1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
41 |
* Created by Joseph R. Michalka on Oct 12 2012 |
42 |
* @author Joseph R. Michalka |
43 |
* @version $Id: RhoZ.cpp 1665 2011-11-22 20:38:56Z gezelter $ |
44 |
* |
45 |
*/ |
46 |
|
47 |
/* Surface Diffusion |
48 |
* Attempting to track/measure the surface diffusion rates of particles on... wait for it.. |
49 |
* a surface. |
50 |
* This program was initially created to track Platinum particles moving around a 557 surface. |
51 |
* Hence why we are trying to keep the x and y movement separate. |
52 |
* |
53 |
*/ |
54 |
|
55 |
#include <algorithm> |
56 |
#include <fstream> |
57 |
#include "applications/staticProps/SurfaceDiffusion.hpp" |
58 |
#include "utils/simError.h" |
59 |
#include "io/DumpReader.hpp" |
60 |
#include "primitives/Molecule.hpp" |
61 |
namespace OpenMD { |
62 |
|
63 |
SurfaceDiffusion::SurfaceDiffusion(SimInfo* info, const std::string& filename, const std::string& sele, RealType len) |
64 |
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan1_(info){ |
65 |
|
66 |
evaluator_.loadScriptString(sele); |
67 |
if (!evaluator_.isDynamic()) { |
68 |
seleMan1_.setSelectionSet(evaluator_.evaluate()); |
69 |
} |
70 |
|
71 |
//Depending on the selection 'sele1="select Pt"' need a vector equal to the |
72 |
//number of Platinums in the system (for this specific case) |
73 |
selectionCount_ = seleMan1_.getSelectionCount(); |
74 |
cout << "SelectionCount_: " << selectionCount_ << "\n"; |
75 |
|
76 |
moBool_.resize(selectionCount_); |
77 |
positions_.resize(selectionCount_); |
78 |
|
79 |
filename_ = filename; |
80 |
singleMoveDistance_ = 2.0; |
81 |
} |
82 |
|
83 |
SurfaceDiffusion::~SurfaceDiffusion(){ |
84 |
|
85 |
} |
86 |
|
87 |
void SurfaceDiffusion::process() { |
88 |
Molecule* mol; |
89 |
RigidBody* rb; |
90 |
StuntDouble* sd; |
91 |
SimInfo::MoleculeIterator mi; |
92 |
Molecule::RigidBodyIterator rbIter; |
93 |
|
94 |
DumpReader reader(info_, dumpFilename_); |
95 |
int nFrames = reader.getNFrames(); |
96 |
frames_ = 0; |
97 |
nProcessed_ = nFrames/step_; |
98 |
|
99 |
// positions_ and moBool_ are 2D arrays, need the second dimension |
100 |
// filled as well |
101 |
for(int i = 0; i < selectionCount_; i++){ |
102 |
moBool_[i].resize(nFrames); |
103 |
positions_[i].resize(nFrames); |
104 |
} |
105 |
|
106 |
int iterator; |
107 |
int index = 0; |
108 |
/* Loop over all frames storing the positions in a vec< vec<pos> > |
109 |
* At the end, positions.length() should equal seleMan1_.size() or |
110 |
* w/e And positions[index].length() should equal nFrames (or |
111 |
* nFrames/istep) |
112 |
*/ |
113 |
for(int istep = 0; istep < nFrames; istep += step_){ |
114 |
frames_++; |
115 |
reader.readFrame(istep); |
116 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
117 |
|
118 |
for(mol = info_->beginMolecule(mi); mol != NULL; |
119 |
mol = info_->nextMolecule(mi)){ |
120 |
//change the positions of atoms which belong to the rigidbodies |
121 |
for(rb = mol->beginRigidBody(rbIter); rb != NULL; |
122 |
rb = mol->nextRigidBody(rbIter)){ |
123 |
rb->updateAtoms(); |
124 |
} |
125 |
} |
126 |
|
127 |
index = 0; // count over atoms since iterators aren't the most |
128 |
// friendly for such plebian things |
129 |
for(sd = seleMan1_.beginSelected(iterator); sd != NULL; |
130 |
sd = seleMan1_.nextSelected(iterator)){ |
131 |
Vector3d pos = sd->getPos(); |
132 |
positions_[index][istep] = pos; |
133 |
index++; |
134 |
} |
135 |
} |
136 |
|
137 |
cout << "Position Array size: " << positions_.size() << "\n"; |
138 |
cout << "Frames analyzed: " << positions_[0].size() << "\n"; |
139 |
|
140 |
for(std::size_t i = 0; i < positions_.size(); i++){ |
141 |
int frameIndex = positions_[i].size(); |
142 |
for(int j = 1; j < frameIndex; j++){ |
143 |
Vector3d posF1 = positions_[i][j-1]; |
144 |
Vector3d posF2 = positions_[i][j]; |
145 |
Vector3d diff = posF2 - posF1; |
146 |
if(usePeriodicBoundaryConditions_){ |
147 |
currentSnapshot_->wrapVector(diff); |
148 |
} |
149 |
double dist = diff.length(); |
150 |
if(dist > singleMoveDistance_){ |
151 |
moBool_[i][j] = true; |
152 |
}else{ |
153 |
moBool_[i][j] = false; |
154 |
} |
155 |
} |
156 |
} |
157 |
|
158 |
int mobileAtomCount = 0; |
159 |
for(std::size_t i = 0; i < moBool_.size(); i++){ |
160 |
int frameIndex = moBool_[i].size(); |
161 |
bool mobileAtom = false; |
162 |
for(int j = 0; j < frameIndex; j++){ |
163 |
mobileAtom = mobileAtom || moBool_[i][j]; |
164 |
} |
165 |
moBool_[i][0] = mobileAtom; // is true if any value later in the |
166 |
// array is true, false otherwise |
167 |
if(mobileAtom){ |
168 |
mobileAtomCount++; |
169 |
} |
170 |
} |
171 |
|
172 |
cout << "Mobile atom count: " << mobileAtomCount << "\n"; |
173 |
|
174 |
// Here I shrink the size of the arrays, why look through 3888, |
175 |
// when you only need ~800. Additionally, all of these are mobile |
176 |
// at some point in time, the others aren't, dead weight and |
177 |
// memory |
178 |
positions2_.resize(mobileAtomCount); |
179 |
moBool2_.resize(mobileAtomCount); |
180 |
int pos2index = 0; |
181 |
for(std::size_t i = 0; i < positions_.size(); i++){ |
182 |
int frameCount = positions_[i].size(); |
183 |
if(moBool_[i][0]){ |
184 |
for(int j = 0; j < frameCount; j++){ |
185 |
positions2_[pos2index].push_back(positions_[i][j]); |
186 |
moBool2_[pos2index].push_back(moBool_[i][j]); |
187 |
} |
188 |
pos2index++; |
189 |
} |
190 |
} |
191 |
|
192 |
positions_.clear(); |
193 |
moBool_.clear(); |
194 |
|
195 |
cout << "positions_ has been cleared: " << positions_.size() << "\n"; |
196 |
cout << "positions2_ has been filled: " << positions2_.size() << "\n"; |
197 |
cout << "positions2_ has " << positions2_[0].size() << " frames\n"; |
198 |
|
199 |
//The important one! |
200 |
positionCorrelation(); |
201 |
|
202 |
|
203 |
//Write out my data |
204 |
std::ofstream diffStream; |
205 |
setOutputName(getPrefix(filename_) + ".Mdiffusion"); |
206 |
diffStream.open(outputFilename_.c_str()); |
207 |
diffStream << "#X&Y diffusion amounts\n"; |
208 |
diffStream << "#singleMoveDistance_: " << singleMoveDistance_ << "\n"; |
209 |
diffStream << "#Number of mobile atoms: " << positions2_.size() << "\n"; |
210 |
diffStream << "#time, <x(t)-x(0)>, <y(t)-y(0)>, <r(t)-r(0)>\n"; |
211 |
|
212 |
for(std::size_t i = 0; i < xHist_.size(); i++){ |
213 |
diffStream << i << ", " << xHist_[i] << ", " << yHist_[i] << ", " |
214 |
<< rHist_[i] << "\n"; |
215 |
} |
216 |
diffStream.close(); |
217 |
|
218 |
} |
219 |
|
220 |
void SurfaceDiffusion::positionCorrelation(){ |
221 |
RealType xDist = 0.0; |
222 |
RealType yDist = 0.0; |
223 |
RealType rDist = 0.0; |
224 |
int timeShift = 0; |
225 |
Vector3d kPos; |
226 |
Vector3d jPos; |
227 |
//biggest timeShift is positions2_[0].size() - 1? |
228 |
xHist_.clear(); |
229 |
yHist_.clear(); |
230 |
rHist_.clear(); |
231 |
count_.clear(); |
232 |
int frameResize = positions2_[0].size(); |
233 |
xHist_.resize(frameResize); |
234 |
yHist_.resize(frameResize); |
235 |
rHist_.resize(frameResize); |
236 |
count_.resize(frameResize); |
237 |
//loop over particles |
238 |
// loop over frames starting at j |
239 |
// loop over frames starting at k = j (time shift of 0) |
240 |
for(std::size_t i = 0; i < positions2_.size(); i++){ |
241 |
int frames = positions2_[i].size() - 1; // for counting |
242 |
// properly, otherwise |
243 |
// moBool2_[i][j+1] will |
244 |
// go over |
245 |
for(int j = 0; j < frames; j++){ |
246 |
// if the particle is mobile between j and j + 1, then count |
247 |
// it for all timeShifts |
248 |
if(moBool2_[i][j+1]){ |
249 |
for(std::size_t k = j; k < positions2_[0].size(); k++){ |
250 |
//<x(t)-x(0)> <y(t)-y(0)> <r(t)-r(0)> |
251 |
//The positions stored are not wrapped, thus I don't need |
252 |
//to worry about pbc |
253 |
//Mean square displacement |
254 |
//So I do want the squared distances |
255 |
|
256 |
kPos = positions2_[i][k]; |
257 |
jPos = positions2_[i][j]; |
258 |
xDist = kPos.x() - jPos.x(); |
259 |
xDist = xDist*xDist; |
260 |
|
261 |
yDist = kPos.y() - jPos.y(); |
262 |
yDist = yDist*yDist; |
263 |
|
264 |
rDist = (kPos - jPos).lengthSquare(); |
265 |
|
266 |
|
267 |
timeShift = k - j; |
268 |
xHist_[timeShift] += xDist; |
269 |
yHist_[timeShift] += yDist; |
270 |
rHist_[timeShift] += rDist; |
271 |
count_[timeShift]++; |
272 |
} |
273 |
} |
274 |
} |
275 |
} |
276 |
cout << "X, Y, R calculated\n"; |
277 |
|
278 |
for(std::size_t i = 0; i < xHist_.size(); i++){ |
279 |
xHist_[i] = xHist_[i]/(count_[i]); |
280 |
yHist_[i] = yHist_[i]/(count_[i]); |
281 |
rHist_[i] = rHist_[i]/(count_[i]); |
282 |
} |
283 |
cout << "X, Y, R normalized\n"; |
284 |
} |
285 |
|
286 |
} |