6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
54 |
|
#include <math/Vector3.hpp> |
55 |
|
#include <math/SquareMatrix3.hpp> |
56 |
|
|
57 |
< |
namespace oopse { |
57 |
> |
using namespace std; |
58 |
> |
namespace OpenMD { |
59 |
|
/** |
60 |
|
* @class DataStorage |
61 |
|
* @warning do not try to insert element into (or ease element from) private member data |
62 |
|
* of DataStorage directly. |
63 |
< |
* @todo DataStorage may need refactoring. Every std::vector can inherit from the same base class |
63 |
> |
* @todo DataStorage may need refactoring. Every vector can inherit from the same base class |
64 |
|
* which will make it easy to maintain |
65 |
|
*/ |
66 |
|
class DataStorage { |
69 |
|
enum{ |
70 |
|
dslPosition = 1, |
71 |
|
dslVelocity = 2, |
72 |
< |
dslAmat = 4, |
73 |
< |
dslAngularMomentum = 8, |
74 |
< |
dslElectroFrame = 16, |
75 |
< |
dslZAngle = 32, |
76 |
< |
dslForce = 64, |
77 |
< |
dslTorque = 128, |
78 |
< |
dslParticlePot = 256 |
72 |
> |
dslForce = 4, |
73 |
> |
dslAmat = 8, |
74 |
> |
dslAngularMomentum = 16, |
75 |
> |
dslTorque = 32, |
76 |
> |
dslParticlePot = 64, |
77 |
> |
dslDensity = 128, |
78 |
> |
dslFunctional = 256, |
79 |
> |
dslFunctionalDerivative = 512, |
80 |
> |
dslDipole = 1024, |
81 |
> |
dslQuadrupole = 2048, |
82 |
> |
dslElectricField = 4096, |
83 |
> |
dslSkippedCharge = 8192, |
84 |
> |
dslFlucQPosition = 16384, |
85 |
> |
dslFlucQVelocity = 32768, |
86 |
> |
dslFlucQForce = 65536, |
87 |
> |
dslSitePotential = 131072 |
88 |
|
}; |
89 |
|
|
79 |
– |
|
90 |
|
DataStorage(); |
91 |
< |
DataStorage(int size, int storageLayout = 511); |
91 |
> |
DataStorage(int size, int storageLayout = 0); |
92 |
|
/** return the size of this DataStorage. */ |
93 |
|
int getSize(); |
94 |
|
/** |
95 |
|
* Changes the size of this DataStorage. |
96 |
< |
* @param size new size of this DataStorage |
96 |
> |
* @param newSize new size of this DataStorage |
97 |
|
*/ |
98 |
|
void resize(int newSize); |
99 |
|
/** |
100 |
< |
* Reallocates memory manually. The main reason for using reserve() is efficiency |
101 |
< |
* if you know the capacity to which your std::vector must eventually grow, then it is usually more |
102 |
< |
* efficient to allocate that memory all at once. |
100 |
> |
* Reallocates memory manually. |
101 |
> |
* |
102 |
> |
* The main reason for using reserve() is efficiency if you know |
103 |
> |
* the capacity to which your vector must eventually grow, |
104 |
> |
* then it is usually more efficient to allocate that memory all |
105 |
> |
* at once. |
106 |
|
*/ |
107 |
|
void reserve(int size); |
108 |
|
/** |
109 |
|
* Copies data inside DataStorage class. |
110 |
< |
* Copy function actually call std::copy for every std::vector in DataStorage class. |
111 |
< |
* One Precondition of std::copy is that target is not within the range [soruce, soruce + num] |
112 |
< |
* @param souce |
110 |
> |
* |
111 |
> |
* Copy function actually calls copy for every vector in |
112 |
> |
* DataStorage class. One Precondition of copy is that |
113 |
> |
* target is not within the range [source, soruce + num] |
114 |
> |
* |
115 |
> |
* @param source |
116 |
|
* @param num number of element to be moved |
117 |
|
* @param target |
118 |
|
*/ |
124 |
|
/** Returns the pointer of internal array */ |
125 |
|
RealType *getArrayPointer(int whichArray); |
126 |
|
|
127 |
< |
std::vector<Vector3d> position; /** position array */ |
128 |
< |
std::vector<Vector3d> velocity; /** velocity array */ |
129 |
< |
std::vector<RotMat3x3d> aMat; /** rotation matrix array */ |
130 |
< |
std::vector<Vector3d> angularMomentum;/** angular momentum array (body-fixed) */ |
131 |
< |
std::vector<Mat3x3d> electroFrame; /** the lab frame unit std::vector array*/ |
132 |
< |
std::vector<RealType> zAngle; /** z -angle array */ |
133 |
< |
std::vector<Vector3d> force; /** force array */ |
134 |
< |
std::vector<Vector3d> torque; /** torque array */ |
135 |
< |
std::vector<RealType> particlePot; /** pair potential arrray */ |
127 |
> |
vector<Vector3d> position; /** position array */ |
128 |
> |
vector<Vector3d> velocity; /** velocity array */ |
129 |
> |
vector<Vector3d> force; /** force array */ |
130 |
> |
vector<RotMat3x3d> aMat; /** rotation matrix array */ |
131 |
> |
vector<Vector3d> angularMomentum; /** angular momentum array (body-fixed) */ |
132 |
> |
vector<Vector3d> torque; /** torque array */ |
133 |
> |
vector<RealType> particlePot; /** particle potential arrray */ |
134 |
> |
vector<RealType> density; /** electron density */ |
135 |
> |
vector<RealType> functional; /** density functional */ |
136 |
> |
vector<RealType> functionalDerivative; /** derivative of functional */ |
137 |
> |
vector<Vector3d> dipole; /** space-frame dipole vector */ |
138 |
> |
vector<Mat3x3d> quadrupole; /** space-frame quadrupole tensor */ |
139 |
> |
vector<Vector3d> electricField; /** local electric field */ |
140 |
> |
vector<RealType> skippedCharge; /** charge skipped during normal pairwise calculation */ |
141 |
> |
vector<RealType> flucQPos; /** fluctuating charges */ |
142 |
> |
vector<RealType> flucQVel; /** fluctuating charge velocities */ |
143 |
> |
vector<RealType> flucQFrc; /** fluctuating charge forces */ |
144 |
> |
vector<RealType> sitePotential; /** electrostatic site potentials */ |
145 |
|
|
146 |
|
static int getBytesPerStuntDouble(int layout); |
147 |
|
|
148 |
|
private: |
149 |
|
|
150 |
< |
RealType* internalGetArrayPointer(std::vector<Vector3d>& v); |
150 |
> |
RealType* internalGetArrayPointer(vector<Vector3d>& v); |
151 |
> |
RealType* internalGetArrayPointer(vector<Mat3x3d>& v); |
152 |
> |
RealType* internalGetArrayPointer(vector<RealType>& v); |
153 |
|
|
127 |
– |
RealType* internalGetArrayPointer(std::vector<RotMat3x3d>& v); |
128 |
– |
RealType* internalGetArrayPointer(std::vector<RealType>& v); |
129 |
– |
|
130 |
– |
|
154 |
|
template<typename T> |
155 |
|
void internalResize(std::vector<T>& v, int newSize); |
156 |
|
|