |
const std::string &at3){ |
636 |
std::vector<std::string> keys; |
637 |
keys.push_back(at1); |
638 |
keys.push_back(at2); |
639 |
keys.push_back(at3); |
640 |
return bendTypeCont_.find(keys); |
641 |
} |
642 |
|
643 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
644 |
const std::string &at2, |
645 |
const std::string &at3, |
646 |
const std::string &at4){ |
647 |
std::vector<std::string> keys; |
648 |
keys.push_back(at1); |
649 |
keys.push_back(at2); |
650 |
keys.push_back(at3); |
651 |
keys.push_back(at4); |
652 |
return torsionTypeCont_.find(keys); |
653 |
} |
654 |
|
655 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
656 |
const std::string &at2, |
657 |
const std::string &at3, |
658 |
const std::string &at4){ |
659 |
std::vector<std::string> keys; |
660 |
keys.push_back(at1); |
661 |
keys.push_back(at2); |
662 |
keys.push_back(at3); |
663 |
keys.push_back(at4); |
664 |
return inversionTypeCont_.find(keys); |
665 |
} |
666 |
|
667 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
668 |
std::vector<std::string> keys; |
669 |
keys.push_back(at1); |
670 |
keys.push_back(at2); |
671 |
return nonBondedInteractionTypeCont_.find(keys); |
672 |
} |
673 |
|
674 |
|
675 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
676 |
std::vector<std::string> keys; |
677 |
keys.push_back(at); |
678 |
atypeIdentToName[atomType->getIdent()] = at; |
679 |
return atomTypeCont_.add(keys, atomType); |
680 |
} |
681 |
|
682 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
683 |
std::vector<std::string> keys; |
684 |
keys.push_back(at); |
685 |
atypeIdentToName[atomType->getIdent()] = at; |
686 |
return atomTypeCont_.replace(keys, atomType); |
687 |
} |
688 |
|
689 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
690 |
BondType* bondType) { |
691 |
std::vector<std::string> keys; |
692 |
keys.push_back(at1); |
693 |
keys.push_back(at2); |
694 |
return bondTypeCont_.add(keys, bondType); |
695 |
} |
696 |
|
697 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
698 |
const std::string &at3, BendType* bendType) { |
699 |
std::vector<std::string> keys; |
700 |
keys.push_back(at1); |
701 |
keys.push_back(at2); |
702 |
keys.push_back(at3); |
703 |
return bendTypeCont_.add(keys, bendType); |
704 |
} |
705 |
|
706 |
bool ForceField::addTorsionType(const std::string &at1, |
707 |
const std::string &at2, |
708 |
const std::string &at3, |
709 |
const std::string &at4, |
710 |
TorsionType* torsionType) { |
711 |
std::vector<std::string> keys; |
712 |
keys.push_back(at1); |
713 |
keys.push_back(at2); |
714 |
keys.push_back(at3); |
715 |
keys.push_back(at4); |
716 |
return torsionTypeCont_.add(keys, torsionType); |
717 |
} |
718 |
|
719 |
bool ForceField::addInversionType(const std::string &at1, |
720 |
const std::string &at2, |
721 |
const std::string &at3, |
722 |
const std::string &at4, |
723 |
InversionType* inversionType) { |
724 |
std::vector<std::string> keys; |
725 |
keys.push_back(at1); |
726 |
keys.push_back(at2); |
727 |
keys.push_back(at3); |
728 |
keys.push_back(at4); |
729 |
return inversionTypeCont_.add(keys, inversionType); |
730 |
} |
731 |
|
732 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
733 |
const std::string &at2, |
734 |
NonBondedInteractionType* nbiType) { |
735 |
std::vector<std::string> keys; |
736 |
keys.push_back(at1); |
737 |
keys.push_back(at2); |
738 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
739 |
} |
740 |
|
741 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
742 |
RealType rcut(0.0); |
743 |
|
744 |
LennardJonesAdapter lja = LennardJonesAdapter(at); |
745 |
if (lja.isLennardJones()) { |
746 |
rcut = 2.5 * lja.getSigma(); |
747 |
} |
748 |
EAMAdapter ea = EAMAdapter(at); |
749 |
if (ea.isEAM()) { |
750 |
rcut = max(rcut, ea.getRcut()); |
751 |
} |
752 |
SuttonChenAdapter sca = SuttonChenAdapter(at); |
753 |
if (sca.isSuttonChen()) { |
754 |
rcut = max(rcut, 2.0 * sca.getAlpha()); |
755 |
} |
756 |
GayBerneAdapter gba = GayBerneAdapter(at); |
757 |
if (gba.isGayBerne()) { |
758 |
rcut = max(rcut, 2.5 * sqrt(2.0) * max(gba.getD(), gba.getL())); |
759 |
} |
760 |
StickyAdapter sa = StickyAdapter(at); |
761 |
if (sa.isSticky()) { |
762 |
rcut = max(rcut, max(sa.getRu(), sa.getRup())); |
763 |
} |
764 |
|
765 |
return rcut; |
766 |
} |
767 |
|
768 |
|
769 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
770 |
std::string forceFieldFilename(filename); |
771 |
ifstrstream* ffStream = new ifstrstream(); |
772 |
|
773 |
//try to open the force filed file in current directory first |
774 |
ffStream->open(forceFieldFilename.c_str(), ifstream::in | ifstream::binary); |
775 |
|
776 |
if(!ffStream->is_open()){ |
777 |
|
778 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
779 |
ffStream->open( forceFieldFilename.c_str(), |
780 |
ifstream::in | ifstream::binary ); |
781 |
|
782 |
//if current directory does not contain the force field file, |
783 |
//try to open it in the path |
784 |
if(!ffStream->is_open()){ |
785 |
|
786 |
sprintf( painCave.errMsg, |
787 |
"Error opening the force field parameter file:\n" |
788 |
"\t%s\n" |
789 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
790 |
"variable?\n", |
791 |
forceFieldFilename.c_str() ); |
792 |
painCave.severity = OPENMD_ERROR; |
793 |
painCave.isFatal = 1; |
794 |
simError(); |
795 |
} |
796 |
} |
797 |
return ffStream; |
798 |
} |
799 |
|
800 |
} //end namespace OpenMD |