1 |
#!/usr/bin/env python |
2 |
"""Water Quaternion Sampler |
3 |
|
4 |
Samples water orientations from a list of known good |
5 |
orientations |
6 |
|
7 |
Usage: waterRotator |
8 |
|
9 |
Options: |
10 |
-h, --help show this help |
11 |
-m, --meta-data=... use specified meta-data (.md) file |
12 |
-o, --output-file=... use specified output (.md) file |
13 |
|
14 |
|
15 |
Example: |
16 |
waterRotator -m basal.md -o basal.new.md |
17 |
|
18 |
""" |
19 |
|
20 |
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
21 |
__version__ = "$Revision: 1.1 $" |
22 |
__date__ = "$Date: 2007-11-26 19:23:36 $" |
23 |
__copyright__ = "Copyright (c) 2006 by the University of Notre Dame" |
24 |
__license__ = "OOPSE" |
25 |
|
26 |
import sys |
27 |
import getopt |
28 |
import string |
29 |
import math |
30 |
import random |
31 |
from sets import * |
32 |
#from Numeric import * |
33 |
|
34 |
_haveMDFileName = 0 |
35 |
_haveOutputFileName = 0 |
36 |
|
37 |
metaData = [] |
38 |
frameData = [] |
39 |
positions = [] |
40 |
velocities = [] |
41 |
quaternions = [] |
42 |
angVels = [] |
43 |
indices = [] |
44 |
neighbors = [] |
45 |
DonatingTo = [] |
46 |
AcceptingFrom = [] |
47 |
OldDonor = [] |
48 |
Hmat = [] |
49 |
BoxInv = [] |
50 |
#Hmat = zeros([3,3],Float) |
51 |
#BoxInv = zeros([3],Float) |
52 |
H1vects = [] |
53 |
H2vects = [] |
54 |
DipoleVects = [] |
55 |
allAcceptors = [] |
56 |
availableneighbs = [] |
57 |
surfaceSet = Set([-1]) |
58 |
|
59 |
|
60 |
|
61 |
def usage(): |
62 |
print __doc__ |
63 |
|
64 |
|
65 |
def readFile(mdFileName): |
66 |
mdFile = open(mdFileName, 'r') |
67 |
# Find OOPSE version info first |
68 |
line = mdFile.readline() |
69 |
while 1: |
70 |
if '<OOPSE version=' in line: |
71 |
OOPSEversion = line |
72 |
break |
73 |
line = mdFile.readline() |
74 |
|
75 |
# Rewind file and find start of MetaData block |
76 |
|
77 |
mdFile.seek(0) |
78 |
line = mdFile.readline() |
79 |
print "reading MetaData" |
80 |
while 1: |
81 |
if '<MetaData>' in line: |
82 |
while 2: |
83 |
metaData.append(line) |
84 |
line = mdFile.readline() |
85 |
if '</MetaData>' in line: |
86 |
metaData.append(line) |
87 |
break |
88 |
break |
89 |
line = mdFile.readline() |
90 |
|
91 |
mdFile.seek(0) |
92 |
print "reading Snapshot" |
93 |
line = mdFile.readline() |
94 |
while 1: |
95 |
if '<Snapshot>' in line: |
96 |
line = mdFile.readline() |
97 |
while 1: |
98 |
print "reading FrameData" |
99 |
if '<FrameData>' in line: |
100 |
while 2: |
101 |
frameData.append(line) |
102 |
if 'Hmat:' in line: |
103 |
L = line.split() |
104 |
Hxx = float(L[2].strip(',')) |
105 |
Hxy = float(L[3].strip(',')) |
106 |
Hxz = float(L[4].strip(',')) |
107 |
Hyx = float(L[7].strip(',')) |
108 |
Hyy = float(L[8].strip(',')) |
109 |
Hyz = float(L[9].strip(',')) |
110 |
Hzx = float(L[12].strip(',')) |
111 |
Hzy = float(L[13].strip(',')) |
112 |
Hzz = float(L[14].strip(',')) |
113 |
Hmat.append([Hxx, Hxy, Hxz]) |
114 |
Hmat.append([Hyx, Hyy, Hyz]) |
115 |
Hmat.append([Hzx, Hzy, Hzz]) |
116 |
print Hmat |
117 |
BoxInv.append(1.0/Hxx) |
118 |
BoxInv.append(1.0/Hyy) |
119 |
BoxInv.append(1.0/Hzz) |
120 |
print BoxInv |
121 |
line = mdFile.readline() |
122 |
if '</FrameData>' in line: |
123 |
frameData.append(line) |
124 |
break |
125 |
break |
126 |
|
127 |
line = mdFile.readline() |
128 |
while 1: |
129 |
if '<StuntDoubles>' in line: |
130 |
line = mdFile.readline() |
131 |
while 2: |
132 |
L = line.split() |
133 |
myIndex = int(L[0]) |
134 |
indices.append(myIndex) |
135 |
pvqj = L[1] |
136 |
x = float(L[2]) |
137 |
y = float(L[3]) |
138 |
z = float(L[4]) |
139 |
positions.append([x, y, z]) |
140 |
vx = float(L[5]) |
141 |
vy = float(L[6]) |
142 |
vz = float(L[7]) |
143 |
velocities.append([vx, vy, vz]) |
144 |
qw = float(L[8]) |
145 |
qx = float(L[9]) |
146 |
qy = float(L[10]) |
147 |
qz = float(L[11]) |
148 |
quaternions.append([qw, qx, qy, qz]) |
149 |
jx = float(L[12]) |
150 |
jy = float(L[13]) |
151 |
jz = float(L[14]) |
152 |
angVels.append([jx, jy, jz]) |
153 |
line = mdFile.readline() |
154 |
if '</StuntDoubles>' in line: |
155 |
break |
156 |
break |
157 |
line = mdFile.readline() |
158 |
if not line: break |
159 |
|
160 |
mdFile.close() |
161 |
|
162 |
def writeFile(outputFileName): |
163 |
outputFile = open(outputFileName, 'w') |
164 |
|
165 |
outputFile.write("<OOPSE version=4>\n"); |
166 |
|
167 |
for metaline in metaData: |
168 |
outputFile.write(metaline) |
169 |
|
170 |
outputFile.write(" <Snapshot>\n") |
171 |
|
172 |
for frameline in frameData: |
173 |
outputFile.write(frameline) |
174 |
|
175 |
outputFile.write(" <StuntDoubles>\n") |
176 |
|
177 |
sdFormat = 'pvqj' |
178 |
for i in range(len(indices)): |
179 |
|
180 |
outputFile.write("%10d %7s %18.10g %18.10g %18.10g %13e %13e %13e %13e %13e %13e %13e %13e %13e %13e\n" % (indices[i], sdFormat, positions[i][0], positions[i][1], positions[i][2], velocities[i][0], velocities[i][1], velocities[i][2], quaternions[i][0], quaternions[i][1], quaternions[i][2], quaternions[i][3], angVels[i][0], angVels[i][1], angVels[i][2])) |
181 |
|
182 |
outputFile.write(" </StuntDoubles>\n") |
183 |
outputFile.write(" </Snapshot>\n") |
184 |
outputFile.write("</OOPSE>\n") |
185 |
outputFile.close() |
186 |
|
187 |
def roundMe(x): |
188 |
if (x >= 0.0): |
189 |
return math.floor(x + 0.5) |
190 |
else: |
191 |
return math.ceil(x - 0.5) |
192 |
|
193 |
def wrapVector(myVect): |
194 |
scaled = [0.0, 0.0, 0.0] |
195 |
for i in range(3): |
196 |
scaled[i] = myVect[i] * BoxInv[i] |
197 |
scaled[i] = scaled[i] - roundMe(scaled[i]) |
198 |
myVect[i] = scaled[i] * Hmat[i][i] |
199 |
return myVect |
200 |
|
201 |
def dot(L1, L2): |
202 |
myDot = 0.0 |
203 |
for i in range(len(L1)): |
204 |
myDot = myDot + L1[i]*L2[i] |
205 |
return myDot |
206 |
|
207 |
def normalize(L1): |
208 |
L2 = [] |
209 |
myLength = math.sqrt(dot(L1, L1)) |
210 |
for i in range(len(L1)): |
211 |
L2.append(L1[i] / myLength) |
212 |
return L2 |
213 |
|
214 |
def cross(L1, L2): |
215 |
# don't call this with anything other than length 3 lists please |
216 |
# or you'll be sorry |
217 |
L3 = [0.0, 0.0, 0.0] |
218 |
L3[0] = L1[1]*L2[2] - L1[2]*L2[1] |
219 |
L3[1] = L1[2]*L2[0] - L1[0]*L2[2] |
220 |
L3[2] = L1[0]*L2[1] - L1[1]*L2[0] |
221 |
return L3 |
222 |
|
223 |
def f(x): |
224 |
return x |
225 |
|
226 |
def findNeighbors(): |
227 |
|
228 |
for i in range(len(indices)): |
229 |
neighbors.append(list()) |
230 |
|
231 |
|
232 |
for i in range(len(indices)-1): |
233 |
iPos = positions[i] |
234 |
for j in range(i+1, len(indices)): |
235 |
jPos = positions[j] |
236 |
|
237 |
dpos = [jPos[0] - iPos[0], jPos[1]-iPos[1], jPos[2]-iPos[2]] |
238 |
dpos = wrapVector(dpos) |
239 |
dist2 = dot(dpos,dpos) |
240 |
|
241 |
if (dist2 < 9.0): |
242 |
neighbors[i].append(j) |
243 |
neighbors[j].append(i) |
244 |
|
245 |
if (len(neighbors[i]) == 4): |
246 |
break |
247 |
|
248 |
surfaceCount = 0 |
249 |
for i in range(len(indices)): |
250 |
if (len(neighbors[i]) == 3): |
251 |
neighbors[i].append(-1) |
252 |
surfaceCount = surfaceCount + 1 |
253 |
|
254 |
print "surfaceCount = %d" % surfaceCount |
255 |
|
256 |
def randomizeProtons(): |
257 |
|
258 |
# do 10 proton bucket brigades: |
259 |
for i in range(10): |
260 |
origPoint = random.randint(0,len(indices)) |
261 |
protonBucketBrigade(origPoint) |
262 |
|
263 |
# check to make sure everyone has a happy proton set: |
264 |
|
265 |
for j in range(len(indices)): |
266 |
if (len(DonatingTo[j]) != 2): |
267 |
# print "first round to fix molecule %d" % j |
268 |
protonBucketBrigade(j) |
269 |
|
270 |
# check to make sure everyone has a happy proton set: |
271 |
|
272 |
for j in range(len(indices)): |
273 |
if (len(DonatingTo[j]) != 2): |
274 |
print "second round to fix molecule %d" % j |
275 |
protonBucketBrigade(j) |
276 |
|
277 |
for j in range(len(indices)): |
278 |
if (len(DonatingTo[j]) != 2): |
279 |
print "unfilled proton donor list for molecule %d" % j |
280 |
|
281 |
|
282 |
|
283 |
def protonBucketBrigade(origPoint): |
284 |
|
285 |
for i in range(len(indices)): |
286 |
DonatingTo.append(list()) |
287 |
AcceptingFrom.append(list()) |
288 |
OldDonor.append(list()) |
289 |
|
290 |
# print "randomizing Quaternions" |
291 |
nIdeal = len(idealQuats) |
292 |
|
293 |
donor = origPoint |
294 |
# pick unreasonable start values (that don't match surface atom unreasonable values) |
295 |
acceptor = -10 |
296 |
#oldDonor = -10 |
297 |
# print 'origPoint = %d' % (origPoint) |
298 |
|
299 |
for i in range(50000): |
300 |
#while (acceptor != origPoint): |
301 |
myNeighbors = Set(neighbors[donor]) |
302 |
|
303 |
# can't pick a proton choice from one of my current protons: |
304 |
badChoices = Set(DonatingTo[donor]).union(Set(OldDonor[acceptor])) |
305 |
# can't send a proton back to guy who sent one to me (no give-backs): |
306 |
#badChoices.add(Set(OldDonor[acceptor])) |
307 |
# can't send a proton to anyone who is already taking 2: |
308 |
for j in myNeighbors.difference(surfaceSet): |
309 |
if (len(AcceptingFrom[j]) == 2): |
310 |
badChoices.add(j) |
311 |
|
312 |
nDonors = len(DonatingTo[donor]) |
313 |
|
314 |
if (nDonors <= 1): |
315 |
acceptor = random.choice(list( myNeighbors.difference(badChoices) ) ) |
316 |
DonatingTo[donor].append(acceptor) |
317 |
if (acceptor != -1): |
318 |
AcceptingFrom[acceptor].append(donor) |
319 |
OldDonor[acceptor].append(donor) |
320 |
elif (nDonors == 2): |
321 |
acceptor = random.choice(DonatingTo[donor]) |
322 |
else: |
323 |
print "Whoah! How'd we get here?" |
324 |
|
325 |
#OldDonor = donor |
326 |
donor = acceptor |
327 |
if (acceptor == -1): |
328 |
# surface atoms all have a -1 neighbor, but that's OK. A proton |
329 |
# is allowed to point out of the surface, but it does break the |
330 |
# proton chain letter |
331 |
# print "surface atom found, starting over from origPoint" |
332 |
donor = origPoint |
333 |
# break |
334 |
|
335 |
def computeQuats(): |
336 |
|
337 |
for i in range(len(indices)): |
338 |
DonatingTo.append(list()) |
339 |
AcceptingFrom.append(list()) |
340 |
OldDonor.append(list()) |
341 |
# print "Computing Quaternions" |
342 |
ux = [0.0, 0.0, 0.0] |
343 |
uy = [0.0, 0.0, 0.0] |
344 |
uz = [0.0, 0.0, 0.0] |
345 |
RotMat = [ux, uy, uz] |
346 |
totalDipole = [0.0, 0.0, 0.0] |
347 |
for i in range(len(indices)): |
348 |
# print "doing quats for molecule %d" % i |
349 |
# print "Dlen = %d " % len(DonatingTo[i]) |
350 |
# print DonatingTo[i] |
351 |
|
352 |
|
353 |
myPos = positions[i] |
354 |
|
355 |
acceptor1 = DonatingTo[i][0] |
356 |
if (acceptor1 == -1): |
357 |
tempVec = [0.0, 0.0, 0.0] |
358 |
for j in range(3): |
359 |
thisNeighbor = neighbors[i][j] |
360 |
npos = positions[thisNeighbor] |
361 |
npos1 = [npos[0] - myPos[0], npos[1] - myPos[1], npos[2] - myPos[2]] |
362 |
npos1 = wrapVector(npos1) |
363 |
tempVec[0] = tempVec[0] + npos1[0] |
364 |
tempVec[1] = tempVec[1] + npos1[1] |
365 |
tempVec[2] = tempVec[2] + npos1[2] |
366 |
dpos1 = [-tempVec[0]/3.0, -tempVec[1]/3.0, -tempVec[2]/3.0] |
367 |
dpos1 = normalize(dpos1) |
368 |
else: |
369 |
a1pos = positions[acceptor1] |
370 |
dpos1 = [a1pos[0] - myPos[0], a1pos[1] - myPos[1], a1pos[2] - myPos[2]] |
371 |
dpos1 = wrapVector(dpos1) |
372 |
dpos1 = normalize(dpos1) |
373 |
|
374 |
acceptor2 = DonatingTo[i][1] |
375 |
if (acceptor2 == -1): |
376 |
tempVec = [0.0, 0.0, 0.0] |
377 |
for j in range(3): |
378 |
thisNeighbor = neighbors[i][j] |
379 |
npos = positions[thisNeighbor] |
380 |
npos1 = [npos[0] - myPos[0], npos[1] - myPos[1], npos[2] - myPos[2]] |
381 |
npos1 = wrapVector(npos1) |
382 |
tempVec[0] = tempVec[0] + npos1[0] |
383 |
tempVec[1] = tempVec[1] + npos1[1] |
384 |
tempVec[2] = tempVec[2] + npos1[2] |
385 |
dpos2 = [-tempVec[0]/3.0, -tempVec[1]/3.0, -tempVec[2]/3.0] |
386 |
dpos2 = normalize(dpos2) |
387 |
else: |
388 |
a2pos = positions[acceptor2] |
389 |
dpos2 = [a2pos[0] - myPos[0], a2pos[1] - myPos[1], a2pos[2] - myPos[2]] |
390 |
dpos2 = wrapVector(dpos2) |
391 |
dpos2 = normalize(dpos2) |
392 |
|
393 |
|
394 |
|
395 |
|
396 |
|
397 |
for j in range(3): |
398 |
uz[j] = (dpos1[j] + dpos2[j])/2.0 |
399 |
uz = normalize(uz) |
400 |
for j in range(3): |
401 |
uy[j] = dpos2[j] - dpos1[j] |
402 |
uy = normalize(uy) |
403 |
ux = cross(uy, uz) |
404 |
ux = normalize(ux) |
405 |
|
406 |
q = [0.0, 0.0, 0.0, 0.0] |
407 |
|
408 |
# RotMat to Quat code is out of OOPSE's SquareMatrix3.hpp code: |
409 |
|
410 |
RotMat[0] = ux |
411 |
RotMat[1] = uy |
412 |
RotMat[2] = uz |
413 |
|
414 |
t = RotMat[0][0] + RotMat[1][1] + RotMat[2][2] + 1.0 |
415 |
|
416 |
if( t > 1e-6 ): |
417 |
s = 0.5 / math.sqrt( t ) |
418 |
q[0] = 0.25 / s |
419 |
q[1] = (RotMat[1][2] - RotMat[2][1]) * s |
420 |
q[2] = (RotMat[2][0] - RotMat[0][2]) * s |
421 |
q[3] = (RotMat[0][1] - RotMat[1][0]) * s |
422 |
else: |
423 |
ad1 = RotMat[0][0] |
424 |
ad2 = RotMat[1][1] |
425 |
ad3 = RotMat[2][2] |
426 |
|
427 |
if( ad1 >= ad2 and ad1 >= ad3 ): |
428 |
s = 0.5 / math.sqrt( 1.0 + RotMat[0][0] - RotMat[1][1] - RotMat[2][2] ) |
429 |
q[0] = (RotMat[1][2] - RotMat[2][1]) * s |
430 |
q[1] = 0.25 / s |
431 |
q[2] = (RotMat[0][1] + RotMat[1][0]) * s |
432 |
q[3] = (RotMat[0][2] + RotMat[2][0]) * s |
433 |
elif ( ad2 >= ad1 and ad2 >= ad3 ): |
434 |
s = 0.5 / math.sqrt( 1.0 + RotMat[1][1] - RotMat[0][0] - RotMat[2][2] ) |
435 |
q[0] = (RotMat[2][0] - RotMat[0][2] ) * s |
436 |
q[1] = (RotMat[0][1] + RotMat[1][0]) * s |
437 |
q[2] = 0.25 / s |
438 |
q[3] = (RotMat[1][2] + RotMat[2][1]) * s |
439 |
else: |
440 |
s = 0.5 / math.sqrt( 1.0 + RotMat[2][2] - RotMat[0][0] - RotMat[1][1] ) |
441 |
q[0] = (RotMat[0][1] - RotMat[1][0]) * s |
442 |
q[1] = (RotMat[0][2] + RotMat[2][0]) * s |
443 |
q[2] = (RotMat[1][2] + RotMat[2][1]) * s |
444 |
q[3] = 0.25 / s |
445 |
|
446 |
quaternions[i] = q |
447 |
totalDipole = [totalDipole[0] + uz[0], totalDipole[1] + uz[1], totalDipole[2] + uz[2]] |
448 |
totalDipole = [-totalDipole[0], -totalDipole[1], -totalDipole[2]] |
449 |
print totalDipole |
450 |
Dipole = math.sqrt(dot(totalDipole, totalDipole)) |
451 |
print 'Total Dipole Moment = %d' % Dipole |
452 |
if (Dipole > 20 or Dipole < -20): |
453 |
print "Bad Dipole, starting over" |
454 |
for i in range(len(indices)): |
455 |
del OldDonor[:] |
456 |
del AcceptingFrom[:] |
457 |
del DonatingTo[:] |
458 |
# del badChoices[:] |
459 |
randomizeProtons() |
460 |
computeQuats() |
461 |
else: |
462 |
print "All Done!" |
463 |
|
464 |
|
465 |
|
466 |
def main(argv): |
467 |
try: |
468 |
opts, args = getopt.getopt(argv, "hm:o:", ["help", "meta-data=", "output-file="]) |
469 |
except getopt.GetoptError: |
470 |
usage() |
471 |
sys.exit(2) |
472 |
for opt, arg in opts: |
473 |
if opt in ("-h", "--help"): |
474 |
usage() |
475 |
sys.exit() |
476 |
elif opt in ("-m", "--meta-data"): |
477 |
mdFileName = arg |
478 |
global _haveMDFileName |
479 |
_haveMDFileName = 1 |
480 |
elif opt in ("-o", "--output-file"): |
481 |
outputFileName = arg |
482 |
global _haveOutputFileName |
483 |
_haveOutputFileName = 1 |
484 |
if (_haveMDFileName != 1): |
485 |
usage() |
486 |
print "No meta-data file was specified" |
487 |
sys.exit() |
488 |
if (_haveOutputFileName != 1): |
489 |
usage() |
490 |
print "No output file was specified" |
491 |
sys.exit() |
492 |
readFile(mdFileName) |
493 |
# analyzeQuats() |
494 |
findNeighbors() |
495 |
randomizeProtons() |
496 |
computeQuats() |
497 |
writeFile(outputFileName) |
498 |
|
499 |
if __name__ == "__main__": |
500 |
if len(sys.argv) == 1: |
501 |
usage() |
502 |
sys.exit() |
503 |
main(sys.argv[1:]) |