ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/staticProps/TetrahedralityParamXYZ.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 2 months ago) by gezelter
File size: 12399 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 * [6] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012).
42 */
43
44 #include "applications/staticProps/TetrahedralityParamXYZ.hpp"
45 #include "utils/simError.h"
46 #include "io/DumpReader.hpp"
47 #include "primitives/Molecule.hpp"
48 #include "utils/NumericConstant.hpp"
49 #include <vector>
50 #include <algorithm>
51 #include <fstream>
52
53 using namespace std;
54 namespace OpenMD {
55 TetrahedralityParamXYZ::TetrahedralityParamXYZ(SimInfo* info,
56 const std::string& filename,
57 const std::string& sele1,
58 const std::string& sele2,
59 RealType rCut,
60 RealType voxelSize,
61 RealType gaussWidth)
62 : StaticAnalyser(info, filename),
63 selectionScript1_(sele1), selectionScript2_(sele2),
64 seleMan1_(info), seleMan2_(info), evaluator1_(info), evaluator2_(info),
65 rCut_(rCut), voxelSize_(voxelSize), gaussWidth_(gaussWidth) {
66
67 evaluator1_.loadScriptString(sele1);
68 if (!evaluator1_.isDynamic()) {
69 seleMan1_.setSelectionSet(evaluator1_.evaluate());
70 }
71 evaluator2_.loadScriptString(sele2);
72 if (!evaluator2_.isDynamic()) {
73 seleMan2_.setSelectionSet(evaluator2_.evaluate());
74 }
75
76 Mat3x3d hmat = info->getSnapshotManager()->getCurrentSnapshot()->getHmat();
77
78 nBins_(0) = int(hmat(0,0) / voxelSize);
79 nBins_(1) = int(hmat(1,1) / voxelSize);
80 nBins_(2) = int(hmat(2,2) / voxelSize);
81
82 hist_.resize(nBins_(0));
83 count_.resize(nBins_(0));
84 for (int i = 0 ; i < nBins_(0); ++i) {
85 hist_[i].resize(nBins_(1));
86 count_[i].resize(nBins_(1));
87 for(int j = 0; j < nBins_(1); ++j) {
88 hist_[i][j].resize(nBins_(2));
89 count_[i][j].resize(nBins_(2));
90 std::fill(hist_[i][j].begin(), hist_[i][j].end(), 0.0);
91 std::fill(count_[i][j].begin(), count_[i][j].end(), 0.0);
92
93 }
94 }
95
96 setOutputName(getPrefix(filename) + ".Qxyz");
97 }
98
99 TetrahedralityParamXYZ::~TetrahedralityParamXYZ() {
100 }
101
102 void TetrahedralityParamXYZ::process() {
103 Molecule* mol;
104 StuntDouble* sd;
105 StuntDouble* sd2;
106 StuntDouble* sdi;
107 StuntDouble* sdj;
108 RigidBody* rb;
109 int myIndex;
110 SimInfo::MoleculeIterator mi;
111 Molecule::RigidBodyIterator rbIter;
112 Vector3d vec;
113 Vector3d ri, rj, rk, rik, rkj;
114 RealType r;
115 RealType cospsi;
116 RealType Qk;
117 std::vector<std::pair<RealType,StuntDouble*> > myNeighbors;
118 //std::vector<std::pair<Vector3d, RealType> > qvals;
119 //std::vector<std::pair<Vector3d, RealType> >::iterator qiter;
120 int isd1;
121 int isd2;
122
123
124 int kMax = int(5.0 * gaussWidth_ / voxelSize_);
125 int kSqLim = kMax*kMax;
126 cerr << "gw = " << gaussWidth_ << " vS = " << voxelSize_ << " kMax = "
127 << kMax << " kSqLim = " << kSqLim << "\n";
128
129 DumpReader reader(info_, dumpFilename_);
130 int nFrames = reader.getNFrames();
131
132 for (int istep = 0; istep < nFrames; istep += step_) {
133 reader.readFrame(istep);
134
135 currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
136 Mat3x3d hmat = currentSnapshot_->getHmat();
137 Vector3d halfBox = Vector3d(hmat(0,0), hmat(1,1), hmat(2,2)) / 2.0;
138
139 if (evaluator1_.isDynamic()) {
140 seleMan1_.setSelectionSet(evaluator1_.evaluate());
141 }
142
143 if (evaluator2_.isDynamic()) {
144 seleMan2_.setSelectionSet(evaluator2_.evaluate());
145 }
146
147 // update the positions of atoms which belong to the rigidbodies
148 for (mol = info_->beginMolecule(mi); mol != NULL;
149 mol = info_->nextMolecule(mi)) {
150 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
151 rb = mol->nextRigidBody(rbIter)) {
152 rb->updateAtoms();
153 }
154 }
155
156 //qvals.clear();
157
158 // outer loop is over the selected StuntDoubles:
159 for (sd = seleMan1_.beginSelected(isd1); sd != NULL;
160 sd = seleMan1_.nextSelected(isd1)) {
161
162 myIndex = sd->getGlobalIndex();
163
164 Qk = 1.0;
165 myNeighbors.clear();
166
167 for (sd2 = seleMan2_.beginSelected(isd2); sd2 != NULL;
168 sd2 = seleMan2_.nextSelected(isd2)) {
169
170 if (sd2->getGlobalIndex() != myIndex) {
171
172 vec = sd->getPos() - sd2->getPos();
173
174 if (usePeriodicBoundaryConditions_)
175 currentSnapshot_->wrapVector(vec);
176
177 r = vec.length();
178
179 // Check to see if neighbor is in bond cutoff
180
181 if (r < rCut_) {
182 myNeighbors.push_back(std::make_pair(r,sd2));
183 }
184 }
185 }
186
187 // Sort the vector using predicate and std::sort
188 std::sort(myNeighbors.begin(), myNeighbors.end());
189
190 // Use only the 4 closest neighbors to do the rest of the work:
191
192 int nbors = myNeighbors.size()> 4 ? 4 : myNeighbors.size();
193 int nang = int (0.5 * (nbors * (nbors - 1)));
194
195 rk = sd->getPos();
196
197 for (int i = 0; i < nbors-1; i++) {
198
199 sdi = myNeighbors[i].second;
200 ri = sdi->getPos();
201 rik = rk - ri;
202 if (usePeriodicBoundaryConditions_)
203 currentSnapshot_->wrapVector(rik);
204
205 rik.normalize();
206
207 for (int j = i+1; j < nbors; j++) {
208
209 sdj = myNeighbors[j].second;
210 rj = sdj->getPos();
211 rkj = rk - rj;
212 if (usePeriodicBoundaryConditions_)
213 currentSnapshot_->wrapVector(rkj);
214 rkj.normalize();
215
216 cospsi = dot(rik,rkj);
217
218 // Calculates scaled Qk for each molecule using calculated
219 // angles from 4 or fewer nearest neighbors.
220 Qk -= (pow(cospsi + 1.0 / 3.0, 2) * 2.25 / nang);
221 }
222 }
223
224 if (nang > 0) {
225 if (usePeriodicBoundaryConditions_)
226 currentSnapshot_->wrapVector(rk);
227 //qvals.push_back(std::make_pair(rk, Qk));
228
229 Vector3d pos = rk + halfBox;
230
231
232 Vector3i whichVoxel(int(pos[0] / voxelSize_),
233 int(pos[1] / voxelSize_),
234 int(pos[2] / voxelSize_));
235
236 for (int l = -kMax; l <= kMax; l++) {
237 for (int m = -kMax; m <= kMax; m++) {
238 for (int n = -kMax; n <= kMax; n++) {
239 int kk = l*l + m*m + n*n;
240 if(kk <= kSqLim) {
241
242 int ll = (whichVoxel[0] + l) % nBins_(0);
243 ll = ll < 0 ? nBins_(0) + ll : ll;
244 int mm = (whichVoxel[1] + m) % nBins_(1);
245 mm = mm < 0 ? nBins_(1) + mm : mm;
246 int nn = (whichVoxel[2] + n) % nBins_(2);
247 nn = nn < 0 ? nBins_(2) + nn : nn;
248
249 Vector3d bPos = Vector3d(ll,mm,nn) * voxelSize_ - halfBox;
250 Vector3d d = bPos - rk;
251 currentSnapshot_->wrapVector(d);
252 RealType denom = pow(2.0 * sqrt(M_PI) * gaussWidth_, 3);
253 RealType exponent = -dot(d,d) / pow(2.0*gaussWidth_, 2);
254 RealType weight = exp(exponent) / denom;
255 count_[ll][mm][nn] += weight;
256 hist_[ll][mm][nn] += weight * Qk;
257 }
258 }
259 }
260 }
261 }
262 }
263
264 // for (int i = 0; i < nBins_(0); ++i) {
265 // for(int j = 0; j < nBins_(1); ++j) {
266 // for(int k = 0; k < nBins_(2); ++k) {
267 // Vector3d pos = Vector3d(i, j, k) * voxelSize_ - halfBox;
268 // for(qiter = qvals.begin(); qiter != qvals.end(); ++qiter) {
269 // Vector3d d = pos - (*qiter).first;
270 // currentSnapshot_->wrapVector(d);
271 // RealType denom = pow(2.0 * sqrt(M_PI) * gaussWidth_, 3);
272 // RealType exponent = -dot(d,d) / pow(2.0*gaussWidth_, 2);
273 // RealType weight = exp(exponent) / denom;
274 // count_[i][j][k] += weight;
275 // hist_[i][j][k] += weight * (*qiter).second;
276 // }
277 // }
278 // }
279 // }
280 }
281 writeQxyz();
282 }
283
284 void TetrahedralityParamXYZ::writeQxyz() {
285
286 Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
287
288 // normalize by total weight in voxel:
289 for (unsigned int i = 0; i < hist_.size(); ++i) {
290 for(unsigned int j = 0; j < hist_[i].size(); ++j) {
291 for(unsigned int k = 0;k < hist_[i][j].size(); ++k) {
292 hist_[i][j][k] = hist_[i][j][k] / count_[i][j][k];
293 }
294 }
295 }
296
297 std::ofstream qXYZstream(outputFilename_.c_str());
298 if (qXYZstream.is_open()) {
299 qXYZstream << "# AmiraMesh ASCII 1.0\n\n";
300 qXYZstream << "# Dimensions in x-, y-, and z-direction\n";
301 qXYZstream << " define Lattice " << hist_.size() << " "
302 << hist_[0].size() << " " << hist_[0][0].size() << "\n";
303
304 qXYZstream << "Parameters {\n";
305 qXYZstream << " CoordType \"uniform\",\n";
306 qXYZstream << " # BoundingBox is xmin xmax ymin ymax zmin zmax\n";
307 qXYZstream << " BoundingBox 0.0 " << hmat(0,0) <<
308 " 0.0 " << hmat(1,1) <<
309 " 0.0 " << hmat(2,2) << "\n";
310 qXYZstream << "}\n";
311
312 qXYZstream << "Lattice { double ScalarField } = @1\n";
313
314 qXYZstream << "@1\n";
315
316 for (std::size_t k = 0; k < hist_[0][0].size(); ++k) {
317 for(std::size_t j = 0; j < hist_[0].size(); ++j) {
318 for(std::size_t i = 0; i < hist_.size(); ++i) {
319 qXYZstream << hist_[i][j][k] << " ";
320
321 //qXYZstream.write(reinterpret_cast<char *>( &hist_[i][j][k] ),
322 // sizeof( hist_[i][j][k] ));
323 }
324 }
325 }
326
327 } else {
328 sprintf(painCave.errMsg, "TetrahedralityParamXYZ: unable to open %s\n",
329 outputFilename_.c_str());
330 painCave.isFatal = 1;
331 simError();
332 }
333 qXYZstream.close();
334 }
335 }
336
337
338

Properties

Name Value
svn:executable *