1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
41 |
*/ |
42 |
|
43 |
/* Calculates Rho(theta) */ |
44 |
|
45 |
#include <algorithm> |
46 |
#include <fstream> |
47 |
#include "applications/staticProps/pAngle.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "io/DumpReader.hpp" |
50 |
#include "primitives/Molecule.hpp" |
51 |
#include "brains/Thermo.hpp" |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
56 |
const std::string& sele1, int nthetabins) |
57 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
58 |
evaluator1_(info), evaluator2_(info), seleMan1_(info), seleMan2_(info), |
59 |
nThetaBins_(nthetabins), |
60 |
doVect_(true), doOffset_(false) { |
61 |
|
62 |
setOutputName(getPrefix(filename) + ".pAngle"); |
63 |
|
64 |
evaluator1_.loadScriptString(sele1); |
65 |
if (!evaluator1_.isDynamic()) { |
66 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
67 |
} |
68 |
|
69 |
count_.resize(nThetaBins_); |
70 |
histogram_.resize(nThetaBins_); |
71 |
} |
72 |
|
73 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
74 |
const std::string& sele1, const std::string& sele2, |
75 |
int nthetabins) |
76 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
77 |
selectionScript2_(sele2), evaluator1_(info), evaluator2_(info), |
78 |
seleMan1_(info), seleMan2_(info), nThetaBins_(nthetabins), |
79 |
doVect_(false), doOffset_(false) { |
80 |
|
81 |
setOutputName(getPrefix(filename) + ".pAngle"); |
82 |
|
83 |
evaluator1_.loadScriptString(sele1); |
84 |
if (!evaluator1_.isDynamic()) { |
85 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
86 |
} |
87 |
|
88 |
evaluator2_.loadScriptString(sele2); |
89 |
if (!evaluator2_.isDynamic()) { |
90 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
91 |
} |
92 |
|
93 |
count_.resize(nThetaBins_); |
94 |
histogram_.resize(nThetaBins_); |
95 |
} |
96 |
|
97 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
98 |
const std::string& sele1, int seleOffset, int nthetabins) |
99 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
100 |
evaluator1_(info), evaluator2_(info), seleMan1_(info), seleMan2_(info), |
101 |
nThetaBins_(nthetabins), seleOffset_(seleOffset), |
102 |
doVect_(false), doOffset_(true), doOffset2_(false) { |
103 |
|
104 |
setOutputName(getPrefix(filename) + ".pAngle"); |
105 |
|
106 |
evaluator1_.loadScriptString(sele1); |
107 |
if (!evaluator1_.isDynamic()) { |
108 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
109 |
} |
110 |
|
111 |
count_.resize(nThetaBins_); |
112 |
histogram_.resize(nThetaBins_); |
113 |
} |
114 |
|
115 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
116 |
const std::string& sele1, int seleOffset, int seleOffset2, |
117 |
int nthetabins) |
118 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
119 |
evaluator1_(info), evaluator2_(info), seleMan1_(info), seleMan2_(info), |
120 |
nThetaBins_(nthetabins), seleOffset_(seleOffset), |
121 |
seleOffset2_(seleOffset2), |
122 |
doVect_(false), doOffset_(true), doOffset2_(true) { |
123 |
|
124 |
setOutputName(getPrefix(filename) + ".pAngle"); |
125 |
|
126 |
evaluator1_.loadScriptString(sele1); |
127 |
if (!evaluator1_.isDynamic()) { |
128 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
129 |
} |
130 |
|
131 |
count_.resize(nThetaBins_); |
132 |
histogram_.resize(nThetaBins_); |
133 |
} |
134 |
|
135 |
void pAngle::process() { |
136 |
Molecule* mol; |
137 |
RigidBody* rb; |
138 |
SimInfo::MoleculeIterator mi; |
139 |
Molecule::RigidBodyIterator rbIter; |
140 |
StuntDouble* sd1; |
141 |
StuntDouble* sd2; |
142 |
int ii; |
143 |
int jj; |
144 |
|
145 |
Thermo thermo(info_); |
146 |
DumpReader reader(info_, dumpFilename_); |
147 |
int nFrames = reader.getNFrames(); |
148 |
|
149 |
nProcessed_ = nFrames/step_; |
150 |
|
151 |
std::fill(histogram_.begin(), histogram_.end(), 0.0); |
152 |
std::fill(count_.begin(), count_.end(), 0); |
153 |
|
154 |
for (int istep = 0; istep < nFrames; istep += step_) { |
155 |
reader.readFrame(istep); |
156 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
157 |
|
158 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
159 |
mol = info_->nextMolecule(mi)) { |
160 |
//change the positions of atoms which belong to the rigidbodies |
161 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
162 |
rb = mol->nextRigidBody(rbIter)) { |
163 |
rb->updateAtoms(); |
164 |
} |
165 |
} |
166 |
|
167 |
Vector3d CenterOfMass = thermo.getCom(); |
168 |
|
169 |
if (evaluator1_.isDynamic()) { |
170 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
171 |
} |
172 |
|
173 |
if (doVect_) { |
174 |
|
175 |
|
176 |
for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; |
177 |
sd1 = seleMan1_.nextSelected(ii)) { |
178 |
|
179 |
Vector3d pos = sd1->getPos(); |
180 |
|
181 |
Vector3d r1 = CenterOfMass - pos; |
182 |
// only do this if the stunt double actually has a vector associated |
183 |
// with it |
184 |
if (sd1->isDirectional()) { |
185 |
Vector3d vec = sd1->getA().getColumn(2); |
186 |
RealType distance = r1.length(); |
187 |
|
188 |
vec.normalize(); |
189 |
r1.normalize(); |
190 |
RealType cosangle = dot(r1, vec); |
191 |
|
192 |
int binNo = int(nThetaBins_ * (1.0 + cosangle) / 2.0); |
193 |
count_[binNo]++; |
194 |
} |
195 |
} |
196 |
} else { |
197 |
if (doOffset_) { |
198 |
|
199 |
for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; |
200 |
sd1 = seleMan1_.nextSelected(ii)) { |
201 |
|
202 |
// This will require careful rewriting if StaticProps is |
203 |
// ever parallelized. For an example, see |
204 |
// Thermo::getTaggedAtomPairDistance |
205 |
Vector3d r1; |
206 |
|
207 |
if (doOffset2_) { |
208 |
int sd1Aind = sd1->getGlobalIndex() + seleOffset2_; |
209 |
StuntDouble* sd1A = info_->getIOIndexToIntegrableObject(sd1Aind); |
210 |
r1 = CenterOfMass - sd1A->getPos(); |
211 |
} else { |
212 |
r1 = CenterOfMass - sd1->getPos(); |
213 |
} |
214 |
|
215 |
if (usePeriodicBoundaryConditions_) |
216 |
currentSnapshot_->wrapVector(r1); |
217 |
|
218 |
|
219 |
int sd2Index = sd1->getGlobalIndex() + seleOffset_; |
220 |
sd2 = info_->getIOIndexToIntegrableObject(sd2Index); |
221 |
|
222 |
Vector3d r2 = CenterOfMass - sd2->getPos(); |
223 |
if (usePeriodicBoundaryConditions_) |
224 |
currentSnapshot_->wrapVector(r1); |
225 |
|
226 |
Vector3d rc = 0.5*(r1 + r2); |
227 |
if (usePeriodicBoundaryConditions_) |
228 |
currentSnapshot_->wrapVector(rc); |
229 |
|
230 |
Vector3d vec = r1-r2; |
231 |
if (usePeriodicBoundaryConditions_) |
232 |
currentSnapshot_->wrapVector(vec); |
233 |
|
234 |
rc.normalize(); |
235 |
vec.normalize(); |
236 |
RealType cosangle = dot(rc, vec); |
237 |
int binNo = int(nThetaBins_ * (1.0 + cosangle) / 2.0); |
238 |
count_[binNo]++; |
239 |
} |
240 |
} else { |
241 |
|
242 |
if (evaluator2_.isDynamic()) { |
243 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
244 |
} |
245 |
|
246 |
if (seleMan1_.getSelectionCount() != seleMan2_.getSelectionCount() ) { |
247 |
sprintf( painCave.errMsg, |
248 |
"In frame %d, the number of selected StuntDoubles are\n" |
249 |
"\tnot the same in --sele1 and sele2\n", istep); |
250 |
painCave.severity = OPENMD_INFO; |
251 |
painCave.isFatal = 0; |
252 |
simError(); |
253 |
} |
254 |
|
255 |
for (sd1 = seleMan1_.beginSelected(ii), |
256 |
sd2 = seleMan2_.beginSelected(jj); |
257 |
sd1 != NULL && sd2 != NULL; |
258 |
sd1 = seleMan1_.nextSelected(ii), |
259 |
sd2 = seleMan2_.nextSelected(jj)) { |
260 |
|
261 |
Vector3d r1 = CenterOfMass - sd1->getPos(); |
262 |
if (usePeriodicBoundaryConditions_) |
263 |
currentSnapshot_->wrapVector(r1); |
264 |
|
265 |
Vector3d r2 = CenterOfMass - sd2->getPos(); |
266 |
if (usePeriodicBoundaryConditions_) |
267 |
currentSnapshot_->wrapVector(r1); |
268 |
|
269 |
Vector3d rc = 0.5*(r1 + r2); |
270 |
if (usePeriodicBoundaryConditions_) |
271 |
currentSnapshot_->wrapVector(rc); |
272 |
|
273 |
Vector3d vec = r1-r2; |
274 |
if (usePeriodicBoundaryConditions_) |
275 |
currentSnapshot_->wrapVector(vec); |
276 |
|
277 |
rc.normalize(); |
278 |
vec.normalize(); |
279 |
RealType cosangle = dot(rc, vec); |
280 |
int binNo = int(nThetaBins_ * (1.0 + cosangle) / 2.0); |
281 |
count_[binNo]++; |
282 |
|
283 |
} |
284 |
} |
285 |
} |
286 |
} |
287 |
|
288 |
processHistogram(); |
289 |
writeProbs(); |
290 |
|
291 |
} |
292 |
|
293 |
void pAngle::processHistogram() { |
294 |
|
295 |
int atot = 0; |
296 |
for(unsigned int i = 0; i < count_.size(); ++i) |
297 |
atot += count_[i]; |
298 |
|
299 |
for(unsigned int i = 0; i < count_.size(); ++i) { |
300 |
histogram_[i] = double(count_[i] / double(atot)); |
301 |
} |
302 |
} |
303 |
|
304 |
|
305 |
void pAngle::writeProbs() { |
306 |
|
307 |
std::ofstream rdfStream(outputFilename_.c_str()); |
308 |
if (rdfStream.is_open()) { |
309 |
rdfStream << "#pAngle\n"; |
310 |
rdfStream << "#nFrames:\t" << nProcessed_ << "\n"; |
311 |
rdfStream << "#selection1: (" << selectionScript1_ << ")"; |
312 |
if (!doVect_) { |
313 |
rdfStream << "\tselection2: (" << selectionScript2_ << ")"; |
314 |
} |
315 |
rdfStream << "\n"; |
316 |
rdfStream << "#cos(theta)\tp(cos(theta))\n"; |
317 |
RealType dct = 2.0 / histogram_.size(); |
318 |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
319 |
RealType ct = -1.0 + (2.0 * i + 1) / (histogram_.size()); |
320 |
rdfStream << ct << "\t" << histogram_[i]/dct << "\n"; |
321 |
} |
322 |
|
323 |
} else { |
324 |
|
325 |
sprintf(painCave.errMsg, "pAngle: unable to open %s\n", |
326 |
outputFilename_.c_str()); |
327 |
painCave.isFatal = 1; |
328 |
simError(); |
329 |
} |
330 |
|
331 |
rdfStream.close(); |
332 |
} |
333 |
|
334 |
} |
335 |
|