ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/staticProps/TetrahedralityParamXYZ.cpp
Revision: 2017
Committed: Tue Sep 2 18:31:44 2014 UTC (10 years, 8 months ago) by gezelter
File size: 12476 byte(s)
Log Message:
Latest

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 * [6] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012).
42 */
43
44 #include "applications/staticProps/TetrahedralityParamXYZ.hpp"
45 #include "utils/simError.h"
46 #include "io/DumpReader.hpp"
47 #include "primitives/Molecule.hpp"
48 #include "utils/NumericConstant.hpp"
49 #include <vector>
50 #include <algorithm>
51 #include <fstream>
52
53 using namespace std;
54 namespace OpenMD {
55 TetrahedralityParamXYZ::TetrahedralityParamXYZ(SimInfo* info,
56 const std::string& filename,
57 const std::string& sele1,
58 const std::string& sele2,
59 RealType rCut,
60 RealType voxelSize,
61 RealType gaussWidth)
62 : StaticAnalyser(info, filename), selectionScript1_(sele1),
63 evaluator1_(info), seleMan1_(info), selectionScript2_(sele2),
64 evaluator2_(info), seleMan2_(info), rCut_(rCut), voxelSize_(voxelSize),
65 gaussWidth_(gaussWidth) {
66
67 evaluator1_.loadScriptString(sele1);
68 if (!evaluator1_.isDynamic()) {
69 seleMan1_.setSelectionSet(evaluator1_.evaluate());
70 }
71 evaluator2_.loadScriptString(sele2);
72 if (!evaluator2_.isDynamic()) {
73 seleMan2_.setSelectionSet(evaluator2_.evaluate());
74 }
75
76 Mat3x3d hmat = info->getSnapshotManager()->getCurrentSnapshot()->getHmat();
77
78 nBins_(0) = int(hmat(0,0) / voxelSize);
79 nBins_(1) = int(hmat(1,1) / voxelSize);
80 nBins_(2) = int(hmat(2,2) / voxelSize);
81
82 hist_.resize(nBins_(0));
83 count_.resize(nBins_(0));
84 for (int i = 0 ; i < nBins_(0); ++i) {
85 hist_[i].resize(nBins_(1));
86 count_[i].resize(nBins_(1));
87 for(int j = 0; j < nBins_(1); ++j) {
88 hist_[i][j].resize(nBins_(2));
89 count_[i][j].resize(nBins_(2));
90 std::fill(hist_[i][j].begin(), hist_[i][j].end(), 0.0);
91 std::fill(count_[i][j].begin(), count_[i][j].end(), 0.0);
92
93 }
94 }
95
96 setOutputName(getPrefix(filename) + ".Qxyz");
97 }
98
99 TetrahedralityParamXYZ::~TetrahedralityParamXYZ() {
100 }
101
102 void TetrahedralityParamXYZ::process() {
103 Molecule* mol;
104 StuntDouble* sd;
105 StuntDouble* sd2;
106 StuntDouble* sdi;
107 StuntDouble* sdj;
108 RigidBody* rb;
109 int myIndex;
110 SimInfo::MoleculeIterator mi;
111 Molecule::RigidBodyIterator rbIter;
112 Vector3d vec;
113 Vector3d ri, rj, rk, rik, rkj;
114 RealType r;
115 RealType cospsi;
116 RealType Qk;
117 std::vector<std::pair<RealType,StuntDouble*> > myNeighbors;
118 //std::vector<std::pair<Vector3d, RealType> > qvals;
119 //std::vector<std::pair<Vector3d, RealType> >::iterator qiter;
120 int isd1;
121 int isd2;
122
123
124 int kMax = int(5.0 * gaussWidth_ / voxelSize_);
125 int kSqLim = kMax*kMax;
126 cerr << "gw = " << gaussWidth_ << " vS = " << voxelSize_ << " kMax = " << kMax << " kSqLim = " << kSqLim << "\n";
127
128 DumpReader reader(info_, dumpFilename_);
129 int nFrames = reader.getNFrames();
130
131 for (int istep = 0; istep < nFrames; istep += step_) {
132 reader.readFrame(istep);
133
134 currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
135 Mat3x3d hmat = currentSnapshot_->getHmat();
136 Vector3d halfBox = Vector3d(hmat(0,0), hmat(1,1), hmat(2,2)) / 2.0;
137
138 if (evaluator1_.isDynamic()) {
139 seleMan1_.setSelectionSet(evaluator1_.evaluate());
140 }
141
142 if (evaluator2_.isDynamic()) {
143 seleMan2_.setSelectionSet(evaluator2_.evaluate());
144 }
145
146 // update the positions of atoms which belong to the rigidbodies
147 for (mol = info_->beginMolecule(mi); mol != NULL;
148 mol = info_->nextMolecule(mi)) {
149 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
150 rb = mol->nextRigidBody(rbIter)) {
151 rb->updateAtoms();
152 }
153 }
154
155 //qvals.clear();
156
157 // outer loop is over the selected StuntDoubles:
158 for (sd = seleMan1_.beginSelected(isd1); sd != NULL;
159 sd = seleMan1_.nextSelected(isd1)) {
160
161 myIndex = sd->getGlobalIndex();
162
163 Qk = 1.0;
164 myNeighbors.clear();
165
166 for (sd2 = seleMan2_.beginSelected(isd2); sd2 != NULL;
167 sd2 = seleMan2_.nextSelected(isd2)) {
168
169 if (sd2->getGlobalIndex() != myIndex) {
170
171 vec = sd->getPos() - sd2->getPos();
172
173 if (usePeriodicBoundaryConditions_)
174 currentSnapshot_->wrapVector(vec);
175
176 r = vec.length();
177
178 // Check to see if neighbor is in bond cutoff
179
180 if (r < rCut_) {
181 myNeighbors.push_back(std::make_pair(r,sd2));
182 }
183 }
184 }
185
186 // Sort the vector using predicate and std::sort
187 std::sort(myNeighbors.begin(), myNeighbors.end());
188
189 // Use only the 4 closest neighbors to do the rest of the work:
190
191 int nbors = myNeighbors.size()> 4 ? 4 : myNeighbors.size();
192 int nang = int (0.5 * (nbors * (nbors - 1)));
193
194 rk = sd->getPos();
195
196 for (int i = 0; i < nbors-1; i++) {
197
198 sdi = myNeighbors[i].second;
199 ri = sdi->getPos();
200 rik = rk - ri;
201 if (usePeriodicBoundaryConditions_)
202 currentSnapshot_->wrapVector(rik);
203
204 rik.normalize();
205
206 for (int j = i+1; j < nbors; j++) {
207
208 sdj = myNeighbors[j].second;
209 rj = sdj->getPos();
210 rkj = rk - rj;
211 if (usePeriodicBoundaryConditions_)
212 currentSnapshot_->wrapVector(rkj);
213 rkj.normalize();
214
215 cospsi = dot(rik,rkj);
216
217 // Calculates scaled Qk for each molecule using calculated
218 // angles from 4 or fewer nearest neighbors.
219 Qk -= (pow(cospsi + 1.0 / 3.0, 2) * 2.25 / nang);
220 }
221 }
222
223 if (nang > 0) {
224 if (usePeriodicBoundaryConditions_)
225 currentSnapshot_->wrapVector(rk);
226 //qvals.push_back(std::make_pair(rk, Qk));
227
228 Vector3d pos = rk + halfBox;
229
230
231 Vector3i whichVoxel(int(pos[0] / voxelSize_),
232 int(pos[1] / voxelSize_),
233 int(pos[2] / voxelSize_));
234
235 for (int l = -kMax; l <= kMax; l++) {
236 for (int m = -kMax; m <= kMax; m++) {
237 for (int n = -kMax; n <= kMax; n++) {
238 int kk = l*l + m*m + n*n;
239 if(kk <= kSqLim) {
240
241 int ll = (whichVoxel[0] + l) % nBins_(0);
242 ll = ll < 0 ? nBins_(0) + ll : ll;
243 int mm = (whichVoxel[1] + m) % nBins_(1);
244 mm = mm < 0 ? nBins_(1) + mm : mm;
245 int nn = (whichVoxel[2] + n) % nBins_(2);
246 nn = nn < 0 ? nBins_(2) + nn : nn;
247
248 Vector3d bPos = Vector3d(ll,mm,nn) * voxelSize_ - halfBox;
249 Vector3d d = bPos - rk;
250 currentSnapshot_->wrapVector(d);
251 RealType denom = pow(2.0 * sqrt(M_PI) * gaussWidth_, 3);
252 RealType exponent = -dot(d,d) / pow(2.0*gaussWidth_, 2);
253 RealType weight = exp(exponent) / denom;
254 count_[ll][mm][nn] += weight;
255 hist_[ll][mm][nn] += weight * Qk;
256 }
257 }
258 }
259 }
260 }
261 }
262
263 // for (int i = 0; i < nBins_(0); ++i) {
264 // for(int j = 0; j < nBins_(1); ++j) {
265 // for(int k = 0; k < nBins_(2); ++k) {
266 // Vector3d pos = Vector3d(i, j, k) * voxelSize_ - halfBox;
267 // for(qiter = qvals.begin(); qiter != qvals.end(); ++qiter) {
268 // Vector3d d = pos - (*qiter).first;
269 // currentSnapshot_->wrapVector(d);
270 // RealType denom = pow(2.0 * sqrt(M_PI) * gaussWidth_, 3);
271 // RealType exponent = -dot(d,d) / pow(2.0*gaussWidth_, 2);
272 // RealType weight = exp(exponent) / denom;
273 // count_[i][j][k] += weight;
274 // hist_[i][j][k] += weight * (*qiter).second;
275 // }
276 // }
277 // }
278 // }
279 }
280 writeQxyz();
281 }
282
283 void TetrahedralityParamXYZ::writeQxyz() {
284
285 Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
286
287 // normalize by total weight in voxel:
288 for (unsigned int i = 0; i < hist_.size(); ++i) {
289 for(unsigned int j = 0; j < hist_[i].size(); ++j) {
290 for(unsigned int k = 0;k < hist_[i][j].size(); ++k) {
291 hist_[i][j][k] = hist_[i][j][k] / count_[i][j][k];
292 }
293 }
294 }
295
296 std::ofstream qXYZstream(outputFilename_.c_str());
297 if (qXYZstream.is_open()) {
298 qXYZstream << "# AmiraMesh ASCII 1.0\n\n";
299 qXYZstream << "# Dimensions in x-, y-, and z-direction\n";
300 qXYZstream << " define Lattice " << hist_.size() << " " << hist_[0].size() << " " << hist_[0][0].size() << "\n";
301
302 qXYZstream << "Parameters {\n";
303 qXYZstream << " CoordType \"uniform\",\n";
304 qXYZstream << " # BoundingBox is xmin xmax ymin ymax zmin zmax\n";
305 qXYZstream << " BoundingBox 0.0 " << hmat(0,0) <<
306 " 0.0 " << hmat(1,1) <<
307 " 0.0 " << hmat(2,2) << "\n";
308 qXYZstream << "}\n";
309
310 qXYZstream << "Lattice { double ScalarField } = @1\n";
311
312 qXYZstream << "@1\n";
313
314 int xsize = hist_.size();
315 int ysize = hist_[0].size();
316 int zsize = hist_[0][0].size();
317
318 for (unsigned int k = 0; k < zsize; ++k) {
319 for(unsigned int j = 0; j < ysize; ++j) {
320 for(unsigned int i = 0; i < xsize; ++i) {
321 qXYZstream << hist_[i][j][k] << " ";
322
323 //qXYZstream.write(reinterpret_cast<char *>( &hist_[i][j][k] ),
324 // sizeof( hist_[i][j][k] ));
325 }
326 }
327 }
328
329 } else {
330 sprintf(painCave.errMsg, "TetrahedralityParamXYZ: unable to open %s\n",
331 outputFilename_.c_str());
332 painCave.isFatal = 1;
333 simError();
334 }
335 qXYZstream.close();
336 }
337 }
338
339
340

Properties

Name Value
svn:executable *