ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/ForceField.cpp
(Generate patch)

Comparing:
trunk/src/UseTheForce/ForceField.cpp (file contents), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43 + /**
44 + * @file ForceField.cpp
45 + * @author tlin
46 + * @date 11/04/2004
47 + * @time 22:51am
48 + * @version 1.0
49 + */
50 +  
51 + #include <algorithm>
52   #include "UseTheForce/ForceField.hpp"
53 + #include "utils/simError.h"
54 + #include "utils/Tuple.hpp"
55 + namespace OpenMD {
56  
57 < AtomType* ForceField::getMatchingAtomType(const string &at) {
57 >  ForceField::ForceField() {
58  
59 <  map<string, AtomType*>::iterator iter;
60 <  
61 <  iter = atomTypeMap.find(at);
62 <  if (iter != atomTypeMap.end()) {
63 <    return iter->second;
64 <  } else {
65 <    return NULL;
59 >    char* tempPath;
60 >    tempPath = getenv("FORCE_PARAM_PATH");
61 >    
62 >    if (tempPath == NULL) {
63 >      //convert a macro from compiler to a string in c++
64 >      STR_DEFINE(ffPath_, FRC_PATH );
65 >    } else {
66 >      ffPath_ = tempPath;
67 >    }
68    }
13 }
69  
70 < BondType* ForceField::getMatchingBondType(const string &at1,
71 <                                          const string &at2) {
70 >  /**
71 >   * getAtomType by string
72 >   *
73 >   * finds the requested atom type in this force field using the string
74 >   * name of the atom type.
75 >   */
76 >  AtomType* ForceField::getAtomType(const std::string &at) {
77 >    std::vector<std::string> keys;
78 >    keys.push_back(at);
79 >    return atomTypeCont_.find(keys);
80 >  }
81  
82 <  map<pair<string,string>, BondType*>::iterator iter;
83 <  vector<BondType*> foundTypes;
82 >  /**
83 >   * getAtomType by ident
84 >   *
85 >   * finds the requested atom type in this force field using the
86 >   * integer ident instead of the string name of the atom type.
87 >   */
88 >  AtomType* ForceField::getAtomType(int ident) {  
89 >    std::string at = atypeIdentToName.find(ident)->second;
90 >    return getAtomType(at);
91 >  }
92  
93 <  iter = bondTypeMap.find(pair<at1, at2>);
94 <  if (iter != bondTypeMap.end()) {
95 <    // exact match, so just return it
96 <    return iter->second;
97 <  }
93 >  BondType* ForceField::getBondType(const std::string &at1,
94 >                                    const std::string &at2) {
95 >    std::vector<std::string> keys;
96 >    keys.push_back(at1);
97 >    keys.push_back(at2);    
98  
99 <  iter = bondTypeMap.find(pair<at2, at1>);
100 <  if (iter != bondTypeMap.end()) {
101 <    // exact match in reverse order, so just return it
102 <    return iter->second;
103 <  }
99 >    //try exact match first
100 >    BondType* bondType = bondTypeCont_.find(keys);
101 >    if (bondType) {
102 >      return bondType;
103 >    } else {
104 >      AtomType* atype1;
105 >      AtomType* atype2;
106 >      std::vector<std::string> at1key;
107 >      at1key.push_back(at1);
108 >      atype1 = atomTypeCont_.find(at1key);
109 >  
110 >      std::vector<std::string> at2key;
111 >      at2key.push_back(at2);
112 >      atype2 = atomTypeCont_.find(at2key);
113  
114 <  iter = bondTypeMap.find(pair<at1, wildCardAtomTypeName>);
115 <  if (iter != bondTypeMap.end()) {
116 <    foundTypes.push_back(iter->second);
36 <  }
114 >      // query atom types for their chains of responsibility
115 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
116 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
117  
118 <  iter = bondTypeMap.find(pair<at2, wildCardAtomTypeName>);
119 <  if (iter != bondTypeMap.end()) {
40 <    foundTypes.push_back(iter->second);
41 <  }
118 >      std::vector<AtomType*>::iterator i;
119 >      std::vector<AtomType*>::iterator j;
120  
121 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at1>);
122 <  if (iter != bondTypeMap.end()) {
123 <    foundTypes.push_back(iter->second);
46 <  }
121 >      int ii = 0;
122 >      int jj = 0;
123 >      int bondTypeScore;
124  
125 <  iter = bondTypeMap.find(pair<wildCardAtomTypeName, at2>);
126 <  if (iter != bondTypeMap.end()) {
127 <    foundTypes.push_back(iter->second);
125 >      std::vector<std::pair<int, std::vector<std::string> > > foundBonds;
126 >
127 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
128 >        jj = 0;
129 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
130 >
131 >          bondTypeScore = ii + jj;
132 >
133 >          std::vector<std::string> myKeys;
134 >          myKeys.push_back((*i)->getName());
135 >          myKeys.push_back((*j)->getName());
136 >
137 >          BondType* bondType = bondTypeCont_.find(myKeys);
138 >          if (bondType) {
139 >            foundBonds.push_back(std::make_pair(bondTypeScore, myKeys));
140 >          }
141 >          jj++;
142 >        }
143 >        ii++;
144 >      }
145 >
146 >
147 >      if (foundBonds.size() > 0) {
148 >        // sort the foundBonds by the score:
149 >        std::sort(foundBonds.begin(), foundBonds.end());
150 >    
151 >        int bestScore = foundBonds[0].first;
152 >        std::vector<std::string> theKeys = foundBonds[0].second;
153 >        
154 >        BondType* bestType = bondTypeCont_.find(theKeys);
155 >        
156 >        return bestType;
157 >      } else {
158 >        //if no exact match found, try wild card match
159 >        return bondTypeCont_.find(keys, wildCardAtomTypeName_);      
160 >      }
161 >    }
162    }
163    
164 <  if (foundTypes.empty()) {
165 <    return NULL;
166 <  } else {
167 <    
164 >  BendType* ForceField::getBendType(const std::string &at1,
165 >                                    const std::string &at2,
166 >                                    const std::string &at3) {
167 >    std::vector<std::string> keys;
168 >    keys.push_back(at1);
169 >    keys.push_back(at2);    
170 >    keys.push_back(at3);    
171  
172 <
172 >    //try exact match first
173 >    BendType* bendType = bendTypeCont_.find(keys);
174 >    if (bendType) {
175 >      return bendType;
176 >    } else {
177  
178 +      AtomType* atype1;
179 +      AtomType* atype2;
180 +      AtomType* atype3;
181 +      std::vector<std::string> at1key;
182 +      at1key.push_back(at1);
183 +      atype1 = atomTypeCont_.find(at1key);
184 +  
185 +      std::vector<std::string> at2key;
186 +      at2key.push_back(at2);
187 +      atype2 = atomTypeCont_.find(at2key);
188  
189 +      std::vector<std::string> at3key;
190 +      at3key.push_back(at3);
191 +      atype3 = atomTypeCont_.find(at3key);
192  
193 +      // query atom types for their chains of responsibility
194 +      std::vector<AtomType*> at1Chain = atype1->allYourBase();
195 +      std::vector<AtomType*> at2Chain = atype2->allYourBase();
196 +      std::vector<AtomType*> at3Chain = atype3->allYourBase();
197 +
198 +      std::vector<AtomType*>::iterator i;
199 +      std::vector<AtomType*>::iterator j;
200 +      std::vector<AtomType*>::iterator k;
201 +
202 +      int ii = 0;
203 +      int jj = 0;
204 +      int kk = 0;
205 +      int IKscore;
206 +
207 +      std::vector<tuple3<int, int, std::vector<std::string> > > foundBends;
208 +
209 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
210 +        ii = 0;
211 +        for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
212 +          kk = 0;
213 +          for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
214 +          
215 +            IKscore = ii + kk;
216 +
217 +            std::vector<std::string> myKeys;
218 +            myKeys.push_back((*i)->getName());
219 +            myKeys.push_back((*j)->getName());
220 +            myKeys.push_back((*k)->getName());
221 +
222 +            BendType* bendType = bendTypeCont_.find(myKeys);
223 +            if (bendType) {
224 +              foundBends.push_back( make_tuple3(jj, IKscore, myKeys) );
225 +            }
226 +            kk++;
227 +          }
228 +          ii++;
229 +        }
230 +        jj++;
231 +      }
232 +      
233 +      if (foundBends.size() > 0) {
234 +        std::sort(foundBends.begin(), foundBends.end());
235 +        int jscore = foundBends[0].first;
236 +        int ikscore = foundBends[0].second;
237 +        std::vector<std::string> theKeys = foundBends[0].third;      
238 +        
239 +        BendType* bestType = bendTypeCont_.find(theKeys);  
240 +        return bestType;
241 +      } else {        
242 +        //if no exact match found, try wild card match
243 +        return bendTypeCont_.find(keys, wildCardAtomTypeName_);      
244 +      }
245 +    }
246 +  }
247 +
248 +  TorsionType* ForceField::getTorsionType(const std::string &at1,
249 +                                          const std::string &at2,
250 +                                          const std::string &at3,
251 +                                          const std::string &at4) {
252 +    std::vector<std::string> keys;
253 +    keys.push_back(at1);
254 +    keys.push_back(at2);    
255 +    keys.push_back(at3);    
256 +    keys.push_back(at4);    
257 +
258 +
259 +    //try exact match first
260 +    TorsionType* torsionType = torsionTypeCont_.find(keys);
261 +    if (torsionType) {
262 +      return torsionType;
263 +    } else {
264 +
265 +      AtomType* atype1;
266 +      AtomType* atype2;
267 +      AtomType* atype3;
268 +      AtomType* atype4;
269 +      std::vector<std::string> at1key;
270 +      at1key.push_back(at1);
271 +      atype1 = atomTypeCont_.find(at1key);
272    
273 +      std::vector<std::string> at2key;
274 +      at2key.push_back(at2);
275 +      atype2 = atomTypeCont_.find(at2key);
276  
277 +      std::vector<std::string> at3key;
278 +      at3key.push_back(at3);
279 +      atype3 = atomTypeCont_.find(at3key);
280  
281 < BendType* ForceField::getMatchingBendType(const string &at1, const string &at2,
282 <                                          const string &at3);
283 < TorsionType* ForceField::getMatchingTorsionType(const string &at1, const string &at2,
68 <                                                const string &at3, const string &at4);
281 >      std::vector<std::string> at4key;
282 >      at4key.push_back(at4);
283 >      atype4 = atomTypeCont_.find(at4key);
284  
285 < double ForceField::getRcutForAtomType(AtomType* at);
285 >      // query atom types for their chains of responsibility
286 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
287 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
288 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
289 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
290  
291 +      std::vector<AtomType*>::iterator i;
292 +      std::vector<AtomType*>::iterator j;
293 +      std::vector<AtomType*>::iterator k;
294 +      std::vector<AtomType*>::iterator l;
295  
296 < vector<vector<string> > generateWildcardSequence(const vector<string> atomTypes) {
297 <  
298 <   vector<vector<string> > results;
296 >      int ii = 0;
297 >      int jj = 0;
298 >      int kk = 0;
299 >      int ll = 0;
300 >      int ILscore;
301 >      int JKscore;
302  
303 <  
303 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions;
304  
305 +      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
306 +        kk = 0;
307 +        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
308 +          ii = 0;      
309 +          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
310 +            ll = 0;
311 +            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
312 +          
313 +              ILscore = ii + ll;
314 +              JKscore = jj + kk;
315  
316 <   vector<vector< string> > getAllWildcardPermutations(const vector<string> myAts) {
317 <    
318 <     int nStrings;
319 <     vector<string> oneResult;
320 <     vector<vector<string> > allResults;
316 >              std::vector<std::string> myKeys;
317 >              myKeys.push_back((*i)->getName());
318 >              myKeys.push_back((*j)->getName());
319 >              myKeys.push_back((*k)->getName());
320 >              myKeys.push_back((*l)->getName());
321  
322 <     nStrings = myAts.size();
322 >              TorsionType* torsionType = torsionTypeCont_.find(myKeys);
323 >              if (torsionType) {
324 >                foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) );
325 >              }
326 >              ll++;
327 >            }
328 >            ii++;
329 >          }
330 >          kk++;
331 >        }
332 >        jj++;
333 >      }
334 >      
335 >      if (foundTorsions.size() > 0) {
336 >        std::sort(foundTorsions.begin(), foundTorsions.end());
337 >        int jkscore = foundTorsions[0].first;
338 >        int ilscore = foundTorsions[0].second;
339 >        std::vector<std::string> theKeys = foundTorsions[0].third;
340 >        
341 >        TorsionType* bestType = torsionTypeCont_.find(theKeys);
342 >        return bestType;
343 >      } else {
344 >        //if no exact match found, try wild card match
345 >        return torsionTypeCont_.find(keys, wildCardAtomTypeName_);
346 >      }
347 >    }
348 >  }
349  
350 <     if (nStrings == 1) {
351 <       oneResult.push_back(wildcardCharacter);
352 <       allResults.push_back(oneResult);
353 <       return allResults;
354 <     } else {
355 <      
356 <       for (i=0; i < nStrings; i++) {
357 <         oneResult = myAts;
358 <         replace(oneResult.begin(), oneResult.end(),
350 >  InversionType* ForceField::getInversionType(const std::string &at1,
351 >                                              const std::string &at2,
352 >                                              const std::string &at3,
353 >                                              const std::string &at4) {
354 >    std::vector<std::string> keys;
355 >    keys.push_back(at1);
356 >    keys.push_back(at2);    
357 >    keys.push_back(at3);    
358 >    keys.push_back(at4);    
359 >
360 >    //try exact match first
361 >    InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys);
362 >    if (inversionType) {
363 >      return inversionType;
364 >    } else {
365 >      
366 >      AtomType* atype1;
367 >      AtomType* atype2;
368 >      AtomType* atype3;
369 >      AtomType* atype4;
370 >      std::vector<std::string> at1key;
371 >      at1key.push_back(at1);
372 >      atype1 = atomTypeCont_.find(at1key);
373 >      
374 >      std::vector<std::string> at2key;
375 >      at2key.push_back(at2);
376 >      atype2 = atomTypeCont_.find(at2key);
377 >      
378 >      std::vector<std::string> at3key;
379 >      at3key.push_back(at3);
380 >      atype3 = atomTypeCont_.find(at3key);
381 >      
382 >      std::vector<std::string> at4key;
383 >      at4key.push_back(at4);
384 >      atype4 = atomTypeCont_.find(at4key);
385 >
386 >      // query atom types for their chains of responsibility
387 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
388 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
389 >      std::vector<AtomType*> at3Chain = atype3->allYourBase();
390 >      std::vector<AtomType*> at4Chain = atype4->allYourBase();
391 >
392 >      std::vector<AtomType*>::iterator i;
393 >      std::vector<AtomType*>::iterator j;
394 >      std::vector<AtomType*>::iterator k;
395 >      std::vector<AtomType*>::iterator l;
396 >
397 >      int ii = 0;
398 >      int jj = 0;
399 >      int kk = 0;
400 >      int ll = 0;
401 >      int Iscore;
402 >      int JKLscore;
403 >      
404 >      std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions;
405 >      
406 >      for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
407 >        kk = 0;
408 >        for (k = at3Chain.begin(); k != at3Chain.end(); k++) {
409 >          ii = 0;      
410 >          for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
411 >            ll = 0;
412 >            for (l = at4Chain.begin(); l != at4Chain.end(); l++) {
413 >              
414 >              Iscore = ii;
415 >              JKLscore = jj + kk + ll;
416 >              
417 >              std::vector<std::string> myKeys;
418 >              myKeys.push_back((*i)->getName());
419 >              myKeys.push_back((*j)->getName());
420 >              myKeys.push_back((*k)->getName());
421 >              myKeys.push_back((*l)->getName());
422 >              
423 >              InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys);
424 >              if (inversionType) {
425 >                foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) );
426 >              }
427 >              ll++;
428 >            }
429 >            ii++;
430 >          }
431 >          kk++;
432 >        }
433 >        jj++;
434 >      }
435 >        
436 >      if (foundInversions.size() > 0) {
437 >        std::sort(foundInversions.begin(), foundInversions.end());
438 >        int iscore = foundInversions[0].first;
439 >        int jklscore = foundInversions[0].second;
440 >        std::vector<std::string> theKeys = foundInversions[0].third;
441 >        
442 >        InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys);
443 >        return bestType;
444 >      } else {
445 >        //if no exact match found, try wild card match
446 >        return inversionTypeCont_.find(keys, wildCardAtomTypeName_);
447 >      }
448 >    }
449 >  }
450 >  
451 >  NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) {
452 >    
453 >    std::vector<std::string> keys;
454 >    keys.push_back(at1);
455 >    keys.push_back(at2);    
456 >    
457 >    //try exact match first
458 >    NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys);
459 >    if (nbiType) {
460 >      return nbiType;
461 >    } else {
462 >      AtomType* atype1;
463 >      AtomType* atype2;
464 >      std::vector<std::string> at1key;
465 >      at1key.push_back(at1);
466 >      atype1 = atomTypeCont_.find(at1key);
467 >      
468 >      std::vector<std::string> at2key;
469 >      at2key.push_back(at2);
470 >      atype2 = atomTypeCont_.find(at2key);
471 >      
472 >      // query atom types for their chains of responsibility
473 >      std::vector<AtomType*> at1Chain = atype1->allYourBase();
474 >      std::vector<AtomType*> at2Chain = atype2->allYourBase();
475 >      
476 >      std::vector<AtomType*>::iterator i;
477 >      std::vector<AtomType*>::iterator j;
478 >      
479 >      int ii = 0;
480 >      int jj = 0;
481 >      int nbiTypeScore;
482 >      
483 >      std::vector<std::pair<int, std::vector<std::string> > > foundNBI;
484 >      
485 >      for (i = at1Chain.begin(); i != at1Chain.end(); i++) {
486 >        jj = 0;
487 >        for (j = at2Chain.begin(); j != at2Chain.end(); j++) {
488 >          
489 >          nbiTypeScore = ii + jj;
490 >          
491 >          std::vector<std::string> myKeys;
492 >          myKeys.push_back((*i)->getName());
493 >          myKeys.push_back((*j)->getName());
494 >          
495 >          NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys);
496 >          if (nbiType) {
497 >            foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys));
498 >          }
499 >          jj++;
500 >        }
501 >        ii++;
502 >      }
503 >      
504 >      
505 >      if (foundNBI.size() > 0) {
506 >        // sort the foundNBI by the score:
507 >        std::sort(foundNBI.begin(), foundNBI.end());
508 >        
509 >        int bestScore = foundNBI[0].first;
510 >        std::vector<std::string> theKeys = foundNBI[0].second;
511 >        
512 >        NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys);        
513 >        return bestType;
514 >      } else {
515 >        //if no exact match found, try wild card match
516 >        return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_);
517 >      }
518 >    }
519 >  }
520 >  
521 >  BondType* ForceField::getExactBondType(const std::string &at1,
522 >                                         const std::string &at2){
523 >    std::vector<std::string> keys;
524 >    keys.push_back(at1);
525 >    keys.push_back(at2);    
526 >    return bondTypeCont_.find(keys);
527 >  }
528 >  
529 >  BendType* ForceField::getExactBendType(const std::string &at1,
530 >                                         const std::string &at2,
531 >                                         const std::string &at3){
532 >    std::vector<std::string> keys;
533 >    keys.push_back(at1);
534 >    keys.push_back(at2);    
535 >    keys.push_back(at3);    
536 >    return bendTypeCont_.find(keys);
537 >  }
538 >  
539 >  TorsionType* ForceField::getExactTorsionType(const std::string &at1,
540 >                                               const std::string &at2,
541 >                                               const std::string &at3,
542 >                                               const std::string &at4){
543 >    std::vector<std::string> keys;
544 >    keys.push_back(at1);
545 >    keys.push_back(at2);    
546 >    keys.push_back(at3);    
547 >    keys.push_back(at4);  
548 >    return torsionTypeCont_.find(keys);
549 >  }
550 >  
551 >  InversionType* ForceField::getExactInversionType(const std::string &at1,
552 >                                                   const std::string &at2,
553 >                                                   const std::string &at3,
554 >                                                   const std::string &at4){
555 >    std::vector<std::string> keys;
556 >    keys.push_back(at1);
557 >    keys.push_back(at2);    
558 >    keys.push_back(at3);    
559 >    keys.push_back(at4);  
560 >    return inversionTypeCont_.find(keys);
561 >  }
562 >  
563 >  NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){
564 >    std::vector<std::string> keys;
565 >    keys.push_back(at1);
566 >    keys.push_back(at2);    
567 >    return nonBondedInteractionTypeCont_.find(keys);
568 >  }
569 >  
570 >
571 >  bool ForceField::addAtomType(const std::string &at, AtomType* atomType) {
572 >    std::vector<std::string> keys;
573 >    keys.push_back(at);
574 >    atypeIdentToName[atomType->getIdent()] = at;
575 >    return atomTypeCont_.add(keys, atomType);
576 >  }
577 >
578 >  bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) {
579 >    std::vector<std::string> keys;
580 >    keys.push_back(at);
581 >    atypeIdentToName[atomType->getIdent()] = at;
582 >    return atomTypeCont_.replace(keys, atomType);
583 >  }
584 >
585 >  bool ForceField::addBondType(const std::string &at1, const std::string &at2,
586 >                               BondType* bondType) {
587 >    std::vector<std::string> keys;
588 >    keys.push_back(at1);
589 >    keys.push_back(at2);    
590 >    return bondTypeCont_.add(keys, bondType);    
591 >  }
592 >  
593 >  bool ForceField::addBendType(const std::string &at1, const std::string &at2,
594 >                               const std::string &at3, BendType* bendType) {
595 >    std::vector<std::string> keys;
596 >    keys.push_back(at1);
597 >    keys.push_back(at2);    
598 >    keys.push_back(at3);    
599 >    return bendTypeCont_.add(keys, bendType);
600 >  }
601 >  
602 >  bool ForceField::addTorsionType(const std::string &at1,
603 >                                  const std::string &at2,
604 >                                  const std::string &at3,
605 >                                  const std::string &at4,
606 >                                  TorsionType* torsionType) {
607 >    std::vector<std::string> keys;
608 >    keys.push_back(at1);
609 >    keys.push_back(at2);    
610 >    keys.push_back(at3);    
611 >    keys.push_back(at4);    
612 >    return torsionTypeCont_.add(keys, torsionType);
613 >  }
614 >
615 >  bool ForceField::addInversionType(const std::string &at1,
616 >                                    const std::string &at2,
617 >                                    const std::string &at3,
618 >                                    const std::string &at4,
619 >                                    InversionType* inversionType) {
620 >    std::vector<std::string> keys;
621 >    keys.push_back(at1);
622 >    keys.push_back(at2);    
623 >    keys.push_back(at3);    
624 >    keys.push_back(at4);    
625 >    return inversionTypeCont_.add(keys, inversionType);
626 >  }
627 >  
628 >  bool ForceField::addNonBondedInteractionType(const std::string &at1,
629 >                                               const std::string &at2,
630 >                                               NonBondedInteractionType* nbiType) {
631 >    std::vector<std::string> keys;
632 >    keys.push_back(at1);
633 >    keys.push_back(at2);    
634 >    return nonBondedInteractionTypeCont_.add(keys, nbiType);
635 >  }
636 >  
637 >  RealType ForceField::getRcutFromAtomType(AtomType* at) {
638 >    /**@todo */
639 >    GenericData* data;
640 >    RealType rcut = 0.0;
641 >    
642 >    if (at->isLennardJones()) {
643 >      data = at->getPropertyByName("LennardJones");
644 >      if (data != NULL) {
645 >        LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
646 >        
647 >        if (ljData != NULL) {
648 >          LJParam ljParam = ljData->getData();
649 >          
650 >          //by default use 2.5*sigma as cutoff radius
651 >          rcut = 2.5 * ljParam.sigma;
652 >          
653 >        } else {
654 >          sprintf( painCave.errMsg,
655 >                   "Can not cast GenericData to LJParam\n");
656 >          painCave.severity = OPENMD_ERROR;
657 >          painCave.isFatal = 1;
658 >          simError();          
659 >        }            
660 >      } else {
661 >        sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n");
662 >        painCave.severity = OPENMD_ERROR;
663 >        painCave.isFatal = 1;
664 >        simError();          
665 >      }
666 >    }
667 >    return rcut;    
668 >  }
669 >  
670 >
671 >  ifstrstream* ForceField::openForceFieldFile(const std::string& filename) {
672 >    std::string forceFieldFilename(filename);
673 >    ifstrstream* ffStream = new ifstrstream();
674 >    
675 >    //try to open the force filed file in current directory first    
676 >    ffStream->open(forceFieldFilename.c_str());
677 >    if(!ffStream->is_open()){
678 >
679 >      forceFieldFilename = ffPath_ + "/" + forceFieldFilename;
680 >      ffStream->open( forceFieldFilename.c_str() );
681 >
682 >      //if current directory does not contain the force field file,
683 >      //try to open it in the path        
684 >      if(!ffStream->is_open()){
685 >
686 >        sprintf( painCave.errMsg,
687 >                 "Error opening the force field parameter file:\n"
688 >                 "\t%s\n"
689 >                 "\tHave you tried setting the FORCE_PARAM_PATH environment "
690 >                 "variable?\n",
691 >                 forceFieldFilename.c_str() );
692 >        painCave.severity = OPENMD_ERROR;
693 >        painCave.isFatal = 1;
694 >        simError();
695 >      }
696 >    }  
697 >    return ffStream;
698 >  }
699 >
700 > } //end namespace OpenMD

Comparing:
trunk/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 206 by gezelter, Thu Nov 4 20:51:23 2004 UTC vs.
branches/development/src/UseTheForce/ForceField.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines