| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
| 41 |
*/ |
| 42 |
|
| 43 |
/* Calculates Rho(theta) */ |
| 44 |
|
| 45 |
#include <algorithm> |
| 46 |
#include <fstream> |
| 47 |
#include "applications/staticProps/pAngle.hpp" |
| 48 |
#include "utils/simError.h" |
| 49 |
#include "io/DumpReader.hpp" |
| 50 |
#include "primitives/Molecule.hpp" |
| 51 |
#include "brains/Thermo.hpp" |
| 52 |
|
| 53 |
namespace OpenMD { |
| 54 |
|
| 55 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
| 56 |
const std::string& sele1, int nthetabins) |
| 57 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
| 58 |
evaluator1_(info), evaluator2_(info), seleMan1_(info), seleMan2_(info), |
| 59 |
nThetaBins_(nthetabins), |
| 60 |
doVect_(true), doOffset_(false) { |
| 61 |
|
| 62 |
setOutputName(getPrefix(filename) + ".pAngle"); |
| 63 |
|
| 64 |
evaluator1_.loadScriptString(sele1); |
| 65 |
if (!evaluator1_.isDynamic()) { |
| 66 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
| 67 |
} |
| 68 |
|
| 69 |
count_.resize(nThetaBins_); |
| 70 |
histogram_.resize(nThetaBins_); |
| 71 |
} |
| 72 |
|
| 73 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
| 74 |
const std::string& sele1, const std::string& sele2, |
| 75 |
int nthetabins) |
| 76 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
| 77 |
selectionScript2_(sele2), evaluator1_(info), evaluator2_(info), |
| 78 |
seleMan1_(info), seleMan2_(info), nThetaBins_(nthetabins), |
| 79 |
doVect_(false), doOffset_(false) { |
| 80 |
|
| 81 |
setOutputName(getPrefix(filename) + ".pAngle"); |
| 82 |
|
| 83 |
evaluator1_.loadScriptString(sele1); |
| 84 |
if (!evaluator1_.isDynamic()) { |
| 85 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
| 86 |
} |
| 87 |
|
| 88 |
evaluator2_.loadScriptString(sele2); |
| 89 |
if (!evaluator2_.isDynamic()) { |
| 90 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
| 91 |
} |
| 92 |
|
| 93 |
count_.resize(nThetaBins_); |
| 94 |
histogram_.resize(nThetaBins_); |
| 95 |
} |
| 96 |
|
| 97 |
pAngle::pAngle(SimInfo* info, const std::string& filename, |
| 98 |
const std::string& sele1, int seleOffset, int nthetabins) |
| 99 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
| 100 |
evaluator1_(info), evaluator2_(info), seleMan1_(info), seleMan2_(info), |
| 101 |
nThetaBins_(nthetabins), |
| 102 |
doVect_(false), doOffset_(true) { |
| 103 |
|
| 104 |
setOutputName(getPrefix(filename) + ".pAngle"); |
| 105 |
|
| 106 |
evaluator1_.loadScriptString(sele1); |
| 107 |
if (!evaluator1_.isDynamic()) { |
| 108 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
| 109 |
} |
| 110 |
|
| 111 |
count_.resize(nThetaBins_); |
| 112 |
histogram_.resize(nThetaBins_); |
| 113 |
} |
| 114 |
|
| 115 |
void pAngle::process() { |
| 116 |
Molecule* mol; |
| 117 |
RigidBody* rb; |
| 118 |
SimInfo::MoleculeIterator mi; |
| 119 |
Molecule::RigidBodyIterator rbIter; |
| 120 |
StuntDouble* sd1; |
| 121 |
StuntDouble* sd2; |
| 122 |
int ii; |
| 123 |
int jj; |
| 124 |
|
| 125 |
Thermo thermo(info_); |
| 126 |
DumpReader reader(info_, dumpFilename_); |
| 127 |
int nFrames = reader.getNFrames(); |
| 128 |
|
| 129 |
nProcessed_ = nFrames/step_; |
| 130 |
|
| 131 |
std::fill(histogram_.begin(), histogram_.end(), 0.0); |
| 132 |
std::fill(count_.begin(), count_.end(), 0); |
| 133 |
|
| 134 |
for (int istep = 0; istep < nFrames; istep += step_) { |
| 135 |
reader.readFrame(istep); |
| 136 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 137 |
|
| 138 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 139 |
mol = info_->nextMolecule(mi)) { |
| 140 |
//change the positions of atoms which belong to the rigidbodies |
| 141 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 142 |
rb = mol->nextRigidBody(rbIter)) { |
| 143 |
rb->updateAtoms(); |
| 144 |
} |
| 145 |
} |
| 146 |
|
| 147 |
Vector3d CenterOfMass = thermo.getCom(); |
| 148 |
|
| 149 |
if (evaluator1_.isDynamic()) { |
| 150 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
| 151 |
} |
| 152 |
|
| 153 |
if (doVect_) { |
| 154 |
|
| 155 |
for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; |
| 156 |
sd1 = seleMan1_.nextSelected(ii)) { |
| 157 |
|
| 158 |
Vector3d pos = sd1->getPos(); |
| 159 |
|
| 160 |
Vector3d r1 = CenterOfMass - pos; |
| 161 |
// only do this if the stunt double actually has a vector associated |
| 162 |
// with it |
| 163 |
if (sd1->isDirectional()) { |
| 164 |
Vector3d vec = sd1->getA().getColumn(2); |
| 165 |
RealType distance = r1.length(); |
| 166 |
|
| 167 |
vec.normalize(); |
| 168 |
r1.normalize(); |
| 169 |
RealType cosangle = dot(r1, vec); |
| 170 |
|
| 171 |
int binNo = int(nThetaBins_ * (1.0 + cosangle) / 2.0); |
| 172 |
count_[binNo]++; |
| 173 |
} |
| 174 |
} |
| 175 |
} else { |
| 176 |
if (doOffset_) { |
| 177 |
|
| 178 |
for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; |
| 179 |
sd1 = seleMan1_.nextSelected(ii)) { |
| 180 |
|
| 181 |
// This will require careful rewriting if StaticProps is |
| 182 |
// ever parallelized. For an example, see |
| 183 |
// Thermo::getTaggedAtomPairDistance |
| 184 |
|
| 185 |
int sd2Index = sd1->getGlobalIndex() + seleOffset_; |
| 186 |
sd2 = info_->getIOIndexToIntegrableObject(sd2Index); |
| 187 |
|
| 188 |
Vector3d r1 = CenterOfMass - sd1->getPos(); |
| 189 |
if (usePeriodicBoundaryConditions_) |
| 190 |
currentSnapshot_->wrapVector(r1); |
| 191 |
|
| 192 |
Vector3d r2 = CenterOfMass - sd2->getPos(); |
| 193 |
if (usePeriodicBoundaryConditions_) |
| 194 |
currentSnapshot_->wrapVector(r1); |
| 195 |
|
| 196 |
Vector3d rc = 0.5*(r1 + r2); |
| 197 |
if (usePeriodicBoundaryConditions_) |
| 198 |
currentSnapshot_->wrapVector(rc); |
| 199 |
|
| 200 |
Vector3d vec = r1-r2; |
| 201 |
if (usePeriodicBoundaryConditions_) |
| 202 |
currentSnapshot_->wrapVector(vec); |
| 203 |
|
| 204 |
rc.normalize(); |
| 205 |
vec.normalize(); |
| 206 |
RealType cosangle = dot(rc, vec); |
| 207 |
int binNo = int(nThetaBins_ * (1.0 + cosangle) / 2.0); |
| 208 |
count_[binNo]++; |
| 209 |
} |
| 210 |
} else { |
| 211 |
|
| 212 |
if (evaluator2_.isDynamic()) { |
| 213 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
| 214 |
} |
| 215 |
|
| 216 |
if (seleMan1_.getSelectionCount() != seleMan2_.getSelectionCount() ) { |
| 217 |
sprintf( painCave.errMsg, |
| 218 |
"In frame %d, the number of selected StuntDoubles are\n" |
| 219 |
"\tnot the same in --sele1 and sele2\n", istep); |
| 220 |
painCave.severity = OPENMD_INFO; |
| 221 |
painCave.isFatal = 0; |
| 222 |
simError(); |
| 223 |
} |
| 224 |
|
| 225 |
for (sd1 = seleMan1_.beginSelected(ii), |
| 226 |
sd2 = seleMan2_.beginSelected(jj); |
| 227 |
sd1 != NULL && sd2 != NULL; |
| 228 |
sd1 = seleMan1_.nextSelected(ii), |
| 229 |
sd2 = seleMan2_.nextSelected(jj)) { |
| 230 |
|
| 231 |
Vector3d r1 = CenterOfMass - sd1->getPos(); |
| 232 |
if (usePeriodicBoundaryConditions_) |
| 233 |
currentSnapshot_->wrapVector(r1); |
| 234 |
|
| 235 |
Vector3d r2 = CenterOfMass - sd2->getPos(); |
| 236 |
if (usePeriodicBoundaryConditions_) |
| 237 |
currentSnapshot_->wrapVector(r1); |
| 238 |
|
| 239 |
Vector3d rc = 0.5*(r1 + r2); |
| 240 |
if (usePeriodicBoundaryConditions_) |
| 241 |
currentSnapshot_->wrapVector(rc); |
| 242 |
|
| 243 |
Vector3d vec = r1-r2; |
| 244 |
if (usePeriodicBoundaryConditions_) |
| 245 |
currentSnapshot_->wrapVector(vec); |
| 246 |
|
| 247 |
rc.normalize(); |
| 248 |
vec.normalize(); |
| 249 |
RealType cosangle = dot(rc, vec); |
| 250 |
int binNo = int(nThetaBins_ * (1.0 + cosangle) / 2.0); |
| 251 |
count_[binNo]++; |
| 252 |
|
| 253 |
} |
| 254 |
} |
| 255 |
} |
| 256 |
} |
| 257 |
|
| 258 |
processHistogram(); |
| 259 |
writeProbs(); |
| 260 |
|
| 261 |
} |
| 262 |
|
| 263 |
void pAngle::processHistogram() { |
| 264 |
|
| 265 |
int atot = 0; |
| 266 |
for(unsigned int i = 0; i < count_.size(); ++i) |
| 267 |
atot += count_[i]; |
| 268 |
|
| 269 |
for(unsigned int i = 0; i < count_.size(); ++i) { |
| 270 |
histogram_[i] = double(count_[i] / double(atot)); |
| 271 |
} |
| 272 |
} |
| 273 |
|
| 274 |
|
| 275 |
void pAngle::writeProbs() { |
| 276 |
|
| 277 |
std::ofstream rdfStream(outputFilename_.c_str()); |
| 278 |
if (rdfStream.is_open()) { |
| 279 |
rdfStream << "#pAngle\n"; |
| 280 |
rdfStream << "#nFrames:\t" << nProcessed_ << "\n"; |
| 281 |
rdfStream << "#selection1: (" << selectionScript1_ << ")"; |
| 282 |
if (!doVect_) { |
| 283 |
rdfStream << "\tselection2: (" << selectionScript2_ << ")"; |
| 284 |
} |
| 285 |
rdfStream << "\n"; |
| 286 |
rdfStream << "#cos(theta)\tp(cos(theta))\n"; |
| 287 |
RealType dct = 2.0 / histogram_.size(); |
| 288 |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
| 289 |
RealType ct = -1.0 + (2.0 * i + 1) / (histogram_.size()); |
| 290 |
rdfStream << ct << "\t" << histogram_[i]/dct << "\n"; |
| 291 |
} |
| 292 |
|
| 293 |
} else { |
| 294 |
|
| 295 |
sprintf(painCave.errMsg, "pAngle: unable to open %s\n", |
| 296 |
outputFilename_.c_str()); |
| 297 |
painCave.isFatal = 1; |
| 298 |
simError(); |
| 299 |
} |
| 300 |
|
| 301 |
rdfStream.close(); |
| 302 |
} |
| 303 |
|
| 304 |
} |
| 305 |
|