1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
*/ |
41 |
|
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/RNEMDStats.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/PhysicalConstants.hpp" |
48 |
|
49 |
namespace OpenMD { |
50 |
|
51 |
RNEMDZ::RNEMDZ(SimInfo* info, const std::string& filename, |
52 |
const std::string& sele, int nzbins) |
53 |
: SlabStatistics(info, filename, sele, nzbins) { |
54 |
|
55 |
setOutputName(getPrefix(filename) + ".rnemdZ"); |
56 |
|
57 |
temperature = new OutputData; |
58 |
temperature->units = "K"; |
59 |
temperature->title = "Temperature"; |
60 |
temperature->dataType = odtReal; |
61 |
temperature->dataHandling = odhAverage; |
62 |
temperature->accumulator.reserve(nBins_); |
63 |
for (int i = 0; i < nBins_; i++) |
64 |
temperature->accumulator.push_back( new Accumulator() ); |
65 |
data_.push_back(temperature); |
66 |
|
67 |
velocity = new OutputData; |
68 |
velocity->units = "angstroms/fs"; |
69 |
velocity->title = "Velocity"; |
70 |
velocity->dataType = odtVector3; |
71 |
velocity->dataHandling = odhAverage; |
72 |
velocity->accumulator.reserve(nBins_); |
73 |
for (int i = 0; i < nBins_; i++) |
74 |
velocity->accumulator.push_back( new VectorAccumulator() ); |
75 |
data_.push_back(velocity); |
76 |
|
77 |
density = new OutputData; |
78 |
density->units = "g cm^-3"; |
79 |
density->title = "Density"; |
80 |
density->dataType = odtReal; |
81 |
density->dataHandling = odhAverage; |
82 |
density->accumulator.reserve(nBins_); |
83 |
for (int i = 0; i < nBins_; i++) |
84 |
density->accumulator.push_back( new Accumulator() ); |
85 |
data_.push_back(density); |
86 |
} |
87 |
|
88 |
void RNEMDZ::processFrame(int istep) { |
89 |
RealType z; |
90 |
|
91 |
hmat_ = currentSnapshot_->getHmat(); |
92 |
for (int i = 0; i < nBins_; i++) { |
93 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat_(2,2); |
94 |
dynamic_cast<Accumulator*>(z_->accumulator[i])->add(z); |
95 |
} |
96 |
volume_ = currentSnapshot_->getVolume(); |
97 |
|
98 |
|
99 |
Molecule* mol; |
100 |
RigidBody* rb; |
101 |
StuntDouble* sd; |
102 |
SimInfo::MoleculeIterator mi; |
103 |
Molecule::RigidBodyIterator rbIter; |
104 |
int i; |
105 |
|
106 |
vector<RealType> binMass(nBins_, 0.0); |
107 |
vector<Vector3d> binP(nBins_, V3Zero); |
108 |
vector<RealType> binKE(nBins_, 0.0); |
109 |
vector<unsigned int> binDof(nBins_, 0); |
110 |
|
111 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
112 |
mol = info_->nextMolecule(mi)) { |
113 |
|
114 |
// change the positions of atoms which belong to the rigidbodies |
115 |
|
116 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
117 |
rb = mol->nextRigidBody(rbIter)) { |
118 |
rb->updateAtomVel(); |
119 |
} |
120 |
} |
121 |
|
122 |
if (evaluator_.isDynamic()) { |
123 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
124 |
} |
125 |
|
126 |
// loop over the selected atoms: |
127 |
|
128 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
129 |
sd = seleMan_.nextSelected(i)) { |
130 |
|
131 |
// figure out where that object is: |
132 |
Vector3d pos = sd->getPos(); |
133 |
Vector3d vel = sd->getVel(); |
134 |
RealType m = sd->getMass(); |
135 |
|
136 |
int bin = getBin(pos); |
137 |
|
138 |
binMass[bin] += m; |
139 |
binP[bin] += m * vel; |
140 |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
141 |
binDof[bin] += 3; |
142 |
|
143 |
if (sd->isDirectional()) { |
144 |
Vector3d angMom = sd->getJ(); |
145 |
Mat3x3d I = sd->getI(); |
146 |
if (sd->isLinear()) { |
147 |
int i = sd->linearAxis(); |
148 |
int j = (i + 1) % 3; |
149 |
int k = (i + 2) % 3; |
150 |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
151 |
angMom[k] * angMom[k] / I(k, k)); |
152 |
binDof[bin] += 2; |
153 |
} else { |
154 |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
155 |
angMom[1] * angMom[1] / I(1, 1) + |
156 |
angMom[2] * angMom[2] / I(2, 2)); |
157 |
binDof[bin] += 3; |
158 |
} |
159 |
} |
160 |
} |
161 |
|
162 |
for (int i = 0; i < nBins_; i++) { |
163 |
|
164 |
if (binDof[i] > 0) { |
165 |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
166 |
PhysicalConstants::energyConvert); |
167 |
RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
168 |
/ volume_; |
169 |
Vector3d vel = binP[i] / binMass[i]; |
170 |
|
171 |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
172 |
dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); |
173 |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
174 |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
175 |
} |
176 |
} |
177 |
} |
178 |
|
179 |
void RNEMDZ::processStuntDouble(StuntDouble* sd, int bin) { |
180 |
} |
181 |
|
182 |
RNEMDR::RNEMDR(SimInfo* info, const std::string& filename, |
183 |
const std::string& sele, int nrbins) |
184 |
: ShellStatistics(info, filename, sele, nrbins) { |
185 |
|
186 |
|
187 |
setOutputName(getPrefix(filename) + ".rnemdR"); |
188 |
|
189 |
temperature = new OutputData; |
190 |
temperature->units = "K"; |
191 |
temperature->title = "Temperature"; |
192 |
temperature->dataType = odtReal; |
193 |
temperature->dataHandling = odhAverage; |
194 |
temperature->accumulator.reserve(nBins_); |
195 |
for (int i = 0; i < nBins_; i++) |
196 |
temperature->accumulator.push_back( new Accumulator() ); |
197 |
data_.push_back(temperature); |
198 |
|
199 |
angularVelocity = new OutputData; |
200 |
angularVelocity->units = "angstroms^2/fs"; |
201 |
angularVelocity->title = "Angular Velocity"; |
202 |
angularVelocity->dataType = odtVector3; |
203 |
angularVelocity->dataHandling = odhAverage; |
204 |
angularVelocity->accumulator.reserve(nBins_); |
205 |
for (int i = 0; i < nBins_; i++) |
206 |
angularVelocity->accumulator.push_back( new VectorAccumulator() ); |
207 |
data_.push_back(angularVelocity); |
208 |
|
209 |
density = new OutputData; |
210 |
density->units = "g cm^-3"; |
211 |
density->title = "Density"; |
212 |
density->dataType = odtReal; |
213 |
density->dataHandling = odhAverage; |
214 |
density->accumulator.reserve(nBins_); |
215 |
for (int i = 0; i < nBins_; i++) |
216 |
density->accumulator.push_back( new Accumulator() ); |
217 |
data_.push_back(density); |
218 |
} |
219 |
|
220 |
|
221 |
void RNEMDR::processFrame(int istep) { |
222 |
|
223 |
Molecule* mol; |
224 |
RigidBody* rb; |
225 |
StuntDouble* sd; |
226 |
SimInfo::MoleculeIterator mi; |
227 |
Molecule::RigidBodyIterator rbIter; |
228 |
int i; |
229 |
|
230 |
vector<RealType> binMass(nBins_, 0.0); |
231 |
vector<Mat3x3d> binI(nBins_); |
232 |
vector<Vector3d> binL(nBins_, V3Zero); |
233 |
vector<RealType> binKE(nBins_, 0.0); |
234 |
vector<int> binDof(nBins_, 0); |
235 |
|
236 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
237 |
mol = info_->nextMolecule(mi)) { |
238 |
|
239 |
// change the positions of atoms which belong to the rigidbodies |
240 |
|
241 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
242 |
rb = mol->nextRigidBody(rbIter)) { |
243 |
rb->updateAtomVel(); |
244 |
} |
245 |
} |
246 |
|
247 |
if (evaluator_.isDynamic()) { |
248 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
249 |
} |
250 |
|
251 |
// loop over the selected atoms: |
252 |
|
253 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
254 |
sd = seleMan_.nextSelected(i)) { |
255 |
|
256 |
// figure out where that object is: |
257 |
int bin = getBin( sd->getPos() ); |
258 |
|
259 |
if (bin >= 0 && bin < nBins_) { |
260 |
|
261 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
262 |
Vector3d vel = sd->getVel(); |
263 |
RealType m = sd->getMass(); |
264 |
Vector3d L = m * cross(rPos, vel); |
265 |
Mat3x3d I(0.0); |
266 |
I = outProduct(rPos, rPos) * m; |
267 |
RealType r2 = rPos.lengthSquare(); |
268 |
I(0, 0) += m * r2; |
269 |
I(1, 1) += m * r2; |
270 |
I(2, 2) += m * r2; |
271 |
|
272 |
binMass[bin] += m; |
273 |
binI[bin] += I; |
274 |
binL[bin] += L; |
275 |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
276 |
binDof[bin] += 3; |
277 |
|
278 |
if (sd->isDirectional()) { |
279 |
Vector3d angMom = sd->getJ(); |
280 |
Mat3x3d Ia = sd->getI(); |
281 |
if (sd->isLinear()) { |
282 |
int i = sd->linearAxis(); |
283 |
int j = (i + 1) % 3; |
284 |
int k = (i + 2) % 3; |
285 |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) + |
286 |
angMom[k] * angMom[k] / Ia(k, k)); |
287 |
binDof[bin] += 2; |
288 |
} else { |
289 |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) + |
290 |
angMom[1] * angMom[1] / Ia(1, 1) + |
291 |
angMom[2] * angMom[2] / Ia(2, 2)); |
292 |
binDof[bin] += 3; |
293 |
} |
294 |
} |
295 |
} |
296 |
} |
297 |
|
298 |
for (int i = 0; i < nBins_; i++) { |
299 |
RealType rinner = (RealType)i * binWidth_; |
300 |
RealType router = (RealType)(i+1) * binWidth_; |
301 |
if (binDof[i] > 0) { |
302 |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
303 |
PhysicalConstants::energyConvert); |
304 |
RealType den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
305 |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
306 |
|
307 |
Vector3d omega = binI[i].inverse() * binL[i]; |
308 |
|
309 |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
310 |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(omega); |
311 |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
312 |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
313 |
} |
314 |
} |
315 |
} |
316 |
|
317 |
|
318 |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
319 |
} |
320 |
|
321 |
RNEMDRTheta::RNEMDRTheta(SimInfo* info, const std::string& filename, |
322 |
const std::string& sele, int nrbins, int nangleBins) |
323 |
: ShellStatistics(info, filename, sele, nrbins), nAngleBins_(nangleBins) { |
324 |
|
325 |
Globals* simParams = info->getSimParams(); |
326 |
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
327 |
bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
328 |
|
329 |
if (hasAngularMomentumFluxVector) { |
330 |
std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector(); |
331 |
if (amf.size() != 3) { |
332 |
sprintf(painCave.errMsg, |
333 |
"RNEMDRTheta: Incorrect number of parameters specified for angularMomentumFluxVector.\n" |
334 |
"\tthere should be 3 parameters, but %lu were specified.\n", |
335 |
amf.size()); |
336 |
painCave.isFatal = 1; |
337 |
simError(); |
338 |
} |
339 |
fluxVector_.x() = amf[0]; |
340 |
fluxVector_.y() = amf[1]; |
341 |
fluxVector_.z() = amf[2]; |
342 |
} else { |
343 |
|
344 |
std::string fluxStr = rnemdParams->getFluxType(); |
345 |
if (fluxStr.find("Lx") != std::string::npos) { |
346 |
fluxVector_ = V3X; |
347 |
} else if (fluxStr.find("Ly") != std::string::npos) { |
348 |
fluxVector_ = V3Y; |
349 |
} else { |
350 |
fluxVector_ = V3Z; |
351 |
} |
352 |
} |
353 |
|
354 |
fluxVector_.normalize(); |
355 |
|
356 |
setOutputName(getPrefix(filename) + ".rnemdRTheta"); |
357 |
|
358 |
angularVelocity = new OutputData; |
359 |
angularVelocity->units = "angstroms^2/fs"; |
360 |
angularVelocity->title = "Angular Velocity"; |
361 |
angularVelocity->dataType = odtArray2d; |
362 |
angularVelocity->dataHandling = odhAverage; |
363 |
angularVelocity->accumulatorArray2d.reserve(nBins_); |
364 |
for (int i = 0; i < nBins_; i++) { |
365 |
angularVelocity->accumulatorArray2d[i].reserve(nAngleBins_); |
366 |
for (int j = 0 ; j < nAngleBins_; j++) { |
367 |
angularVelocity->accumulatorArray2d[i][j] = new Accumulator(); |
368 |
} |
369 |
} |
370 |
data_.push_back(angularVelocity); |
371 |
|
372 |
} |
373 |
|
374 |
|
375 |
std::pair<int,int> RNEMDRTheta::getBins(Vector3d pos) { |
376 |
std::pair<int,int> result; |
377 |
|
378 |
Vector3d rPos = pos - coordinateOrigin_; |
379 |
RealType cosAngle= dot(rPos, fluxVector_) / rPos.length(); |
380 |
|
381 |
result.first = int(rPos.length() / binWidth_); |
382 |
result.second = int( (nAngleBins_ - 1) * 0.5 * (cosAngle + 1.0) ); |
383 |
return result; |
384 |
} |
385 |
|
386 |
void RNEMDRTheta::processStuntDouble(StuntDouble* sd, int bin) { |
387 |
} |
388 |
|
389 |
void RNEMDRTheta::processFrame(int istep) { |
390 |
|
391 |
Molecule* mol; |
392 |
RigidBody* rb; |
393 |
StuntDouble* sd; |
394 |
SimInfo::MoleculeIterator mi; |
395 |
Molecule::RigidBodyIterator rbIter; |
396 |
int i; |
397 |
|
398 |
vector<vector<Mat3x3d> > binI; |
399 |
vector<vector<Vector3d> > binL; |
400 |
vector<vector<int> > binCount; |
401 |
|
402 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
403 |
mol = info_->nextMolecule(mi)) { |
404 |
|
405 |
// change the positions of atoms which belong to the rigidbodies |
406 |
|
407 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
408 |
rb = mol->nextRigidBody(rbIter)) { |
409 |
rb->updateAtomVel(); |
410 |
} |
411 |
} |
412 |
|
413 |
if (evaluator_.isDynamic()) { |
414 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
415 |
} |
416 |
|
417 |
// loop over the selected atoms: |
418 |
|
419 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
420 |
sd = seleMan_.nextSelected(i)) { |
421 |
|
422 |
// figure out where that object is: |
423 |
std::pair<int,int> bins = getBins( sd->getPos() ); |
424 |
|
425 |
if (bins.first >= 0 && bins.first < nBins_) { |
426 |
if (bins.second >= 0 && bins.second < nAngleBins_) { |
427 |
|
428 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
429 |
Vector3d vel = sd->getVel(); |
430 |
RealType m = sd->getMass(); |
431 |
Vector3d L = m * cross(rPos, vel); |
432 |
Mat3x3d I(0.0); |
433 |
I = outProduct(rPos, rPos) * m; |
434 |
RealType r2 = rPos.lengthSquare(); |
435 |
I(0, 0) += m * r2; |
436 |
I(1, 1) += m * r2; |
437 |
I(2, 2) += m * r2; |
438 |
|
439 |
binI[bins.first][bins.second] += I; |
440 |
binL[bins.first][bins.second] += L; |
441 |
binCount[bins.first][bins.second]++; |
442 |
} |
443 |
} |
444 |
} |
445 |
|
446 |
|
447 |
for (int i = 0; i < nBins_; i++) { |
448 |
for (int j = 0; j < nAngleBins_; j++) { |
449 |
|
450 |
if (binCount[i][j] > 0) { |
451 |
Vector3d omega = binI[i][j].inverse() * binL[i][j]; |
452 |
RealType omegaProj = dot(omega, fluxVector_); |
453 |
|
454 |
dynamic_cast<Accumulator *>(angularVelocity->accumulatorArray2d[i][j])->add(omegaProj); |
455 |
} |
456 |
} |
457 |
} |
458 |
} |
459 |
|
460 |
void RNEMDRTheta::writeOutput() { |
461 |
|
462 |
vector<OutputData*>::iterator i; |
463 |
OutputData* outputData; |
464 |
|
465 |
ofstream outStream(outputFilename_.c_str()); |
466 |
if (outStream.is_open()) { |
467 |
|
468 |
//write title |
469 |
outStream << "# SPATIAL STATISTICS\n"; |
470 |
outStream << "#"; |
471 |
|
472 |
for(outputData = beginOutputData(i); outputData; |
473 |
outputData = nextOutputData(i)) { |
474 |
outStream << "\t" << outputData->title << |
475 |
"(" << outputData->units << ")"; |
476 |
// add some extra tabs for column alignment |
477 |
if (outputData->dataType == odtVector3) outStream << "\t\t"; |
478 |
} |
479 |
|
480 |
outStream << std::endl; |
481 |
|
482 |
outStream.precision(8); |
483 |
|
484 |
for (int j = 0; j < nBins_; j++) { |
485 |
|
486 |
int counts = counts_->accumulator[j]->count(); |
487 |
|
488 |
if (counts > 0) { |
489 |
for(outputData = beginOutputData(i); outputData; |
490 |
outputData = nextOutputData(i)) { |
491 |
|
492 |
int n = outputData->accumulator[j]->count(); |
493 |
if (n != 0) { |
494 |
writeData( outStream, outputData, j ); |
495 |
} |
496 |
} |
497 |
outStream << std::endl; |
498 |
} |
499 |
} |
500 |
} |
501 |
} |
502 |
} |
503 |
|