ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (file contents), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43 + /**
44 + * @file ForceField.cpp
45 + * @author tlin
46 + * @date 11/04/2004
47 + * @time 22:51am
48 + * @version 1.0
49 + */
50 +  
51 + #include <algorithm>
52   #include "UseTheForce/ForceField.hpp"
53 + #include "utils/simError.h"
54 + #include "utils/Tuple.hpp"
55 + #include "types/LennardJonesAdapter.hpp"
56  
57 < AtomType* ForceField::getMatchingAtomType(const string &at) {
57 > namespace OpenMD {
58  
59 <  map<string, AtomType*>::iterator iter;
60 <  
61 <  iter = atomTypeMap.find(at);
62 <  if (iter != atomTypeMap.end()) {
63 <    return iter->second;
64 <  } else {
65 <    return NULL;
59 >  ForceField::ForceField() {
60 >
61 >    char* tempPath;
62 >    tempPath = getenv("FORCE_PARAM_PATH");
63 >    
64 >    if (tempPath == NULL) {
65 >      //convert a macro from compiler to a string in c++
66 >      STR_DEFINE(ffPath_, FRC_PATH );
67 >    } else {
68 >      ffPath_ = tempPath;
69 >    }
70    }
13 }
71  
72 < BondType* ForceField::getMatchingBondType(const string &at1,
73 <                                          const string &at2) {
72 >  /**
73 >   * getAtomType by string
74 >   *
75 >   * finds the requested atom type in this force field using the string
76 >   * name of the atom type.
77 >   */
78 >  AtomType* ForceField::getAtomType(const std::string &at) {
79 >    std::vector<std::string> keys;
80 >    keys.push_back(at);
81 >    return atomTypeCont_.find(keys);
82 >  }
83  
84 <  map<pair<string,string>, BondType*>::iterator iter;
85 <  vector<BondType*> foundTypes;
84 >  /**
85 >   * getAtomType by ident
86 >   *
87 >   * finds the requested atom type in this force field using the
88 >   * integer ident instead of the string name of the atom type.
89 >   */
90 >  AtomType* ForceField::getAtomType(int ident) {  
91 >    std::string at = atypeIdentToName.find(ident)->second;
92 >    return getAtomType(at);
93 >  }
94  
95 <  iter = bondTypeMap.find(pair<at1, at2>);
96 <  if (iter != bondTypeMap.end()) {
97 <    // exact match, so just return it
98 <    return iter->second;
99 <  }
95 >  BondType* ForceField::getBondType(const std::string &at1,
96 >                                    const std::string &at2) {
97 >    std::vector<std::string> keys;
98 >    keys.push_back(at1);
99 >    keys.push_back(at2);    
100  
101 <  iter = bondTypeMap.find(pair<at2, at1>);
102 <  if (iter != bondTypeMap.end()) {
103 <    // exact match in reverse order, so just return it
104 <    return iter->second;
105 <  }
101 >    //try exact match first
102 >    BondType* bondType = bondTypeCont_.find(keys);
103 >    if (bondType) {
104 >      return bondType;
105 >    } else {
106 >      AtomType* atype1;
107 >      AtomType* atype2;
108 >      std::vector<std::string> at1key;
109 >      at1key.push_back(at1);
110 >      atype1 = atomTypeCont_.find(at1key);
111 >  
112 >      std::vector<std::string> at2key;
113 >      at2key.push_back(at2);
114 >      atype2 = atomTypeCont_.find(at2key);
115  
116 <  iter = bondTypeMap.find(pair<at1, wildCardAtomTypeName>);
117 <  if (iter != bondTypeMap.end()) {
118 <    foundTypes.push_back(iter->second);
36 <  }
116 >      // query atom types for their chains of responsibility
117 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
118 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
119  
120 <  iter = bondTypeMap.find(pair<at2, wildCardAtomTypeName>);
121 <  if (iter != bondTypeMap.end()) {
40 <    foundTypes.push_back(iter->second);
41 <  }
120 >      std::vector<AtomType*>::iterator i;
121 >      std::vector<AtomType*>::iterator j;
122  
123 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at1>);
124 <  if (iter != bondTypeMap.end()) {
125 <    foundTypes.push_back(iter->second);
46 <  }
123 >      int ii = 0;
124 >      int jj = 0;
125 >      int bondTypeScore;
126  
127 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at2>);
128 <  if (iter != bondTypeMap.end()) {
129 <    foundTypes.push_back(iter->second);
127 >      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
128 >
129 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
130 >        jj = 0;
131 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
132 >
133 >          bondTypeScore = ii + jj;
134 >
135 >          std::vector<std::string> myKeys;
136 >          myKeys.push_back((*i)->getName());
137 >          myKeys.push_back((*j)->getName());
138 >
139 >          BondType* bondType = bondTypeCont_.find(myKeys);
140 >          if (bondType) {
141 >            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
142 >          }
143 >          jj++;
144 >        }
145 >        ii++;
146 >      }
147 >
148 >
149 >      if (foundBonds.size() > 0) {
150 >        // sort the foundBonds by the score:
151 >        std::sort(foundBonds.begin(), foundBonds.end());
152 >    
153 >        int bestScore = foundBonds[0].first;
154 >        std::vector<std::string> theKeys = foundBonds[0].second;
155 >        
156 >        BondType* bestType = bondTypeCont_.find(theKeys);
157 >        
158 >        return bestType;
159 >      } else {
160 >        //if no exact match found, try wild card match
161 >        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
162 >      }
163 >    }
164    }
165    
166 <  if (foundTypes.empty()) {
167 <    return NULL;
168 <  } else {
169 <    
166 >  BendType* ForceField::getBendType(const std::string &at1,
167 >                                    const std::string &at2,
168 >                                    const std::string &at3) {
169 >    std::vector<std::string> keys;
170 >    keys.push_back(at1);
171 >    keys.push_back(at2);    
172 >    keys.push_back(at3);    
173  
174 <
174 >    //try exact match first
175 >    BendType* bendType = bendTypeCont_.find(keys);
176 >    if (bendType) {
177 >      return bendType;
178 >    } else {
179  
180 +      AtomType* atype1;
181 +      AtomType* atype2;
182 +      AtomType* atype3;
183 +      std::vector<std::string> at1key;
184 +      at1key.push_back(at1);
185 +      atype1 = atomTypeCont_.find(at1key);
186 +  
187 +      std::vector<std::string> at2key;
188 +      at2key.push_back(at2);
189 +      atype2 = atomTypeCont_.find(at2key);
190  
191 +      std::vector<std::string> at3key;
192 +      at3key.push_back(at3);
193 +      atype3 = atomTypeCont_.find(at3key);
194  
195 +      // query atom types for their chains of responsibility
196 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
197 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
198 +      std::vector<AtomType*> at3Chain = atype3->allYourBase();
199 +
200 +      std::vector<AtomType*>::iterator i;
201 +      std::vector<AtomType*>::iterator j;
202 +      std::vector<AtomType*>::iterator k;
203 +
204 +      int ii = 0;
205 +      int jj = 0;
206 +      int kk = 0;
207 +      int IKscore;
208 +
209 +      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
210 +
211 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
212 +        ii = 0;
213 +        for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
214 +          kk = 0;
215 +          for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
216 +          
217 +            IKscore = ii + kk;
218 +
219 +            std::vector<std::string> myKeys;
220 +            myKeys.push_back((*i)->getName());
221 +            myKeys.push_back((*j)->getName());
222 +            myKeys.push_back((*k)->getName());
223 +
224 +            BendType* bendType = bendTypeCont_.find(myKeys);
225 +            if (bendType) {
226 +              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
227 +            }
228 +            kk++;
229 +          }
230 +          ii++;
231 +        }
232 +        jj++;
233 +      }
234 +      
235 +      if (foundBends.size() > 0) {
236 +        std::sort(foundBends.begin(), foundBends.end());
237 +        int jscore = foundBends[0].first;
238 +        int ikscore = foundBends[0].second;
239 +        std::vector<std::string> theKeys = foundBends[0].third;      
240 +        
241 +        BendType* bestType = bendTypeCont_.find(theKeys);  
242 +        return bestType;
243 +      } else {        
244 +        //if no exact match found, try wild card match
245 +        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
246 +      }
247 +    }
248 +  }
249 +
250 +  TorsionType* ForceField::getTorsionType(const std::string &at1,
251 +                                          const std::string &at2,
252 +                                          const std::string &at3,
253 +                                          const std::string &at4) {
254 +    std::vector<std::string> keys;
255 +    keys.push_back(at1);
256 +    keys.push_back(at2);    
257 +    keys.push_back(at3);    
258 +    keys.push_back(at4);    
259 +
260 +
261 +    //try exact match first
262 +    TorsionType* torsionType = torsionTypeCont_.find(keys);
263 +    if (torsionType) {
264 +      return torsionType;
265 +    } else {
266 +
267 +      AtomType* atype1;
268 +      AtomType* atype2;
269 +      AtomType* atype3;
270 +      AtomType* atype4;
271 +      std::vector<std::string> at1key;
272 +      at1key.push_back(at1);
273 +      atype1 = atomTypeCont_.find(at1key);
274    
275 +      std::vector<std::string> at2key;
276 +      at2key.push_back(at2);
277 +      atype2 = atomTypeCont_.find(at2key);
278  
279 +      std::vector<std::string> at3key;
280 +      at3key.push_back(at3);
281 +      atype3 = atomTypeCont_.find(at3key);
282  
283 < BendType* ForceField::getMatchingBendType(const string &at1, const string &at2,
284 <                                          const string &at3);
285 < TorsionType* ForceField::getMatchingTorsionType(const string &at1, const string &at2,
68 <                                                const string &at3, const string &at4);
283 >      std::vector<std::string> at4key;
284 >      at4key.push_back(at4);
285 >      atype4 = atomTypeCont_.find(at4key);
286  
287 < double ForceField::getRcutForAtomType(AtomType* at);
287 >      // query atom types for their chains of responsibility
288 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
289 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
290 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
291 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
292  
293 +      std::vector<AtomType*>::iterator i;
294 +      std::vector<AtomType*>::iterator j;
295 +      std::vector<AtomType*>::iterator k;
296 +      std::vector<AtomType*>::iterator l;
297  
298 < vector<vector<string> > generateWildcardSequence(const vector<string> atomTypes) {
299 <  
300 <   vector<vector<string> > results;
298 >      int ii = 0;
299 >      int jj = 0;
300 >      int kk = 0;
301 >      int ll = 0;
302 >      int ILscore;
303 >      int JKscore;
304  
305 <  
305 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
306  
307 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
308 +        kk = 0;
309 +        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
310 +          ii = 0;      
311 +          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
312 +            ll = 0;
313 +            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
314 +          
315 +              ILscore = ii + ll;
316 +              JKscore = jj + kk;
317  
318 <   vector<vector< string> > getAllWildcardPermutations(const vector<string> myAts) {
319 <    
320 <     int nStrings;
321 <     vector<string> oneResult;
322 <     vector<vector<string> > allResults;
318 >              std::vector<std::string> myKeys;
319 >              myKeys.push_back((*i)->getName());
320 >              myKeys.push_back((*j)->getName());
321 >              myKeys.push_back((*k)->getName());
322 >              myKeys.push_back((*l)->getName());
323  
324 <     nStrings = myAts.size();
324 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
325 >              if (torsionType) {
326 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
327 >              }
328 >              ll++;
329 >            }
330 >            ii++;
331 >          }
332 >          kk++;
333 >        }
334 >        jj++;
335 >      }
336 >      
337 >      if (foundTorsions.size() > 0) {
338 >        std::sort(foundTorsions.begin(), foundTorsions.end());
339 >        int jkscore = foundTorsions[0].first;
340 >        int ilscore = foundTorsions[0].second;
341 >        std::vector<std::string> theKeys = foundTorsions[0].third;
342 >        
343 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
344 >        return bestType;
345 >      } else {
346 >        //if no exact match found, try wild card match
347 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
348 >      }
349 >    }
350 >  }
351  
352 <     if (nStrings == 1) {
353 <       oneResult.push_back(wildcardCharacter);
354 <       allResults.push_back(oneResult);
355 <       return allResults;
356 <     } else {
357 <      
358 <       for (i=0; i < nStrings; i++) {
359 <         oneResult = myAts;
360 <         replace(oneResult.begin(), oneResult.end(),
352 >  InversionType* ForceField::getInversionType(const std::string &at1,
353 >                                              const std::string &at2,
354 >                                              const std::string &at3,
355 >                                              const std::string &at4) {
356 >    std::vector<std::string> keys;
357 >    keys.push_back(at1);
358 >    keys.push_back(at2);    
359 >    keys.push_back(at3);    
360 >    keys.push_back(at4);    
361 >
362 >    //try exact match first
363 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
364 >    if (inversionType) {
365 >      return inversionType;
366 >    } else {
367 >      
368 >      AtomType* atype1;
369 >      AtomType* atype2;
370 >      AtomType* atype3;
371 >      AtomType* atype4;
372 >      std::vector<std::string> at1key;
373 >      at1key.push_back(at1);
374 >      atype1 = atomTypeCont_.find(at1key);
375 >      
376 >      std::vector<std::string> at2key;
377 >      at2key.push_back(at2);
378 >      atype2 = atomTypeCont_.find(at2key);
379 >      
380 >      std::vector<std::string> at3key;
381 >      at3key.push_back(at3);
382 >      atype3 = atomTypeCont_.find(at3key);
383 >      
384 >      std::vector<std::string> at4key;
385 >      at4key.push_back(at4);
386 >      atype4 = atomTypeCont_.find(at4key);
387 >
388 >      // query atom types for their chains of responsibility
389 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
390 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
391 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
392 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
393 >
394 >      std::vector<AtomType*>::iterator i;
395 >      std::vector<AtomType*>::iterator j;
396 >      std::vector<AtomType*>::iterator k;
397 >      std::vector<AtomType*>::iterator l;
398 >
399 >      int ii = 0;
400 >      int jj = 0;
401 >      int kk = 0;
402 >      int ll = 0;
403 >      int Iscore;
404 >      int JKLscore;
405 >      
406 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
407 >      
408 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
409 >        kk = 0;
410 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
411 >          ii = 0;      
412 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
413 >            ll = 0;
414 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
415 >              
416 >              Iscore = ii;
417 >              JKLscore = jj + kk + ll;
418 >              
419 >              std::vector<std::string> myKeys;
420 >              myKeys.push_back((*i)->getName());
421 >              myKeys.push_back((*j)->getName());
422 >              myKeys.push_back((*k)->getName());
423 >              myKeys.push_back((*l)->getName());
424 >              
425 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
426 >              if (inversionType) {
427 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
428 >              }
429 >              ll++;
430 >            }
431 >            ii++;
432 >          }
433 >          kk++;
434 >        }
435 >        jj++;
436 >      }
437 >        
438 >      if (foundInversions.size() > 0) {
439 >        std::sort(foundInversions.begin(), foundInversions.end());
440 >        int iscore = foundInversions[0].first;
441 >        int jklscore = foundInversions[0].second;
442 >        std::vector<std::string> theKeys = foundInversions[0].third;
443 >        
444 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
445 >        return bestType;
446 >      } else {
447 >        //if no exact match found, try wild card match
448 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
449 >      }
450 >    }
451 >  }
452 >  
453 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
454 >    
455 >    std::vector<std::string> keys;
456 >    keys.push_back(at1);
457 >    keys.push_back(at2);    
458 >    
459 >    //try exact match first
460 >    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
461 >    if (nbiType) {
462 >      return nbiType;
463 >    } else {
464 >      AtomType* atype1;
465 >      AtomType* atype2;
466 >      std::vector<std::string> at1key;
467 >      at1key.push_back(at1);
468 >      atype1 = atomTypeCont_.find(at1key);
469 >      
470 >      std::vector<std::string> at2key;
471 >      at2key.push_back(at2);
472 >      atype2 = atomTypeCont_.find(at2key);
473 >      
474 >      // query atom types for their chains of responsibility
475 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
476 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
477 >      
478 >      std::vector<AtomType*>::iterator i;
479 >      std::vector<AtomType*>::iterator j;
480 >      
481 >      int ii = 0;
482 >      int jj = 0;
483 >      int nbiTypeScore;
484 >      
485 >      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
486 >      
487 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
488 >        jj = 0;
489 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
490 >          
491 >          nbiTypeScore = ii + jj;
492 >          
493 >          std::vector<std::string> myKeys;
494 >          myKeys.push_back((*i)->getName());
495 >          myKeys.push_back((*j)->getName());
496 >          
497 >          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
498 >          if (nbiType) {
499 >            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
500 >          }
501 >          jj++;
502 >        }
503 >        ii++;
504 >      }
505 >      
506 >      
507 >      if (foundNBI.size() > 0) {
508 >        // sort the foundNBI by the score:
509 >        std::sort(foundNBI.begin(), foundNBI.end());
510 >        
511 >        int bestScore = foundNBI[0].first;
512 >        std::vector<std::string> theKeys = foundNBI[0].second;
513 >        
514 >        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
515 >        return bestType;
516 >      } else {
517 >        //if no exact match found, try wild card match
518 >        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
519 >      }
520 >    }
521 >  }
522 >  
523 >  BondType* ForceField::getExactBondType(const std::string &at1,
524 >                                         const std::string &at2){
525 >    std::vector<std::string> keys;
526 >    keys.push_back(at1);
527 >    keys.push_back(at2);    
528 >    return bondTypeCont_.find(keys);
529 >  }
530 >  
531 >  BendType* ForceField::getExactBendType(const std::string &at1,
532 >                                         const std::string &at2,
533 >                                         const std::string &at3){
534 >    std::vector<std::string> keys;
535 >    keys.push_back(at1);
536 >    keys.push_back(at2);    
537 >    keys.push_back(at3);    
538 >    return bendTypeCont_.find(keys);
539 >  }
540 >  
541 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
542 >                                               const std::string &at2,
543 >                                               const std::string &at3,
544 >                                               const std::string &at4){
545 >    std::vector<std::string> keys;
546 >    keys.push_back(at1);
547 >    keys.push_back(at2);    
548 >    keys.push_back(at3);    
549 >    keys.push_back(at4);  
550 >    return torsionTypeCont_.find(keys);
551 >  }
552 >  
553 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
554 >                                                   const std::string &at2,
555 >                                                   const std::string &at3,
556 >                                                   const std::string &at4){
557 >    std::vector<std::string> keys;
558 >    keys.push_back(at1);
559 >    keys.push_back(at2);    
560 >    keys.push_back(at3);    
561 >    keys.push_back(at4);  
562 >    return inversionTypeCont_.find(keys);
563 >  }
564 >  
565 >  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
566 >    std::vector<std::string> keys;
567 >    keys.push_back(at1);
568 >    keys.push_back(at2);    
569 >    return nonBondedInteractionTypeCont_.find(keys);
570 >  }
571 >  
572 >
573 >  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
574 >    std::vector<std::string> keys;
575 >    keys.push_back(at);
576 >    atypeIdentToName[atomType->getIdent()] = at;
577 >    return atomTypeCont_.add(keys, atomType);
578 >  }
579 >
580 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
581 >    std::vector<std::string> keys;
582 >    keys.push_back(at);
583 >    atypeIdentToName[atomType->getIdent()] = at;
584 >    return atomTypeCont_.replace(keys, atomType);
585 >  }
586 >
587 >  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
588 >                               BondType* bondType) {
589 >    std::vector<std::string> keys;
590 >    keys.push_back(at1);
591 >    keys.push_back(at2);    
592 >    return bondTypeCont_.add(keys, bondType);    
593 >  }
594 >  
595 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
596 >                               const std::string &at3, BendType* bendType) {
597 >    std::vector<std::string> keys;
598 >    keys.push_back(at1);
599 >    keys.push_back(at2);    
600 >    keys.push_back(at3);    
601 >    return bendTypeCont_.add(keys, bendType);
602 >  }
603 >  
604 >  bool ForceField::addTorsionType(const std::string &at1,
605 >                                  const std::string &at2,
606 >                                  const std::string &at3,
607 >                                  const std::string &at4,
608 >                                  TorsionType* torsionType) {
609 >    std::vector<std::string> keys;
610 >    keys.push_back(at1);
611 >    keys.push_back(at2);    
612 >    keys.push_back(at3);    
613 >    keys.push_back(at4);    
614 >    return torsionTypeCont_.add(keys, torsionType);
615 >  }
616 >
617 >  bool ForceField::addInversionType(const std::string &at1,
618 >                                    const std::string &at2,
619 >                                    const std::string &at3,
620 >                                    const std::string &at4,
621 >                                    InversionType* inversionType) {
622 >    std::vector<std::string> keys;
623 >    keys.push_back(at1);
624 >    keys.push_back(at2);    
625 >    keys.push_back(at3);    
626 >    keys.push_back(at4);    
627 >    return inversionTypeCont_.add(keys, inversionType);
628 >  }
629 >  
630 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
631 >                                               const std::string &at2,
632 >                                               NonBondedInteractionType* nbiType) {
633 >    std::vector<std::string> keys;
634 >    keys.push_back(at1);
635 >    keys.push_back(at2);    
636 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
637 >  }
638 >  
639 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
640 >    RealType rcut = 0.0;
641 >    
642 >    LennardJonesAdapter lja = LennardJonesAdapter(at);
643 >    if (lja.isLennardJones()) {
644 >      rcut = 2.5 * lja.getSigma();
645 >    }
646 >    return rcut;    
647 >  }
648 >  
649 >
650 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
651 >    std::string forceFieldFilename(filename);
652 >    ifstrstream* ffStream = new ifstrstream();
653 >    
654 >    //try to open the force filed file in current directory first    
655 >    ffStream->open(forceFieldFilename.c_str());
656 >    if(!ffStream->is_open()){
657 >
658 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
659 >      ffStream->open( forceFieldFilename.c_str() );
660 >
661 >      //if current directory does not contain the force field file,
662 >      //try to open it in the path        
663 >      if(!ffStream->is_open()){
664 >
665 >        sprintf( painCave.errMsg,
666 >                 "Error opening the force field parameter file:\n"
667 >                 "\t%s\n"
668 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
669 >                 "variable?\n",
670 >                 forceFieldFilename.c_str() );
671 >        painCave.severity = OPENMD_ERROR;
672 >        painCave.isFatal = 1;
673 >        simError();
674 >      }
675 >    }  
676 >    return ffStream;
677 >  }
678 >
679 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines