1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
* [6] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012). |
42 |
*/ |
43 |
|
44 |
#include "applications/staticProps/TetrahedralityParamXYZ.hpp" |
45 |
#include "utils/simError.h" |
46 |
#include "io/DumpReader.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "utils/NumericConstant.hpp" |
49 |
#include <vector> |
50 |
#include <algorithm> |
51 |
#include <fstream> |
52 |
|
53 |
using namespace std; |
54 |
namespace OpenMD { |
55 |
TetrahedralityParamXYZ::TetrahedralityParamXYZ(SimInfo* info, |
56 |
const std::string& filename, |
57 |
const std::string& sele1, |
58 |
const std::string& sele2, |
59 |
RealType rCut, RealType voxelSize, |
60 |
RealType gaussWidth) |
61 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
62 |
evaluator1_(info), seleMan1_(info), selectionScript2_(sele2), |
63 |
evaluator2_(info), seleMan2_(info), rCut_(rCut), voxelSize_(voxelSize), |
64 |
gaussWidth_(gaussWidth) { |
65 |
|
66 |
evaluator1_.loadScriptString(sele1); |
67 |
if (!evaluator1_.isDynamic()) { |
68 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
69 |
} |
70 |
evaluator2_.loadScriptString(sele2); |
71 |
if (!evaluator2_.isDynamic()) { |
72 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
73 |
} |
74 |
|
75 |
Mat3x3d hmat = info->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
76 |
|
77 |
nBins_(0) = int(hmat(0,0) / voxelSize); |
78 |
nBins_(1) = int(hmat(1,1) / voxelSize); |
79 |
nBins_(2) = int(hmat(2,2) / voxelSize); |
80 |
|
81 |
hist_.resize(nBins_(0)); |
82 |
count_.resize(nBins_(0)); |
83 |
for (int i = 0 ; i < nBins_(0); ++i) { |
84 |
hist_[i].resize(nBins_(1)); |
85 |
count_[i].resize(nBins_(1)); |
86 |
for(int j = 0; j < nBins_(1); ++j) { |
87 |
hist_[i][j].resize(nBins_(2)); |
88 |
count_[i][j].resize(nBins_(2)); |
89 |
std::fill(hist_[i][j].begin(), hist_[i][j].end(), 0.0); |
90 |
std::fill(count_[i][j].begin(), count_[i][j].end(), 0.0); |
91 |
|
92 |
} |
93 |
} |
94 |
|
95 |
setOutputName(getPrefix(filename) + ".Qxyz"); |
96 |
} |
97 |
|
98 |
TetrahedralityParamXYZ::~TetrahedralityParamXYZ() { |
99 |
} |
100 |
|
101 |
void TetrahedralityParamXYZ::process() { |
102 |
Molecule* mol; |
103 |
StuntDouble* sd; |
104 |
StuntDouble* sd2; |
105 |
StuntDouble* sdi; |
106 |
StuntDouble* sdj; |
107 |
RigidBody* rb; |
108 |
int myIndex; |
109 |
SimInfo::MoleculeIterator mi; |
110 |
Molecule::RigidBodyIterator rbIter; |
111 |
Vector3d vec; |
112 |
Vector3d ri, rj, rk, rik, rkj; |
113 |
RealType r; |
114 |
RealType cospsi; |
115 |
RealType Qk; |
116 |
std::vector<std::pair<RealType,StuntDouble*> > myNeighbors; |
117 |
std::vector<std::pair<Vector3d, RealType> > qvals; |
118 |
std::vector<std::pair<Vector3d, RealType> >::iterator qiter; |
119 |
int isd1; |
120 |
int isd2; |
121 |
|
122 |
DumpReader reader(info_, dumpFilename_); |
123 |
int nFrames = reader.getNFrames(); |
124 |
|
125 |
for (int istep = 0; istep < nFrames; istep += step_) { |
126 |
reader.readFrame(istep); |
127 |
|
128 |
if (evaluator1_.isDynamic()) { |
129 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
130 |
} |
131 |
|
132 |
if (evaluator2_.isDynamic()) { |
133 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
134 |
} |
135 |
|
136 |
// update the positions of atoms which belong to the rigidbodies |
137 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
138 |
mol = info_->nextMolecule(mi)) { |
139 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
140 |
rb = mol->nextRigidBody(rbIter)) { |
141 |
rb->updateAtoms(); |
142 |
} |
143 |
} |
144 |
|
145 |
qvals.clear(); |
146 |
|
147 |
// outer loop is over the selected StuntDoubles: |
148 |
for (sd = seleMan1_.beginSelected(isd1); sd != NULL; |
149 |
sd = seleMan1_.nextSelected(isd1)) { |
150 |
|
151 |
myIndex = sd->getGlobalIndex(); |
152 |
|
153 |
Qk = 1.0; |
154 |
myNeighbors.clear(); |
155 |
|
156 |
for (sd2 = seleMan2_.beginSelected(isd2); sd2 != NULL; |
157 |
sd2 = seleMan2_.nextSelected(isd2)) { |
158 |
|
159 |
if (sd2->getGlobalIndex() != myIndex) { |
160 |
|
161 |
vec = sd->getPos() - sd2->getPos(); |
162 |
|
163 |
if (usePeriodicBoundaryConditions_) |
164 |
currentSnapshot_->wrapVector(vec); |
165 |
|
166 |
r = vec.length(); |
167 |
|
168 |
// Check to see if neighbor is in bond cutoff |
169 |
|
170 |
if (r < rCut_) { |
171 |
myNeighbors.push_back(std::make_pair(r,sd2)); |
172 |
} |
173 |
} |
174 |
} |
175 |
|
176 |
// Sort the vector using predicate and std::sort |
177 |
std::sort(myNeighbors.begin(), myNeighbors.end()); |
178 |
|
179 |
// Use only the 4 closest neighbors to do the rest of the work: |
180 |
|
181 |
int nbors = myNeighbors.size()> 4 ? 4 : myNeighbors.size(); |
182 |
int nang = int (0.5 * (nbors * (nbors - 1))); |
183 |
|
184 |
rk = sd->getPos(); |
185 |
|
186 |
for (int i = 0; i < nbors-1; i++) { |
187 |
|
188 |
sdi = myNeighbors[i].second; |
189 |
ri = sdi->getPos(); |
190 |
rik = rk - ri; |
191 |
if (usePeriodicBoundaryConditions_) |
192 |
currentSnapshot_->wrapVector(rik); |
193 |
|
194 |
rik.normalize(); |
195 |
|
196 |
for (int j = i+1; j < nbors; j++) { |
197 |
|
198 |
sdj = myNeighbors[j].second; |
199 |
rj = sdj->getPos(); |
200 |
rkj = rk - rj; |
201 |
if (usePeriodicBoundaryConditions_) |
202 |
currentSnapshot_->wrapVector(rkj); |
203 |
rkj.normalize(); |
204 |
|
205 |
cospsi = dot(rik,rkj); |
206 |
|
207 |
// Calculates scaled Qk for each molecule using calculated |
208 |
// angles from 4 or fewer nearest neighbors. |
209 |
Qk -= (pow(cospsi + 1.0 / 3.0, 2) * 2.25 / nang); |
210 |
} |
211 |
} |
212 |
|
213 |
if (nang > 0) { |
214 |
if (usePeriodicBoundaryConditions_) |
215 |
currentSnapshot_->wrapVector(rk); |
216 |
qvals.push_back(std::make_pair(rk, Qk)); |
217 |
} |
218 |
} |
219 |
|
220 |
for (int i = 0; i < nBins_(0); ++i) { |
221 |
for(int j = 0; j < nBins_(1); ++j) { |
222 |
for(int k = 0; k < nBins_(2); ++k) { |
223 |
Vector3d pos = Vector3d(i, j, k) * voxelSize_; |
224 |
for(qiter = qvals.begin(); qiter != qvals.end(); ++qiter) { |
225 |
Vector3d d = pos - (*qiter).first; |
226 |
RealType denom = pow(2.0 * sqrt(M_PI) * gaussWidth_, 3); |
227 |
RealType exponent = -dot(d,d) / pow(2.0*gaussWidth_, 2); |
228 |
RealType weight = exp(exponent) / denom; |
229 |
count_[i][j][k] += weight; |
230 |
hist_[i][j][k] += weight * (*qiter).second; |
231 |
} |
232 |
} |
233 |
} |
234 |
} |
235 |
} |
236 |
writeQxyz(); |
237 |
} |
238 |
|
239 |
void TetrahedralityParamXYZ::writeQxyz() { |
240 |
// normalize by total weight in voxel: |
241 |
for (unsigned int i = 0; i < hist_.size(); ++i) { |
242 |
for(unsigned int j = 0; j < hist_[i].size(); ++j) { |
243 |
for(unsigned int k = 0;k < hist_[i][j].size(); ++k) { |
244 |
hist_[i][j][k] /= count_[i][j][k]; |
245 |
} |
246 |
} |
247 |
} |
248 |
|
249 |
std::ofstream qXYZstream(outputFilename_.c_str()); |
250 |
if (qXYZstream.is_open()) { |
251 |
|
252 |
for (unsigned int i = 0; i < hist_.size(); ++i) { |
253 |
for(unsigned int j = 0; j < hist_[i].size(); ++j) { |
254 |
for(unsigned int k = 0;k < hist_[i][j].size(); ++k) { |
255 |
qXYZstream.write(reinterpret_cast<char *>( &hist_[i][j][k] ), |
256 |
sizeof( hist_[i][j][k] )); |
257 |
} |
258 |
} |
259 |
} |
260 |
|
261 |
} else { |
262 |
sprintf(painCave.errMsg, "TetrahedralityParamXYZ: unable to open %s\n", |
263 |
outputFilename_.c_str()); |
264 |
painCave.isFatal = 1; |
265 |
simError(); |
266 |
} |
267 |
qXYZstream.close(); |
268 |
} |
269 |
} |
270 |
|
271 |
|
272 |
|